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ABSTRACT: 

 

Aggregation is an important operation for the generalization of land-cover data. However, current research often entails aggregation 

on a global perspective, which is not conducive to capturing the spatial characteristics of geographic objects with significant spatial 

structures, i.e., structured geographic objects. Hence this paper proposes an area aggregation method that can maintain the boundary 

characteristics of the structured geographic objects. First, we identify the structured geographic objects based on the description 

parameters of the spatial structure. Second, a Miter-type buffer transformation is introduced to extract the boundary of each 

structured geographic object, and area elements inside the boundary are processed with corresponding aggregation operations. 

Finally, the boundary of the structured geographic objects and the aggregation result of the area elements are inserted back into the 

aggregated result of the original land-cover data using the NOT operation. The proposed approach is experimentally validated using 

geographical condition census data for a city in southern China. The experimental result indicates that the proposed approach not 

only reasonably identify the typical characteristics of structured geographic objects but also effectively maintains the boundary 

characteristics of these objects. 

 

 

1. INTRODUCTION 

Land-cover thematic data are a specific spatial tessellation with 

no gap or overlap. As a map is transformed from a larger scale 

into a smaller one, long and narrow areas in the larger-scale 

map are difficult to present in the smaller-scale map. Under 

such circumstances, an area aggregation operation is required. 

This aggregation can be divided into two types, namely, 

amalgamation and aggregation. Amalgamation refers to 

aggregation small areas into topologically adjacent areas with 

different semantic information, whereas aggregation refers to 

aggregation areas with homogeneous semantic information that 

are topologically separated by a narrow area (Ai & Liu. 2002). 

Previous studies note that such aggregation operations must not 

only consider the natural boundary shape of each area but also 

account for the structural pattern of various land-cover classes 

or the spatial distribution pattern (Brassel & Weibel 1988, 

Steiniger& Weibel 2007). They must also ensure that the 

relative percentage of each land-cover class remains the same 

on a general statistical basis (Sester 2005, Haunert & Wolff 

2010). 

 

Van Oosterom (1995) proposed a classic iterative algorithm in 

which the least-important small-area from the data set of the 

land-cover map is iteratively merged into its adjacent area. 

However, this method, which is essentially an amalgamation 

operation, can deal only with adjacent areas, and the land-cover 

class patterns of the map change significantly after the 

generalization. Ai et al. (2002) introduced boundary-

constrained Delaunay triangulation into the aggregation 

operation, in which the skeleton edge in a small area is picked 

up through triangulation, and the area is then divided and 

assigned to multiple topologically adjacent areas for further 

amalgamation. Moreover, the “bridging” area between the 

topologically separated areas is extracted via triangulation, and 

area aggregation is enabled using the OR operation. Weng et al. 

(2012) later described a modified area aggregation algorithm 

that introduces the concept of a buffer to effectively accomplish 

the aggregation of the bridging area. The modified method 

better maintains the natural curved shape of the area boundary. 

Nevertheless, all of the above methods fail to address the 

problem of considerable area variation of land-cover classes 

after aggregation. To this end, some scholars have proposed an 

area aggregation approach based on the global optimum. In 

addition, Haunert & Wolff (2006) attempted to achieve 

optimization in land-cover data aggregation via mixed integer 

programming by considering both the minimum variation in 

area of each land-cover class and the compactness of the 

aggregation results. 

 

In summary, the present aggregation methods adequately 

maintain the natural shapes of areas and effectively keep the 

sum of area variation of each land-cover class as low as possible. 

However, these methods often proceed on a global basis and 

consider each land-cover class as a unit to account for the 

characteristics of “no gap” and “no overlap” in such land-cover 

data. They seldom consider the characteristics of area features 

that have their own inherent patterns in terms of the spatial 

distribution, such as buildings and pit ponds. Therefore, during 

aggregation, the boundaries of the area features with unique 

spatial structures are altered, and the spatial structure 

characteristic is partially or fully lost. On the basis of the 

previous studies, this paper focuses on following the regularity 

of the original spatial distribution and proposes an area 

aggregation method that can maintain the boundary 

characteristics of structured geographic objects. 

 

The remainder of the paper is organized as follows: Section 2 

presents two main area aggregation methods and discusses their 

pros and cons. Section 3 introduces the proposed approach, 

including characteristic identification of the typical pattern, 

boundary extraction of typical patterns, different aggregation 

operations for area objects arranged in typical patterns and 

conflict adjustment during the restoration process. Section 4 
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presents a series of experiments that were conducted to validate 

the effectiveness and reliability of the proposed method. Section 

5 summarizes the findings and discusses future research 

avenues. 

2. RELATED WORK 

2.1 Two main area aggregation methods 

2.1.1 The classic aggregation method: Van Oosterom (1995) 

proposed the classic iterative aggregation algorithm, which can 

also be interpreted as an area “growth” algorithm. The key 

procedure of the algorithm is as follows: 

 

S set of areas below a threshold for the target scale 

while S ≠ ∅ do 

a smallest area in S 

merge a to the most compatible neighbor 

update S 

end while 

 

The neighboring area is chosen by calculating the local 

optimum, for example, the degree of semantic similarity in the 

land-cover class between a small area and its neighboring area 

(semantic distance) and the area of the neighboring area or the 

length of the shared boundary (geometric distance) (Podrenek et 

al., 2002; Van Smaalen et al., 2003). The classic iterative 

aggregation algorithm is a greedy algorithm and serves to 

simply fulfill the aggregation of neighboring areas. Although it 

has a high implementation efficiency, significant area variation 

is observed in land-cover classes after generalization, and the 

resultant aggregation quality is low (Haunert & Wolff 2006). 

 

2.1.2 Area aggregation method based on the global 

optimum: Given the disadvantages found of the classic iterative 

aggregation algorithm, Haunert & Wolff (2006, 2010) 

comprehensively accounted for the area variation of each land-

cover class and the compactness of the geometry and tried to 

address the optimization of the area aggregation operation using 

mixed integer programming. In their work, the area is described 

on the basis of graph theory. That is, an area is represented by 

nodes, the size of the area is measured by the node weight, land-

cover classes are represented by colors, and adjacency 

relationships are represented by edges. As such, the area 

aggregation problem is converted into a node grouping problem. 

 

Haunert & Wolff (2010) introduced mixed integer programming 

into processing for regions with fewer data (a small number of 

nodes), whereas they adopted a center-distance heuristic 

approach for regions with more data (many nodes). The area 

data aggregation approach based on the global optimum 

considers the geometric distance and semantic and topological 

relationships between areas, which obtained better compactness 

of the merged area and minimum area variation for each land-

cover class after generalization. As is presented in Fig. 1(a), 

multiple buildings in an aggregated distribution are merged into 

one. 

 

 
(a) 

 
(b) 

Figure 1. Merger of land-cover data based on the global 

optimum. (a) Original land-cover areas; (b) aggregation results. 

 

2.2 Shortcomings of current area aggregation methods 

From the above analysis, it is clear that the present approaches 

are adequate for area features that are in an aggregated 

distribution and randomly arranged, such as natural geographic 

objects, e.g. farmlands and woodlands. However, in regard to 

artificial area objects that are characterized by inherent 

regularity and unique complexity in their spatial distribution, 

such as buildings that are arranged in a grid or linear pattern 

and pit ponds, which are often adjacent to each other, after 

aggregation via current approaches, the spatial distribution 

pattern is compromised (Figs. 2). 

 

Buildings that are arranged in a linear pattern are illustrated in 

Fig. 2(a). As the scale is changed from larger to smaller, the 

typical structural characteristics of the buildings and pit ponds 

are expected to be maintained, and small areas around them 

should be merged into other land-cover classes. Unfortunately, 

because current approaches mostly address the problem on a 

global basis and ignore the spatial distribution patterns of the 

area features, the small areas are merged into adjacent areas of 

the same classes, and the original spatial structure of buildings 

and pit ponds are broken, as depicted in Figs. 2(b). 

 

 
(a) 

 
(b) 

Figure 2. Buildings arranged in a linear pattern. (a) Original 

data; (b) loss of linear arrangement. 

 

3. METHODOLOGY 

This paper proposes an area aggregation method that can 

maintain the boundary characteristic of structured geographic 

objects, the basic principles of which are as follows. First, the 

typical spatial distribution pattern for the structured geographic 

objects are identified on the basis of descriptive parameters of 

the spatial structure, and the objects are extracted from original 

land-cover data. Second, the boundary of each typical pattern is 
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extracted, and the structured geographic objects aggregated 

within the boundary are merged using a corresponding 

aggregation operation. Third, aggregation of the original land-

cover area data is performed through the aggregation approach 

proposed by Haunert & Wolff (2010). Finally, the 

complementary set of aggregation results of the typical 

distribution patterns were obtained using the NOT operation 

(Margalit & Knott 1989) for the extracted boundary and the 

aggregation results of the original land-cover area data. Then, 

the aggregation results with typical spatial distribution patterns 

are embedded into the complementary set using the spatial 

Insert operation (Song et al. 2015) to reform it into complete 

area data with no gaps or overlap. The detailed workflow of the 

proposed method is shown in Fig. 3. 

 
Original land-cover data

Aggregation results of the original 

land-cover data

Typical distribution pattern for structured geographic objectsTypical distribution pattern for structured geographic objects

Linear patternLinear pattern Grid patternGrid pattern

Calculate object density (DG)

Does DG≥0.7

and CG =building?

Does DG ≥0.7

and CG = water?

Identify object classification (CG)Calculate width (WG)

Does DG < 0.7

and CG =building?

Does DG < 0.7

and CG = water?

Does 

WG<0.4mm?

Does 

WG≥0.4mm?

Merging results of typical distribution patternsMerging results of typical distribution patterns

Boundary of structured geographic objectsBoundary of structured geographic objects

Boundary of linear patterns Boundary of linear patterns 

Complementary set of merging results 

of typical distribution patterns

Final merging results of the land-cover data

Initial merging results of the original land-cover data

Boundary of grid patterns Boundary of grid patterns 

Merging results of

 linear patterns 

Merging results of

 linear patterns 
Merging results of

 grid patterns 

Merging results of

 grid patterns 

Aggregation operation based on 

the global optimum

Structural characteristic identification

Miter-type buffer transformation

NOT operation

Typification Agglomeration

Insert operation

Amalgamation Aggregation

Adjust the internal conflicts Adjust the external conflicts

 
Figure 3. Workflow of the proposed method. 

 

 

3.1 Identification of structural characteristics 

The structured geographic objects present a macroscopic group 

distribution, and within the group, the area element has a 

similar size and shape, as well as a regular distance and 

directional and topological relationships. 

 

3.1.1 Parameters of the spatial structure and their 

calculation : Based on previous studies (Yan et al. 2008, Liu 

2013, Yan et al. 2017, Li et al.2018), this paper adopts the 

following parameters as the description factors for the spatial 

structure of the aggregated area objects, including the principal 

direction difference (
diffO ), the path direction difference 

(
diffPO ), the size similarity (

sizeS ), the shape similarity (
shapeS ), 

the width of the bridging area (
distanceB ), the effective 

connection index ( ECI ), and the distribution pattern index 

( DPI ). 

 

Detailed definitions of the parameters are shown in Fig. 4, the 

parameter of ECI , which are not defined in the figure are 

calculated as follows: 
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(a) Principal direction difference (
diffO ) (b) Size similarity (
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(e) Path direction difference (
2 1diffPO PO PO  ) (f) Distribution pattern index (
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B


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Figure 4. Description factors for the spatial structure. 

 

 

In terms of area elements approaching each other, the two 

elements can be recognized as a unit in the case that some part 

of one area element visually connects with the other, according 

to the Gestalt principle of continuation. The ratio of the 

connective region between the two neighboring elements to the 

unit is a key indicator for identifying an agglomerate region. 

This paper uses ECI to capture this indicator, which can be 

calculated as detailed below: 

 

Step 1: Identify the Type-II triangles, which have two 

neighboring triangles in the boundary-constrained Delaunay 

triangulation (Ai & Liu. 2002). Then, define the region covered 

by the Type-II triangles as the connection region between the 

two elements, as illustrated in yellow and green in Fig. 5. 

 

Step 2: Calculate the inner angles of each triangle. Triangles 

with no obtuse inner angles and whose neighboring triangles 

also contain no obtuse angles are recognized as effective 

triangles. The region covered by these effective triangles is 

referred to as the effective connectable area (ECA), as 

illustrated in green in Fig. 6. Other regions are defined as the 

invalid connectable area, as shown in yellow in Fig. 5. 

 

 

 
Figure 5. Effective connectable (green) and invalid connectable 

(yellow) areas. 

 

Step 3: Calculate ECI based on the ratio of the area of the 

connectable area to that of the total area, the expression of 

which is shown below as follows: 

 

,

,

,

s t

s t

s t

X X

X X

X X

CA
ECI

TA
                        (1) 

 

where ,s tX XECI  is the ECI of two neighboring area elements 

sX  and tX , 
,s tX XCA  refers to the

 
effective connectable area 

and
 

,s tX XTA
 
refers to the total connectable area, including the

 

effective connectable area and invalid connectable areas. 
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3.1.2 Typical pattern identification: Linear and grid 

patterns are two typical structures for aggregated area objects 

and are identified according to the abovementioned spatial 

structure description factors combined with the Gestalt 

principles of closure, extensibility and element connectedness 

(Zhang et al. 2013a, Zhang et al. 2018). The controlling 

parameters for the pattern identification are listed in Table 1. 

 

  

Table 1. Controlling parameters for the identification of structural characteristics of structured geographic objects. 

Typical Pattern Pattern Description Identification Parameter & Criteria 

Linear pattern 

(1) Each object in the pattern group has 

similar shape and size; 

(2) The principal directions of all 

objects in the pattern group are almost 

identical, and the global direction of the 

pattern is basically identical or 

perpendicular to the principal direction 

of each object. (Yan et al. 2008) 

diffO   Maximum principal direction 

difference 
diffO  

distanceB   Maximum width of the 

bridging area 
distanceB  

sizeS   Minimum size similarity 
sizeS  

shapeS   Minimum shape similarity 

shapeS  

ECI > Minimum ECI ECI  

diffPO   Maximum path direction 

difference 
diffPO  

   

Grid pattern 

(1) Two sets of linear patterns coexist; 

(2) Linear patterns are nearly parallel to 

each other in each set; 

(3) Two sets of linear patterns are 

nearly orthogonal to each other;  

(4) Two sets of linear patterns are 

connected to each other. (Zhang et al. 

2013b) 

(1) According to the topological 

relationship, construct a linear pattern 

connective map and identify all connected 

linear patterns; 

(2) Map the directional relationship of the 

identified linear patterns and identify the 

set of linear patterns that have similar 

directions; 

(3) Preliminarily extract the grid pattern, in 

which the angle threshold is defined and 

two sets of linear patterns that are nearly 

orthogonal to and connected with each 

other are picked;  

(4) Posttreat the grid pattern, in which a 

topology of the initial grid pattern is 

constructed, iteratively eliminating nodes 

with degrees lower than two and 

unreasonable parts such as “burrs” and 

“tails”. 

 

The boundary-constrained Delaunay triangulation is first 

constructed across the region where the structured geographic 

objects are located, and an initial area binary group is built on 

the basis of the spatial adjacency of each area object captured 

with respect to areas connected by triangle edges. Then, each 

group structural description parameter between elements in the 

binary group is calculated. Furthermore, a linear pattern is 

identified, and the grid pattern is characterized through the 

identified linear pattern. 
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3.2 Boundary extraction of structured geographic objects 

Maintaining the pattern of the structured geographic objects 

relies on the boundary of their external boundary. Given this 

and based on the concept of morphological transformation, this 

paper introduces a Miter-type buffer treatment (Park et al. 2003, 

Yi et al. 2008) to extract the boundary of structured geographic 

objects (Li et al. 2018). Fig. 6(a) presents an example of how 

this operation proceeds. 

 

Step 1 is implementing a dilation-erosion transformation of the 

structured geographic objects. First, dilation transformation of 

the original aggregated area group is performed with a buffer 

distance of L, and the overlapped regions among dilated areas 

are amalgamated, resulting in Polygon P1, as depicted in Fig. 

6(b). Then, erosion transformation of Polygon P1 is conducted 

with a buffer distance of L, which leads to Polygon P2, as 

depicted in Fig. 6(c). 

 

  
(a)                                             （b） 

 
（c） 

Figure 6. Dilation and erosion transformations. (a) Original 

pattern; (b) dilation transformation; (c) erosion transformation. 

As shown in Fig. 6, the dilation-erosion transformation is 

characterized by remaining “convex” and “flat” while 

eliminating “concave” parts. Comparison of the graph before 

and after the transformation indicates that the general 

morphology of the graph remains the same, and the convex and 

straight parts remain the same, namely, “convex and flat 

remaining”. However, the concave part of the graph is 

amalgamated during the transformation, and the overall graph 

morphology tends to be smoother, which is called “concave 

eliminating”. Certainly, the degree of “concave eliminating” 

depends on the buffer distance L. 

 

Step 2 is restoring the concave structure. First, the concave part 

of the area must be identified, and the principle of this operation 

is as follows: a unified topology of Polygon P2 and the original 

area element group is constructed, and the semantic information 

of the area element is assigned to a corresponding arc section; if 

the arc section of an area is composed of a certain arc section 

with semantic information and another with no semantic 

information, then the area is identified as the concave part 

eliminated by the erosion transformation. The arc section with 

no semantic information is replaced by that with semantic 

information, and thus, the concave part is restored. The 

resultant boundary Polygon P of the area element group after 

this operation is the smallest envelope polygon of the 

aggregated area element group, and its boundary is thus the 

boundary of the aggregated area element group. For example, in 

Fig. 7a, the topological Polygon O consists of Arc Sections L1 

and L2. L2 contains the semantic information of Polygon A, 

whereas L1 of Polygon P2 contains no semantic information. 

Therefore, Polygon O is a concave part, and the boundary P is 

obtained by replacing L1 with L2 as the arc section of the 

boundary Polygon P, as depicted in Fig. 7(b). 

 

 
（a） 

 
（b） 

Figure 7. Restoration of the concave structure. (a) Concave 

identification; (b) boundary of the structured geographic objects. 

 

For aggregated area objects within the external boundary, with 

respect to their structural characteristics, area objects in the 

linear pattern are often aggregated and amalgamated, but the 

aggregation operation for area objects in the grid pattern 

depends on the object density. 

 

Supposing the grid pattern of the aggregated area objects is 

defined as  1 2, ,...,i nG O O O , its external boundary is defined 

as 
iGBC , the area of the polygon formed by the external 

boundary is defined as 
iGS , and the area of area objects is 

defined as  
1 2
, ,...,O O OnS S S . Accordingly, the area object 

density 
iGD within the grid pattern can be calculated using Eq. 

(3):  

1 2
...

i

i

O O On

G

G

S S S
D

S

  
                    (3) 
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If 0.7
iGD  , it is thought that the objects within the grid 

pattern are sparsely arranged with large gaps. The polygon 

defined by the external boundary is not sufficiently filled, and 

under such circumstances, typification is preferred. If 

0.7
iGD  , it is believed that the gap between the area objects 

within the grid pattern is small, that the objects are closely 

arranged and that they sufficiently fill in the polygon that is 

defined by the external boundary. In such cases, agglomeration 

is preferred for waters and aggregation is preferred for buildings. 

 

4. EXPERIMENTS AND ANALYSIS 

4.1 Experimental data and experimental environment 

To validate the effectiveness and reliability of the proposed 

method, this paper tests our method on a dataset derived from 

the 1:10,000 geographical census data of a city of southern 

China. Relying on the WJ-III map workstation developed by the 

Chinese Academy of Surveying and Mapping, the method 

proposed in this paper is embedded. The experimental data 

cover an area of 699.38 km², containing 124237 patches and 

including Level-1 land-cover classes such as farmland, 

woodlands, buildings and water. The buildings in the test area 

are dense, and the adjacent buildings of different directions and 

sizes are staggered, showing obvious linear and grid patterns. 

The system operation environment of the software is a 64-bit 

Windows 7 system, with a CPU with 8 cores of Intel Core I7-

3770 3.2 GHz, a memory of 16 GB and a solid-state disk of 

1024 GB. 

 

4.2 Effective Validation of maintaining the boundary 

characteristics 

Zoomed-in figures of typical places of the two patterns found in 

the experiment region are shown in Figs. 8-11. Fig. 8 presents 

the aggregation results of the simple linear pattern of regularly 

arranged structured geographic objects using the mixed integer 

programming method and the method proposed in this paper. 

The aggregation results of the complex linear pattern with 

disturbance from adjacent area objects based on the two 

abovementioned approaches are shown in Fig. 9. The 

aggregation results of the simple grid pattern of regularly 

arranged area objects based on the two abovementioned 

approaches are illustrated in Fig. 10, whereas those of the 

complex grid pattern with branches based on the two 

abovementioned approaches are included in Fig. 11. 

 

 
(a)                             (b)                           (c) 

Figure 8. Comparison of aggregation results for the simple 

linear pattern. (a) Original data; (b) result of mixed integer 

programming method; (c) result of the method proposed in this 

paper. 

 
(a)                            (b)                         (c) 

Figure 9. Comparison of aggregation results for the complex 

linear pattern. (a) Original data; (b) result of mixed integer 

programming; (c) result of the method proposed in this paper. 

 

As shown in Fig. 8, the aggregation results of the simple linear 

pattern produced by mixed integer programming method and 

the approach presented in this paper are basically consistent. 

The two approaches both sufficiently merge the structured 

geographic objects, and the boundary accurately reflects the 

characteristic of the structured geographic objects. Moreover, 

Fig. 9 demonstrates that the mixed integer programming method 

is disturbed by the neighboring area object of the same land-

cover class, preserving only the aggregation characteristic and 

losing the linear characteristic of the aggregated area object. In 

contrast, the approach proposed by this paper maintains the 

linear characteristic of the aggregated area object well, and all 

disturbing adjacent area objects are merged into the other area 

object that is defined by a different land-cover class. 

 

 
(a)                         (b)                          (c) 

Figure 10. Comparison of aggregation results for the simple 

grid pattern. (a) Original data; (b) result of mixed integer 

programming; and (c) result of the method proposed in this 

paper. 

 
(a)                       (b)                        (c)  

Figure 11. Comparison of aggregation results for the complex 

grid pattern. (a) Original data; (b) result of mixed integer 

programming; (c) result of the method proposed in this paper. 

Figure 10 indicates that the mixed integer programming method 

and the approach presented in this paper are consistent in 

aggregation a simple grid pattern. The boundary precisely 

captures the characteristic of structured geographic objects. As 

shown in Fig. 11, the mixed integer programming method fails 

to resist the influence on the distribution pattern that is imposed 

by the grid branch structure, and the resultant boundary of the 

area object loses the typical grid characteristic of the area object. 

Conversely, the approach proposed by this paper sufficiently 

characterizes the grid characteristic of the area object, and the 

influence of the branch structure on the grid pattern is 

successfully filtered. 

 

5. CONCLUSIONS 

Given that the traditional area aggregation approach for land-

cover data fails to effectively maintain the spatial characteristics 

of structured geographic objects, this paper proposes an area 

aggregation approach that can identify, merge and maintain two 

typical aggregated distribution patterns of structured geographic 

objects, namely, linear and grid patterns. The proposed 

approach is experimentally validated based on geographical 

census data for a city in southern China. The main conclusions 

are as follows: 
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(1) The proposed approach not only reasonably identify the 

typical characteristics of structured geographic objects but also 

effectively maintains the boundary characteristics of these 

objects.  

(2) The proposed approach is superior to the traditional 

approach in terms of addressing complex spatial structure. The 

traditional mixed integer programming method can effectively 

handle simple linear and grid patterns of regularly arranged area 

objects, whereas the proposed approach can sufficiently work in 

the case of a complex linear pattern with disturbances from 

adjacent same-class area objects or a complex grid pattern with 

branch structures. 

 

The focus of our future research is to elaborate typical 

aggregated distribution patterns of structured geographic objects 

and thus refine the aggregation results. 
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