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ABSTRACT:

3D city models in Level-of-Detail 2 (LoD2) are nowadays inevitable for many applications such as solar radiation calculation and 
energy demand estimation. City-wide models are required which can solely be acquired by fully automatic approaches. In this 
paper we propose a novel method for the 3D-reconstruction of LoD2 buildings with structured roofs and dormers from LIDAR 
data. We apply a hybrid strategy which combines the strengths of top-down and bottom-up methods. The main contribution is the 
introduction of an active sampling strategy which applies a cascade of filters focusing on promising samples in an early stage and 
avoiding the pitfalls of RANSAC based approaches. Such filters are based on prior knowledge represented by (non-parametric) 
density distributions. Samples are pairs of surflets, i.e. 3D points together with normal vectors derived from a plane approximation 
of their neighborhood. Surflet pairs imply immediately important roof parameters such as azimuth, inclination and ridge height, as 
well as parameters for internal precision and consistency, giving a good base for assessment and ranking. Ranking of samples leads 
to a small number of promising hypotheses. Model selection is based on predictions for example of ridge positions which can easily 
be falsified based on the given observations. Our approach does not require building footprints as prerequisite. They are derived in 
a preprocessing step using machine learning methods, in particular Support Vector Machines (SVM).

1. INTRODUCTION

Three dimensional city models in Level-of-Detail 2 (LoD2) ac-
cording to the CityGML specification (Gröger et al., 2012) –
building models with prototypic roofs and larger roof structures
such as dormers or turrets – are a requirement for many rele-
vant applications such as solar radiation calculation, real-time
simulations for training, or visualization. Such data also is in-
evitable for applications which require the calculation of the
precise volume of a building for energy demand estimation or
tax assessment. Typically, large state- or city-wide models are
needed for these applications, which can only be derived by
fully automatic methods with a high success rate.

Topic of this paper is the 3D-reconstruction of LoD2 buildings
with larger roof structures from LIDAR data. This problem
has been addressed by many researchers in the last years, an
overview is given in (Haala, Kada, 2010). These methods basi-
cally can be divided into bottom-up (also called non-parametric
or data-driven strategy) and top-down (model-driven or para-
metric) approaches. Bottom-up methods try to fit roof edges
or roof planes into the data, which are assembled to roofs with
their constraints afterwards. Top-down methods use parametric
3D roof models which consider roof constraints from the begin-
ning and try to fit them into the data. As stated by (Huang et
al., 2013), for the reconstruction of larger areas, a pure bottom-
up approach leads to disturbances and hence, lacks robustness,
whereas a pure top-down approach lacks efficiency. Instead, a
hybrid approach integrating additional bottom-up information
into the top down process is proposed.
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In a former paper, we applied the Random Sample Consensus
(RANSAC) method (Fischler, Bolles, 1981) to fit semantic roof
models in 3D point clouds. RANSAC is a robust estimator and
produces good estimations as long the noise is randomly dis-
tributed and unstructured, which is not guaranteed in the context
of roofs due to highly structured noise such as dormers or chim-
neys. In fact, RANSAC nowadays represents a large family of
algorithms, the most popular being MLESAC (Torr, Zisserman,
2000), but most of the members of this family are hardly able
to cope with situations where the observations are explained
by different similar, but competing hypotheses (such as paral-
lel planes with small distances or planes with the same azimuth
but slightly different inclinations as in the case of dormers and
the searched model is supported only by a small proportion of
the observations (see Section 2 for more details). In RANSAC-
based approaches the size of the support set (or the score as in
MLESAC which maximizes the likelihood rather than the num-
ber of inliers) has been used for selecting the best model. As
will be illustrated in Section 2, this approach fails if the obser-
vations can best be explained by structured models aggregated
from several primitives, such as adjacent, parallel gabled roofs
or roofs with large shed dormers.

The contribution of this paper is a new method for deriving
LoD2 buildings with larger roof structures from LIDAR data,
which overcomes these and similar problems arising in other
approaches. We propose an active sampling strategy that ex-
cludes ’bad’ samples (which lead to models not supported by
the observations) from the beginning. Prior knowledge about
models and good samples, represented by probability distribu-
tions of parameters, is used to focus on promising hypotheses
in a very early stage in contrast to the random sampling of
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Figure 1. RANSAC: problems in estimating the roof model for
observations (observations supporting the model are depicted
red, the yellow ones do not support the model). a) expected
models (gabled roofs) are contained in the model space of

RANSAC. Since the model is supported only by a part of the
observations, it delivers a false estimation. b) a false model (flat
roof covering the whole observations) obtains more support than
the smaller gabled roofs. c) large dormers mislead RANSAC to

make a false estimation of a gable roof.

RANSAC. This approach has been inspired and motivated by
probabilistic robotics where this kind of importance sampling
has successfully been applied. We use the term “active sam-
pling” in constrast to “random sampling” typical for RANSAC.
Active sampling is similar to importance sampling but not the
same. It uses prior knowledge in order to assess samples in
a very early stage in order to reject weak samples as early as
possible and simultaneously avoiding early commitment on any
hypothesis. In this way, we actively focus on promising sam-
ples and corresponding hypotheses. To the best knowledge of
the authors, such methods have not been employed in the con-
text of building reconstruction and especially roof reconstruc-
tion until now, with the exception of (Nguatem et al., 2013) and
(Schmittwilken, Plümer, 2010) which used an informed sam-
pling for façade reconstruction.

With regard to roof models, we distinguish between generic and
extension parameters. The extension parameters (bounding ge-
ometry) are given by a polygon, with a rectangle as a special
case, whereas the generic parameters may be specified by plane
equations. For a generic symmetric gabled roof model, four
points in general position are sufficient to generate hypothe-
ses (Henn et al., 2013). In this article, we use pairs of sur-
flets (Wahl et al., 2003) instead. An observed surflet consists
of a 3D point (from the LIDAR point cloud) and its normal
representing a plane approximation of its k-neighborhood in
the point cloud. The verification of the prediction for gabled
roofs with regard to the observations is reduced to the verifica-
tion of a ridge prediction. Verification resp. falsification of hy-
potheses for gabled roofs can be based on predicted ridges and
the 3D points observed in the vicinity of the predicted ridges.
Hence, our method uses a hybrid approach integrating addi-
tional bottom-up information into the top down process, as pro-
posed by (Huang et al., 2013). Pairs of surflets integrate bot-
tom up, i.e. a data driven approach, in a very tight way with
top down, i.e. a model driven approach. They are tailored to
specific roof models such as gabled roofs and both model pa-
rameters (azimuth, declination, ridge height) and measures of
consistency (mean square error, curvature, symmetry).

Many approaches for automatically deriving LoD2 building mod-
els (with or without larger roof structures), e.g., (Henn et al.,
2013, Zhang et al., 2014) require building footprints as addi-
tional input. Such footprints typically exist in most highly de-
veloped countries. However, even if this data is available, there
might be frequent inconsistencies since often the footprints and
the other input data (LIDAR, aerial images) have been collected
at different points in time, resulting in buildings represented in

LIDAR/image data, but missing in the footprint data, or vice
versa. There are also relevant disaster scenarios where current
footprints are not available. Consider, e.g. the Haiti earthquake
in 2010, where the assessment of damages could not be based
on reliable footprint information. Our approach does not re-
quire building footprints as input. They are derived in a prepro-
cessing step using machine learning methods, in particular Sup-
port Vector Machines (SVM), in combination with an α-shape-
based boundary determination. However, if they are available,
they can be incorporated and be used to improve the result.

The rest of this paper is organized as follows: The next section
gives an overview on related approaches to generate buildings
from LIDAR data and its shortcomings. Our new method is
presented in section 3. Section 3.1 is devoted to the classifica-
tion of LIDAR points by methods from Machine Learning as
well as the estimation and regularization of footprints from the
points classified as building points. Methods for detection of
roofs and larger roof structures using active sampling and sur-
flets are introduced in section 3.2. Section 4 deals with the 3D
reconstruction of structured roof models and discusses the re-
construction results. This paper ends with concluding remarks
and an outlook on the next steps in building reconstruction.

2. RELATED WORK

In the field of automatic building and especially roof recon-
struction from LIDAR data, two approaches are mainly used:
bottom-up on the one hand and top-down on the other. A com-
parison of both approaches can be found in (Haala, Kada, 2010).
Model-driven approaches, e.g. (Henn et al., 2013, Kada, McKin-
ley, 2009, Poullis, You, 2009) define a catalog of parametric 3D
roof models a priori and fit the roof models into the data, fol-
lowed by a model selection (e.g. Minimum description length
(MDL), akaike information criterion (AIC), SVM). The approach
of (Kada, McKinley, 2009) uses normal vectors for the determi-
nation of the models which fit best to the point cloud. (Huang
et al., 2011) as well as (Lafarge et al., 2010) use reversible jump
Markov Chain Monte Carlo in order to fit the primitives. Gaus-
sian mixture models and the EM-algorithm are used by (Poullis,
You, 2009) for this task. Beside the detection of locally fitted
primitives, the authors of (Zhou, Neumann, 2012) detect re-
lations between roof and wall polygons, such as orientation,
placement, parallelism as well as orthogonality and equality of
roof planes. Regularly, top-down approaches have to deal with
the problem of the flexibility. If, however, roof primitives are
aggregated in a regular, constrained way such as for instance
specified by formal grammars, they are able to model buildings
by aggregating primitives and using specific constraints based
on frameworks such as attribute grammars and Markov Logic
Networks (Dehbi et al., 2017).

In data-driven approaches, geometric primitives such as planes
are segmented in a first step and aggregated afterwards. Pop-
ular methods are among others RANSAC (Tarsha-Kurdi et al.,
2008), 3D-Hough-transform (Maltezos, Ioannidis, 2016), graph
matching (Oude Elberink, 2009) and region growing (Rotten-
steiner, 2006). A further data driven approach is presented
by (Poullis, 2013). Laser points are clustered first according
to the point normal and height variance (based on an eight-
neighborhood). Points are (unsupervised) clustered into patches,
and neighboring patches are aggregated based on a likelihood
function. Finally, the boundary is derived and refined, by em-
ploying an energy minimizing function using graph cuts. (Jung
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et al., 2017) proposed also a regularization method for recon-
structing 3D building rooftop models in data-driven manner.
Data-driven approaches are usually faced with data perturba-
tion such as occlusions or reflections that leads to disturbances
such as incompletely reconstructed roofs. Furthermore, geo-
metric constraints have to be satisfied. Hence, a postprocessing
step, as in (Rottensteiner, 2006), is needed which may leads to
inconsistency with the previous fitting step (Huang et al., 2013).

A hybrid approach for building reconstruction from LIDAR
data combing bottom-up and top-down strategies has been pro-
posed by (Satari et al., 2012). Main roof planes are detected first
in a bottom-up manner, using point-based classification meth-
ods, clustering and the α-shape algorithm. Afterwards, the de-
rived roof planes are verified by supervised machine learning
methods (SVM with polynomial kernel); features are the an-
gle and gradient differences as well as the Euclidean distance
between LIDAR points and the plane. In the second, model-
based step, dormers are reconstructed using dormer models and
constraints (e.g., identical azimuth and inclination difference
of more than 20◦ between main roof plane and dormer roof).
For the classification of dormer types, again an SVM is em-
ployed. Another hybrid approach was proposed by (Lafarge,
Mallet, 2012). In a first step, building points are classified us-
ing energy minimization and graph cut based methods, based
on local point features. In a model-based way, geometric prim-
itives (planar, spherical, cylindrical and conoidal shapes) are
fitted into the points classified as building points. This segmen-
tation is derived by iterative non-linear optimization. For points
not covered by primitives, meshes are determined in a data-
driven manner. In the third step, the primitives and meshes are
combined/aggregated using an adjacency graph. For the deriva-
tion of building footprints from LIDAR points, (Huang, Sester,
2011) apply a hybrid approach. A segmentation (data-driven) of
the points in planes is achieved by a 3D-Hough transformation.
Based on the segmentation, primitives (rectangles/triangles) are
fitted into the point cloud allowing for overlaps along the prim-
itives. As method, reversible jump Markov Chain Monte Carlo
(rjMCMC) is used. A further hybrid method has been proposed
by (Cao et al., 2017)

3. DETECTION AND RECONSTRUCTION OF
COMPLEX 3D ROOFS

This section gives an overview on the surflet-based active sam-
pling of roof hypothesis as the first step for reconstructing com-
plex 3D roofs. Subsection 3.1 deals with the classification of
LIDAR 3D points clouds, the estimation and regularization of
footprints from the classified points. Subsection 3.2 describes
the approach for detecting roofs and roofs structures which will
be reconstructed afterwards. A summary of the whole method
is depicted in Algorithm 1. This is a synthesis of the methods
which will be demonstrated in the following sections.

In order to overcome the deficits related to the random sampling
practice, we propose a novel sampling strategy which applies a
cascade of filters and rejects bad samples as early as possible.
This approach covers different roof types and will be exemplar-
ily demonstrated for gabled roofs. Based on the point normal of
each surflet si, points of flat roofs have been determined via a
threshold of 10◦ for the angle of the normal to the z-axis. The
first property of roofs which is used for the selection of samples
is planarity. Thus a point is a good candidate if its neighbor-
hood with regard to the observations is approximately planar.
One measure for planarity is the mean square error (MSE) of

Algorithm 1: Detection and reconstruction of complex
building scenes from point clouds – RECONSTRUCT SCENE

Input: AllP ts . . . LIDAR point cloud
Output: Brep . . . reconstructed roof models (BRep)

1 [Outlines,Pts,P] =
PREPROCESS POINTCLOUD(AllP ts): Preprocessing and
classification of buildings areas in 3D point clouds ;

2 [H,Sb,SP] =
GENERATE GABLED ROOF HYPOTHESES(Pts, b, P ) :
Surflet-based active sampling (Algorithm 2);

3 [M0] = SELECT BEST MODELS(H): Model selection of
3D roofs (Algorithm 3);

4 [M,D] = REFINE ROOF MODELS(M0,Sb,SP):
Refinement of roof/roof part predictions;

5 [Brep] =
RECONSTRUCT COMPLEX ROOFS(M,D,Outlines):
Reconstruction of complex 3D roofs – BRep;

its k next neighbors with regard to their approximating plane.
A second, slightly different measure is the curvature κ (Pauly
et al., 2002), which is calculated from the eigenvalues λi of the
principal component analysis of that neighborhood via the for-
mula

κ =
λ0

λ0 + λ1 + λ2
(1)

The second roof property is that ridges are parallel to the ground
(x-y plane). Ridges are guaranteed to be horizontal if the az-
imuths of the opposite roof planes differ exactly by π. We
consider points together with their normals which were already
mentioned in the introduction. This pair (point and normal vec-
tor) is well known in computer graphics as surflet (Wahl et
al., 2003). We assume that the normal vectors are normalized
(unit length) and oriented upwards. Upwards orientation has
the immediate consequence that roof pitches are positive and
roof planes are oriented.

Our approach starts with a given LIDAR 3D point cloudAllP ts
and delivers a reconstructed boundary representation Brep of
the reconstructed roof models. During the first preprocessing
step (see section 3.1) each point is classified into ’building’,
’vegetation’ or ’ground’. Subsequently building areas and their
(preliminary)Outlines are detected and regularized. Besides,
the belonging classified points Pts ⊂ R3 and the probability
P that a given point is a part of a building are provided. In the
next step, surflet-based active sampling demonstrated in Algo-
rithm 2 generates preliminary roof hypotheses H together with
best ranked surflets Sb ⊂ R3×R3 as well as best ranked surflet
pairs SP . Subsequently, a model selection of 3D roofs is per-
formed leading to an initial set of roof models M0 (cf. Algo-
rithm 3). Afterwards the previous predictions of roof and their
parts respectively are refined in order to discriminate between
and combine roof types and their parts resulting to refined roof
and dormer models M and D respectively. Finally the detected
roofs from the previous step as well as their parts such as dorm-
ers are reconstructed in a topological correct way.

3.1 Preprocessing and detection of buildings in 3D point
clouds

A coarse knowledge of the class of each point (’building’, ’veg-
etation’ and ’ground’) improves our sampling method as will
be described in Section 3.2. The class information (category
and probability) of the points labeled as ’building’ (hereafter
called ’building candidates’) reduces the search space in sam-
pling. This enables that surflets are solely sampled from roof
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points. Furthermore, the building outlines are used to bound
building model hypotheses to a local area. A refined bounding
geometry will be acquired based on the inliers of the selected
model and used for the reconstruction of the entire building ge-
ometry. For that purpose, we applied a point based classifica-
tion to the 3D point cloud with a subsequent determination of
boundaries for the building candidates. These can be the bound-
aries of detached buildings on the one hand or boundaries of
connected building complexes on the other hand.

A support vector machine (SVM) was used for the classifi-
cation of points. We applied features from (Chehata et al.,
2009, Niemeyer et al., 2012, Zhou, Neumann, 2008) which de-
scribe the local context of a single point pti by its position,
its normal and the distribution of positions and normals of its
k-neighborhood. Since the information on the ground surface
(e.g. a digital terrain model) is not available in many cases, the
height of the ground has to be determined from the point cloud.
Therefore, a feature for the approximation of height difference
to ground surface, as proposed by (Chehata et al., 2009) has
been calculated. They assume that the point with the lowest z-
value in a vertical cylinder centered at the point pti with radius
r is the point on the ground surface. In contrast, we sort the
points by its z-component and select the subset L of the lowest
5% of the points. Our approximated height hgr of the ground
surface is the median height h̃ (owing to its robustness against
outliers) of the points in this subset:

hgr = h̃L (2)

Furthermore, the fast point feature histogram (FPFH), proposed
by (Rusu et al., 2009), has been included in the feature set.
It has been proven to be discriminative for object detection in
point clouds. FPFH is a 3D feature descriptor for point classifi-
cation based on the surflets in the local neighborhood N . Each
combination of two surflets (surflet pair) in N gives a set of
three angular relations, e.g. the azimuthal angle between the
two surflets. The angular variations are discretized and repre-
sented as histogram for each relation.

In order to train a classification model, a set of labeled in-
stances is needed. Hence, a set of ≈ 80,000 points (includ-
ing ≈ 21,000 building points) has been labeled manually into
the classes ’building’, ’vegetation’ and ’ground’. Given the la-
bels and corresponding features for the training dataset, a (Soft-
Margin-) Support Vector Machine (Schölkopf, Smola, 2002),
which also was used in (Zhou, Neumann, 2008, Henn et al.,
2013), has been learned. As kernel function we used both the
RBF kernel and the linear kernel. After optimization of the ker-
nel parameters, the accuracy of the model has been derived us-
ing 10-fold cross-validation. We achieved an accuracy of 82.83
% for the linear Kernel and of 87.56 % for the RBF-kernel.

The resulting classification was used for the detection of build-
ings. Detached buildings (and connected building complexes)
in this point set result in point clusters in the corresponding
point cloud. For clustering, however, only the X- and Y - com-
ponent of the point were needed (projection onXY -plane). Be-
cause of misclassifications, building candidates nevertheless in-
clude single scattered points, which are regarded as ’outliers’.
In order to eliminate the latter and to smoothen the labeling,
we applied a LoOP (local outlier probabilities) outlier detec-
tion (K. et al., 2009) followed by a DBScan clustering (Ester et
al., 1996). The advantage of LoOP is the combination of local,
density-based outlier scoring with a probabilistic, statistically-

Figure 2. a) A surflet pair/model hypothesis (green, blue)
derived by filtering, front view of the point cloud. b)

Segmentation of the noisy point cloud according to the azimuth
of surflets, top view, c) reconstructed roof model and

corresponding roof model surflets.

oriented approach. Therefore an upper limit for the outlier prob-
ability (e.g. 95 %) can be set as a standardized measure. The
points marked as ’outlier’ were excluded from the DBScan clus-
tering. DBScan has two significant advantages compared to
standard clustering algorithms, such as KMeans. At first, the
number of clusters (here: number of single detached buildings
and connected building complexes) has not to be known a-priori
and, secondly, there is no assumption on the shape of the clus-
ters required. For this reason, DBScan can identify L-shaped or
U-shaped clusters which are outside the scope of KMeans.

In the next step, the polygonal outline of each point cluster was
determined. The same method was applied for the calculation
of the boundary of non-rectangular roof-models (e.g. two inter-
secting gabled roofs) and dormers determined by the algorithm
in Section 3. We used a combination of the methods (Sampath,
Shan, 2007) and (Lee et al., 2011).

In a first step, the rough building respectively model outline
was estimated. Following (Edelsbrunner et al., 1983), α-Shapes
were used to determine an approximation of the boundary. Ir-
regular and rough outlines, however, are rather untypical for
building models. In most cases the outlines are linear and the in-
tersection angles of two adjacent bounding segments are about
90◦. Consequently, the outlines had to be regularized taking
parallelities and orthogonalities into account.

Analogous to (Sampath, Shan, 2007), segments of the α-shape
were grouped based on the angle difference of subsequent seg-
ments. For each group, initial values were computed which
were needed in a following estimation of final boundaries. There-
fore the dominant direction of the segments was needed which
was derived by the method of (Lee et al., 2011). Given the dom-
inant directions, the initial values and the points of the grouped
segments, a Gauss-Helmert-model estimation with angle con-
straints was performed which provided the estimated parame-
ters of the bounding lines. The intersection of these lines led to
the regularized building footprint.

3.2 Detection of roofs and roof structures

This section describes active sampling for the detection of roofs
and their parts from a LIDAR point cloud. This approach uses
regularized approximations of predicted building outlines which
have been obtained in a previous step as described in section
3.1. For the sake of clarity and conciseness, our sampling-based
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Figure 3. Roof model surflets of gabled roof. Roof properties
are reflected by using surflet pairs (orange). a): The horizontality
of ridges is represented by the fact that the azimuths θ1 and θ2 of

the normals ~n1 and ~n2 of the surflets differ in exactly π.
Symmetric gabled roof: The declination ϕ must be identical (b).

detection method will exemplarily be demonstrated for gabled
roofs. Sampling is based on surflets S ⊂ R3 × R3. A surflet
s ∈ S, s = (pt,n) is a combination of a 3D point pt and its
normal vector n derived from the plane approximation of its
k-neighborhood. From our experiences, k=5 has been a good
choice for specifying this neighborhood. In some cases surflets
derived from broader homogeneous regions will be preferred.

Normal vectors, which in general are unique up to the sign,
are directed upwards giving a positive inclination angle. Mean
square error and curvature of the neighborhood of a surflet point
are good fitness parameters for single surflets. Furthermore the
comparison of azimuths and inclination provide additional in-
dications for the consistency of pairs of surflets with regard to a
prospected roof model. A good sample of a symmetric gabled
roof is given by a pair of normals with the same declination and
opposite azimuth (the difference between the north vector and
the perpendicular projection of the roof). These pairs enable
an early assessment of the quality of the surflets; this cannot
be achieved if only single surflets are considered. Surflet pair
properties reflecting roof properties are used as an efficient fil-
ter in active sampling: roof prediction can safely be restricted
to a few surflet pairs passing this filter. Figure 2 summarizes
the surflet-based classification of gabled roofs. In subfigure a),
observed surflets in a LIDAR point cloud that represent a pair
are depicted. Such pairs are filtered based on the roof prop-
erties such as planarity, curvature, symmetry and opposite az-
imuth, and consequently represent preliminary model hypothe-
ses which can be easily verified or falsified afterwards. Sub-
figure b) shows a top view of the point cloud from a) which
has been segmented according to the azimuth of the underlying
surflet points. The surflet pairs restrict the model hypotheses
space enabling the reconstruction of the roof models. Subfig-
ure c) depicts a top view of the reconstructed 3D roof model.
The corresponding roof model surflets are drawn with the same
color as the roof surface.

Gabled roofs: The main observation is that the roof proper-
ties are mirrored in the properties of a surflet pair. A ridge of a
gabled roof is horizontal if the azimuths of both surflets differ
in exactly π. A gabled roof is symmetric if the declinations are
identical. The identity of the declination ϕ for both surflets is
reduced to the comparison of the third component nz of their
respective normal vectors. Fig. 3 illustrates the immediate con-
nection between roof and the related surflet pair properties. The
orange surflet pairs are used in a) to represent the horizontality
of ridges, while b) depicts surflets of a symmetric gabled roof.

Gabled roofs in a given 3D point cloud are identified by using
observed surflets s ∈ S, s = (pt,n), the normals n of which

are derived from the neighborhood of a point pt in the point
cloud. The filtering process starts with the determination of a
local neighborhoodNi for each building point pti. We perform
a principal component analysis of Ni with a singular value de-
composition S ·V ·D = N

′
i of the matrixN

′
i , whereN

′
i =Ni

−mean(Ni) is the centered version ofNi. Here S is a diagonal
matrix with the non-zero diagonal elements λi in decreasing
order. D is an orthonormal 3x3 matrix with the eigenvectors
corresponding to the eigenvalues λ0, λ1 and λ2. The last col-
umn ofD is the normalni of the plane approximating the point
set Ni. The best supporting local plane and its corresponding
mean square error (MSE) is derived as usual. The curvature κ
is defined as the ratio between the smallest eigenvalue and the
sum of the three eigenvalues (see formula 1).

Based on these information, a surflet si for pti with si =
(pti,ni) is generated. In the next step the curvature and the
mean square error (MSE) are used for defining a filter charac-
terizing the fitness of single surflets w.r.t roof samples. Based
on the smoothness criterion, the surflets are ranked in order to
get a pre-filtered surflet set S.

Note that small values of curvature and mean square error sug-
gest high fitness of single surflets w.r.t roof sampling. Ranking
is based on the derivation of a cumulative density function (cdf).
Since neither curvature nor mean square error can be assumed
to be normally distributed, the calculation of the cdf is based on
a kernel density estimation or -for the sake of efficiency- his-
tograms. The weighted sum of the ranks corresponding to both
features provides a first estimate of the fitness of a single surflet.

The next step is to calculate the fitness of pairs SP′ of sur-
flets, which are given as the cartesian product of the surflets
which surpassed the first filter. Ranking of pairs of surflets is
done by the determination of the declinations ∆φ of the nor-
mal vectors of sk and sl for each pair sp = (sk, sl) ∈ SP′

(symmetry). Besides, the sum of the azimuths of normal vec-
tors of sk and sl is computed (horizontality of ridges). The cdf
represents a ranking criterion for the surflet pairs SP′ result-
ing in a set of best ranked surflet pairs SP which will be used
to verify the ridge prediction. We found that neither the size
of the support set nor the score as applied in most RANSAC
based approaches (Tarsha-Kurdi et al., 2008, Henn et al., 2013)
are good measures for the appropriateness of a hypothesis. In-
stead, we try to falsify inappropriate hypotheses based on their
predictions. Particularly well suited for falsification are ridges,
i.e. the points which should be observed in their neighbor-
hood. For this aim, the ridge line is computed for each pair
spi = (sk, sl) ∈ SP by intersecting the corresponding planes.
The occurrence of 3D points is predicted in the neighborhood
of the calculated ridge, then it is verified or falsified whether
these points are inlier with regard to the considered ridge fol-
lowing a scoring strategy (Torr, Zisserman, 2000). If the ridge
line could be verified with respect to the observations Pts, the
corresponding roof hypotheses are added to a set of hypothe-
ses H. The whole algorithm for the surflet-based active sam-
pling for gabled roof hypotheses generation is summarized in
Pseudo-code in Algorithm 2.

Based on the set of hypotheses H acquired from the surflet-
based active sampling step, a model selection is performed in
order to obtain a preliminary set of roof models. Algorithm
3 summarizes the procedure of model selection of 3D roofs
in pseudo-code. For this purpose, the competitive hypotheses
within H which support the same roof are grouped in a group
gi ∈ G. The model selection derives the best unbounded roof
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Algorithm 2: Pseudo-code of surflet-based active sam-
pling for gabled roof hypotheses generation – GENERATE -
GABLED ROOF HYPOTHESES

Input: Pts ⊂ R3 × {b} × P . . . classified building 3D
points with the probability of being a building point;
(line 1 Algorithm 1)

Output: H . . . set of roof hypotheses
Sb ⊂ R3 × R3; si = (xi,ni) ∈ Sb . . . best

ranked surflets
SP . . . best ranked surflet pairs

1 for pti ∈ Pts do
2 Determine local neighborhood Ni for pti;
3 Compute normal ni and best supporting plane

pi = (ni, di) for Ni, di = −(n>i · pti);
4 Generate a surflet si for pti with si = (pti,ni);
5 Calculate MSEi and Curvaturei;
6 Rank surflets based on MSE and Curvature and select a

subset Sb of best ranked surflets;
7 Build surflet pairs SP′ for Sb;
8 for spi = (sk, sl) ∈ SP′ do
9 Compute difference of declinations ∆φi of normal

vectors of sk and sl;
10 Compute sum of azimuths

∑
θi of normal vectors of sk

and sl;
11 Calculate joint probability distribution function (pdf) for

∆φ and
∑∑∑
θ;

12 Calculate cumulative distribution function (cdf) for pdf;
13 Rank surflet pairs SP′ according to cdf. The best ranked

surflet pairs are called SP;
14 for spi = (sk, sl) ∈ SP do
15 Compute the ridge line by intersecting the

corresponding planes pk and pl;
16 if ridge line can be verified taking observations

AllP ts into account then
17 Put roof hypotheses pk and pl into H;

model mi for each group gi ∈ G using model ranking based
on prediction of ridges (number of observed points in the im-
mediate neighborhood of the predicted ridge), general support
(size of support set and score as in (Torr, Zisserman, 2000))
and average inlier density. These unbounded roof models are
then collected in a set M′ in order to be refined in a next step.
Hereby, preliminary boundaries for each m′i ∈ M′ are deter-
mined in order to build a set of initial roof models.

Hip roofs and dormers: The preliminary set of initial gabled
roof models M0 acquired in the previous model selection step
have to be refined in order to associate them to a most specific
roof model type (in particular, hip or pavilion roof) if necessary.
This refinement step (line 4 in algorithm 1) is omitted in this
paper for the sake of simplicity.

Algorithm 3: Pseudo-code model selection of 3D roofs –
SELECT BEST MODELS

Input: H . . . set of roof hypotheses
Output: M0 . . . initial set of roof models

1 Group the hypotheses space H such that competitive
hypotheses (those which support the same roof) are in the
same group G;

2 for gi ∈ G do
3 Select the best unbounded roof model mi (model

selection) in gi and put it into M′

4 for m′i ∈M′ do
5 Determine the preliminary boundaries of m′i. Put the

resulting set of roof models into M0

4. RECONSTRUCTION OF ROOFS AND ROOF
STRUCTURES AND EXPERIMENTAL RESULTS

This section deals with the reconstruction of 3D roofs based on
the roof models M with dormers D acquired from the refine-
ment algorithm in the previous step. Further, the reconstruction
results are presented and discussed. Firstly, the regularized ap-
proximations Outlines is determined following the method
described in section 3.1. Afterwards, the reconstruction method
outputs a boundary representation Brep of the reconstructed
3D roof models.

Figure 4. 3D roof models as result of an active sampling
based reconstruction. Selected buildings with

sophisticated roof models are highlighted.

Figure 4 shows reconstructed 3D roof models based on our ac-
tive sampling. Sophisticated roofs which ordinarily cause de-
tection difficulties are reconstructed and highlighted on the mar-
gin of the figure.

The reconstruction is based on a test data set from Vaihingen in
Germany provided by DGPF which contains Airborne Laser-
scanner (ALS) data consisting of 10 ALS strips (Rottensteiner
et al., 2014). The median point density is 6.7 points / m2 in
overlapped strip areas. In regions covered by only one strip the
mean point density is 4 points / m2. The number of buildings
in the training phase amounted to about 140.

The problems of RANSAC based sampling approaches described
in the previous sections (cf. figure 1) have been overcome due
to both active sampling and the falsification of inappropriate hy-
potheses via ridge predictions. For the comparison, an outline
of the resulting models derived with our approach is shown in
figure 5. The pseudo-code (line 5 in algorithm 1) is also omitted
for the sake of simplicity.

Figure 5. Roof models estimated with our approach based on
an active sampling. The problems occurred by RANSAC (cf.

figure 1) have been overcome.

Roof reconstruction utilizes the boundaries of the roof model
which are determined by clustering the inliers with the DB-
Scan algorithm (Ester et al., 1996) and calculating its outline
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Algorithm 4: Pseudo-code for reconstruction of complex
3D roofs – RECONSTRUCT COMPLEX ROOFS

Input: M . . . set of refined roof models
D . . . set of dormer models
OutLines . . . regularized approximation of

predicted
building outlines

Output: Brep reconstructed roof models (BRep)
1 Determine the boundaries of each roof/ dormer model and

the topological connection between neighboring roof/
dormer models;

2 Determine areas inOutLines which are not covered by
roof models from M. Extend neighboring roof models if
necessary;

3 Eliminate (small) false positives;
4 Regularization of boundaries and adjustment of

neighboring ridges the result is calledBrep;

with alpha-shapes (Edelsbrunner et al., 1983). In the case of
adjacent roofs, plane intersections are calculated in order to de-
rive border lines. Furthermore, the topological connection be-
tween the neighboring roof models as well as partonomies such
as the relation between dormers and their corresponding roofs
are identified. In the next step, areas in the previously regular-
ized approximation of predicted building outlines OutLines
which are not covered by the roof models from M are detected
and neighboring roof models have to be extended, if necessary.
Further, buildings or roof structures which are too small (false
positives) are eliminated. Finally, a regularization of the bound-
aries takes place in addition to an adjustment of neighboring
ridges in order to produce the resulted reconstructed roof mod-
elsBrep.

In order to evaluate our reconstruction results we submitted our
Breps to the ISPRS test project on urban classification and 3D
building reconstruction. In this way our results were compared
to a reference data from the area 3 in Vaihingen (Germany). The
completeness and the correctness of our reconstructed models
are performed on a per-area (Cmar / Crar) and on a per-object
level (Cmob / Crob). Furthermore completeness and correct-
ness of objects larger than 55 m2 (Cm55 / Cr55) has been cal-
culated. The thematic accuracy is determined as described in
(Rutzinger et al., 2009). The geometrical accuracy is evalu-
ated using Root Mean Square (RMS) error of distances from
our building outlines to the reference building outlines. While
Crar amounts 93.9, Crob got a value of 97.9. The complete-
ness per-area Cmar is 67.5 and amounts 85.5 for objects larger
than 55 m2. This is attributed to the fact that we gave attention
to structured roofs and did not perform a reconstruction of flat
roofs. The RMS error came to 1.1 [m]. The identification and
reconstruction of a single building takes a fraction of a second
on a Windows 64 Bit machine (3.4 GHZ, 16 GB RAM). With
regard to dormers which occupy a large portion of the roof our
method scores well with other approaches.

5. CONCLUSION

The contribution of this paper is a new method for the automatic
derivation of LoD2 building models with larger roof structures
from LIDAR data. Knowledge about roofs and roof structures
such as dormers is used to select promising samples (’active
sampling’) for roofs and roof structures from the LIDAR point
cloud and to reject ’bad’ samples from this set as early as possi-
ble. The concept of surflets and surflet pairs has been proven to
be appropriate to perform this task. Surflets first are ranked ac-
cording to their smoothness and planarity. Pairs derived from

the best ranked surflets which do not satisfy roof properties
(such as symmetry, horizontal ridges, or ridges of dormers be-
ing orthogonal to the ridge of the roof) are rejected as early
as possible and very efficient. From the remaining pairs, roof
hypotheses are generated and selected applying state-of-the-art
model selection methods. Hence, our method implements a
hybrid approach combining data driven and model based ap-
proaches, getting the benefits of both approaches and avoiding
the disadvantages. In particular, we have shown that problems
which occur when applying the RANSAC algorithm are solved.
Currently our approach covers (symmetrical) gabled roofs, hip
and pavilion roofs, as well as flat roof, gable and shed dormers.

In contrast to many other methods, our approach does not de-
pend on building footprints as input. In a preprocessing step,
points of the LIDAR point cloud are classified into building
and other points using Machine Learning methods. The build-
ing points are clustered and finally a set of footprints which
fulfills orthogonality and parallelity constraints is derived. This
method also can be used for change detection tasks, e.g. to de-
tect buildings which are not present in cadastral data sets.

The method is presented in the paper in a detailed way by giving
the pseudo code algorithms for all steps (Algorithm 1 to 5).
The output of the algorithms is a 3D city model (detail level
LoD2) in CityGML, a standard for 3D city models which is
used internationally for data modelling and data exchange.

The next steps will be the extension of the catalog of roof types
and roof structure types (for example, chimneys or other dormer
types) and the extension of the method to cope with 3D points
derived from photogrammetry, in particular to points derived
from semi global matching methods. The geometrical charac-
teristics of these points is different to those from LIDAR points.
Furthermore, additional color information has to be integrated.
Hence, the methods have to be adapted accordingly.
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