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ABSTRACT:

Accurate and robust positioning of vehicles in urban environments is of high importance for many applications (e.g. autonomous
driving or mobile mapping). In the case of mobile mapping systems, a simultaneous mapping of the environment using laser scanning
and an accurate positioning using GNSS is targeted. This requirement is often not guaranteed in shadowed cities where GNSS signals
are usually disturbed, weak or even unavailable. Both, the generated point clouds and the derived trajectory are consequently imprecise.
We propose a novel approach which incorporates prior knowledge, i.e. 3D building model of the environment, and improves the point
cloud and the trajectory. The key idea is to benefit from the complementarity of both GNSS and 3D building models. The point
cloud is matched to the city model using a point-to-plane ICP. An informed sampling of appropriate matching points is enabled by
a pre-classification step. Support vector machines (SVMs) are used to discriminate between facade and remaining points. Local
inconsistencies are tackled by a segment-wise partitioning of the point cloud where an interpolation guarantees a seamless transition
between the segments. The full processing chain is implemented from the detection of facades in the point clouds, the matching
between them and the building models and the update of the trajectory estimate. The general applicability of the implemented method
is demonstrated on an inner city data set recorded with a mobile mapping system.

1. INTRODUCTION

The accurate determination of the trajectory of a vehicle in an ur-
ban environment is a key requirement in many applications. In
the example of autonomous driving, it is necessary to localize a
vehicle in real-time within a map in order to navigate it to the de-
sired location. In the example of mobile mapping, laser scanners
and cameras mounted on a vehicle are used to generate high pre-
cision 3D information about the surrounding of the moving car.
Here the trajectory, which may be derived in a postprocessing
step, is used to register all sensor data within a global coordinate
system.

In both examples, Global Navigation Satellite Systems (GNSS)
such as GPS, Glonass, Galileo or Beidou are the key to the ab-
solute accuracy of the trajectory, while the integration of other
sensors, such as Inertial Measurement Units (IMU), odometers,
cameras or scanners increase the relative accuracy and smooth-
ness of the trajectory or help to bridge GNSS outages. Regardless
of the type of the used GNSS processing method (carrier phase
based differential GNSS usually used in mobile mapping or code
based GNSS usually used in autonomous driving), the urban en-
vironment imposes strong systematic errors on the observations
due to multipath effects and non-line of sight signal reception.
Even in differential GNSS processing these errors can be in the
order of several meters. It is also possible, that a GNSS position
cannot be processed at all over a longer period of time and that
the other relative sensors cannot prevent the trajectory estimation
from drifting unboundedly. Figure 1 (left) illustrates an example
of such errors visualizing a trajectory which has been recorded in
our university campus. It can be stated that the trajectory inter-
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sects with building elements which do not match the true driving
path.

One option to increase the absolute accuracy in weak GNSS con-
ditions is to integrate prior knowledge about the environment into
the estimation process. In map matching, prior knowledge is rep-
resented by a street map. The initially estimated trajectory is
matched against this map on the basis of coordinates or curva-
ture profiles. The transformation of this match is then used to
improve the initial estimate.

In this contribution we show, that it is similarily possible to use
a 3D model of the environment, in the form of LOD1 city mod-
els, as prior knowledge. By comparing the 3D information based
on some initially estimated trajectory and the corresponding laser
scanner observations with the georeferenced 3D model from a
data base, we can update the estimate and improve its absolute
accuracy. The complementarity of both GNSS and 3D building
models is a key issue here. The building models contribute to a
high accuracy in shadowed cities, exactly where GNSS signals
are usually weak or disturbed. We implemented the full process-
ing chain from the detection of facades in the point clouds, the
matching between them and the building models and the update
of the trajectory estimate. We show the general applicability on a
data set, which has been recorded with a mobile mapping system.
It can be shown that the inaccurately false estimated trajectory
from the left side of Figure 1 has been updated and corrected
integrating GNSS information and the building model of the sur-
rounding area on the right side.

Although this is demonstrated here as a postprocessing step, it is
also possible to integrate this in an online fashion, as it would be
necessary for the example of autonomous driving. In this case
the transformation needs to be calculated based on the very last
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Figure 1. Trajectory recorded with a mobile mapping system in the university campus Poppelsodrf in Bonn/ Germany. The trajectory
intersects with buildings (Left). The true trajectory corrected incorporating 3D city model of the surrounding area (Right).

point cloud section, generated using the trajectory output of an
online estimator, such as the Kalman Filter. The transformation
would be treated as an absolute measurement an integrated into
the filtering algorithm accordingly.

The remainder of this paper is structured as follows: Section 2
gives a review on the most related research. Section 3 presents the
theoretical background of the used methods, whereas section 4
introduces our performed experiments and discusses the achieved
results. The paper is summarized and concluded in section 5.

2. RELATED WORK

For our approach three fields are relevant: Trajectory estimation
in mobile mapping systems, 3D point cloud interpretation and
map matching.

Trajectory estimation in mobile mapping systems. In mobile
mapping systems the trajectory is usually estimated by a combi-
nation of GNSS and inertial measurement unit. The GNSS pro-
cessing method (differential or absolute, code or carrier phase
based) and the local GNSS conditions determine the absolute po-
sition accuracy of the trajectory and the quality of the IMU de-
termines the accuracy of the orientation component and also the
length of a timespan in which the trajectory can still be estimated,
even though GNSS is interrupted or severely disturbed. Because
the laser scans are usually transformed to the global coordinate
system in an open loop manner using the trajectory parameters,
any error in the trajectory estimation directly effects the quality
of the resulting point cloud (Glennie, C., 2007). Because of this,
mobile mapping systems mostly use high grade IMUs with rel-
ative carrier phase based GNSS processing. A good overview
about mobile mapping technology can be found in Puente, I. et
al. (2013).

One way of overcoming the problem of systematically wrong or
missing absolute position data is to incorporate observations from
the object space, such as the scan points or images into the esti-
mation procedure. It is quite common to use control points along
the path to adjust and evaluate the trajectory and therefore, the re-
sulting point cloud (Gräfe, G., 2007; Clancy, 2011). Eckels and
Nolan (2013) use multiple passes with the system along the same
trajectory to detect and adjust errors resulting from GNSS insuf-
ficiencies. Another option to improve the trajectory accuracy is
to estimate it simultaneously with the 3D map by integrating the
scanner data and the navigation sensor information in a single
adjustment (SLAM - Simultaneous Localization and Mapping).

This is a common technique in robotic applications (Thrun et al.
(2005); Stachniss (2009)) and has also been applied to 3D laser
scanning in urban environments (Nüchter et al. (2007)).

The presented work can be seen in the context of the aforemen-
tioned methods with the building models serving as ’control planes’
with known absolute parameters. An estimation of the map, as it
is part of SLAM approaches, is not necessary.

3D point cloud interpretation. The interpretation of LiDAR
point cloud for building modeling has been intensively investi-
gated. Niemeyer et al. (2012) applied Conditional Random Fields
(CRF) for the classification of airborne LiDAR point clouds. CRFs
enable the incorporation of contextual information for the dis-
crimination between five classes: building, low vegetation, tree,
natural ground, and asphalt ground. To this aim, intensity infor-
mation as well as geometric features have been exploited. The
latter describes the local context of a single point by its position,
its normal and the distribution of positions and normals of its
parametrized neighborhood. A data-driven approach is followed
by Zhou and Neumann (2008) developing features for the recon-
struction of buildings in an efficient and robust way. In this con-
text, trees are identified and eliminated in a first step, then ground
points and roof patches are extracted using a distance-based re-
gion growing. Finally, simple and correct polygonal mesh models
are generated based on the roof boundaries in a bottom-up man-
ner. Chehata et al. (2009) proposed a feature selection method
for urban classification using random forests. They separated the
designed features into five groups: height-based, waveform echo-
based, eigenvalue-based, local-plane-based and full-waveform Li-
DAR features. Rusu et al. (2009) introduced the fast point fea-
ture histogram (FPFH) as discriminative descriptor for the detec-
tion of objects in point clouds. Rouhani et al. (2017) proposed
a method for segmenting textured meshes extracted from multi-
view stereo based on Markov Random Field (MRF).

Map matching. The integration of street networks and prelim-
inary trajectories turns out to be a good tool for the improve-
ment of the recorded positions. In this context, Haunert and
Budig (2012) developed a method for matching GNSS trajec-
tories with road data dealing with missing roads. They applied
a hidden Markov model (HMM) together with a discrete set of
candidate matches and off-road candidates for each point of the
trajectory. Osogami and Raymond (2013) applied inverse rein-
forcement learning for the estimation of the importance of the
number of turns compared to the travel distance. The estimated
importance is then incorporated in the transition probability of an
HMM such as the case of Haunert and Budig (2012). Also based
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Figure 2. Workflow.

on HMMs, Viel et al. (2018) proposed a map-matching algorithm
which is able to deal with noisy and sparse cellular fingerprint
observations instead of GNSS positions.

3. METHODOLOGY

In this section we present our approach from a methodological
point of view and give insights into the different components of
our method. The work-flow is depicted in Figure 2. The input
data consists of a 3D kinematic point cloud together with a GNSS
track of a region of interest. Besides, a 3D city model of the
surveyed region is derived on-demand via a web feature service
(WFS). More details on the data and the experimental settings
will be provided in section 4.1. In a first step, the point cloud is
interpreted point-wise using supervised machine learning meth-
ods. In this sense, a discrimination between facade points and
remaining points is achieved. This step is elaborated in section
3.1. To this aim, pre-designed features are extracted from the
point cloud beforehand. It can be seen, that the point cloud is
characterized by a drift which is obvious comparing the outward
(green) and the return (red) journey in Figure 2. In order to over-
come this deficiency, a piecewise segmentation of the point cloud
based on the GNSS trajectory is performed, enabling a consec-
utive registration of each segment with the city model using the
iterative closest point method (ICP) (Chen and Medioni, 1992;
Besl and McKay, 1992). The main idea of our approach is to
combine the inaccurate GNSS track and the point cloud, which
has been initially georeferenced using that track, with the more
accurate information from the 3D city model. This leads to an
improvement of the georeferencing of the captured scene and the
trajectory as well. To this end, the precise 3D city model is incor-
porated in ICP. This model represents an important background
knowledge for finding appropriate matching points based on a
learned classifier which is the topic of section 3.1. The matching
step is elaborated in section 3.2. For each segment, we acquire a
local transformation between the point cloud and the correspond-
ing building model. For a seamless transition between under-
lying consecutive segments, we performed an interpolation step
smoothing the drift and improving the trajectory simultaneously
which will be explained in section 3.3.

3.1 Point-based facade classification

The mobile mapping system provides a dense 3D point cloud
(mean point distance in the order of cm) as depicted on the top
of Figure 6. A more detailed data description is given in subsec-
tion 4.1. In order to enable an informed sampling of appropriate
points for the registration later on, a pre-classification of the in-
put 3D point cloud is of great importance. This step leads to
an efficient selection of matching points in the sense of ICP. To
this aim, an active sampling of points belonging to facades is a
key issue. In this context, we address this task as a classification
problem where a point-based discrimination is enabled leading
to a semantic segmentation of the point cloud. In this manner,
we are able to differentiate between building points and remain-
ing points using Support Vector Machines (SVM) (Vapnik, 1998;
Schölkopf and Smola, 2002) as a robust classifier in a supervised
machine learning task.

For each point in the 3D point cloud, we derived a set of geo-
metric features for a binary classification. We applied features
which describe the local context of a single point by its position,
its normal and the distribution of positions and normals of its k-
neighborhood. In this context, the deviation between a surflet
(Wahl et al., 2003), i.e. 3D point together with the normal vec-
tor derived from a plane approximation of its neighborhood, and
the azimuth is considered. In order to assess the planarity of the
neighborhood of a given point, we used the curvature κ (Pauly et
al., 2002) as measure which is calculated from the eigenvalues λi

of the principal component analysis of the according neighbor-
hood via this equation:

κ =
λ0

λ0 + λ1 + λ2
. (1)

We used the point cloud library1 to derive the radiometric fea-
tures. Five neighborhood regions from 0.2m to 1.0m have been
considered. Furthermore, the height variation of the individual
points to their neighboring points is taken into account. To this
aim, the height differences between the considered point and its
neighboring points is calculated. The mean square of these differ-
ences is considered as a measure and feature reflecting the height
variance. We determine the neighborhood in two different ways
and for two different sizes (0.5m and 1.0m). Once we determine
them using only the x and y coordinates of the points and once
we use all the 3D information, so finally we get four different
features. As additional feature, we used the point density in the
xy plane for each point, again for two neighborhood sizes of 0.5
and 1.0m.

In contrast to ground points, facade points are characterized by a
larger height variability. This property is reflected by the calcu-
lation of the ratio of the points with equal heights and all points
in the neighborhood. Two points are defined to have the same
height, if the difference is lower than 0.1m. In order to distin-
guish between facade points and those belonging to smaller ob-
jects (e.g. cars) the point heights relative to the ground are of
great benefit. Since our study area is rather flat, we approximated
the ground level (street surface) based on the mean of the lowest
points in our training data. In the more general case the informa-
tion on the ground surface (e.g. a digital terrain model) can be
incorporated if available. Otherwise, the height of the ground has
to be determined from the point cloud. Therefore, a feature for
the approximation of height difference to the ground surface, as
proposed by Chehata et al. (2009) can be calculated.

1http://pointclouds.org
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Name of feature number of values
Deviation angle 5
Height difference to approx. ground 1
Height variance in local neighborhood 4
Point density 2
Mean curvature in local neighborhood 5
Intensity 1
Ratio of equally high points 2

Table 1. The used features for the point-based classification.

Beside the geometric features, we make use of intensity informa-
tion measured by the mobile mapping system. This is in partic-
ular important to discriminate between vegetation and building
points based on the surface properties. All in all 20 features have
been used to classify building points. Table 1 shows an excerpt of
the most relevant features together with the number of their val-
ues according to the used neighborhoods. As mentioned before,
the classification results lead to appropriate sample points for the
subsequent registration using the iterative closest point approach.

3.2 Segmentation and registration of the point cloud

The next step is to perform a segmentation of the point cloud. As
the underlying point cloud is not consistent, a registration based
on the whole recorded scene would improve the georeferencing
but would not deal with the drifts within the point cloud. Thus,
the idea is to take the temporal information into account and to
partition the point cloud into several segments oriented by the
trajectory. In this manner, a better local matching with the ac-
cording 3D building model can be achieved since each segment
is registered separately.

The registration itself is performed following the ICP algorithm
of Besl and McKay (1992). The basic idea consists in matching
two sets of points S andD based on the corresponding points and
the iterative calculation and revision of a transformation between
the two point sets. The transformation is depicted in equation 2
where pS and pD represent the vector of points in the according
coordinate systems. µS and µD are the centroids of the point sets
S and D respectively whereas R stands for a 3D rotation matrix
(Förstner and Wrobel, 2016).

pD = R(pS − µS) + µD. (2)

We used rotation matrices based on quaternions, which have sig-
nificant advantages such as reducing the rotation axes and omit-
ting the trigonometric terms. The determination of the rotation
quaternions has been performed by singular value decomposition
(SVD) (Förstner and Wrobel, 2016).

The ICP algorithm builds upon two given point sets which have to
be matched. In our case, however, we have to deal with one point
set which has to be directed according to a 3D building model.
Thus, we make use of the so called point-to-plane ICP instead
(Low, 2004). Figure 3 depicts the main idea of this method. In
this context, building facades are modeled as planes. A matching
point (red) is a point lying on the plane with a minimal distance
to the according point (green) from the point cloud. Further, each
matching point has to be contained in the polygon defined by
the facade boundary (light blue). In our context, relevant facade
planes are selected based on a bounding box query around points
of interest from the point cloud. As mentioned in section 3.1, ap-
propriate points for ICP are pre-filtered based on a classification
step. We used trimmed ICP as a robust version of ICP which do

Figure 3. Finding matching points using point-to-plane ICP.
Source points (green) from a point cloud are associated to match-
ing points (red) on the facade plane with minimal distance.
Matching points are contained in the facade polygon (light blue).
Despite minimal distance, the blue point is not a matching point.

not take matching points with a high distance to source points
into account (Chetverikov et al., 2002).

The point cloud is characterized by an accuracy of several me-
ters. In this context, a mismatching between points from the point
cloud and the according building facade has to be avoided and,
hence, a false transformation can be prevented. This is in partic-
ular important after the partitioning of the point cloud into small
segments which possibly lead to a spatial information loss. A lack
of structured spatial information is especially noticed by straight
ahead driving where mostly facades parallel to the driving direc-
tion are captured. Together with the inaccurate georeferencing of
the point cloud, there is the risk that the approach will not be able
to sufficiently transform such segments. The ICP algorithm can-
not find a unique assignment between point cloud and model and
may converge to an inaccurate solution. In order to overcome this
problem, the points of each segment are pre-transformed based
on the computed transformation of the previous segments in a
sequential manner. We assume that the first segment contains
highly structured spatial information and can thus be transformed
with sufficient precision. The resulting points have a smaller off-
set to the building models so that the approach can robustly find
the necessary ICP correspondences for each segment. The impact
of this modification will be explained in section 4.2 where outliers
in the sense of ICP correspondence can robustly deal with.

3.3 Interpolation after the piecewise segmentation

The registration provides a set of transformation parameters for
each segment of the point cloud. Unfortunately, the ICP solutions
may slightly differ for each segment. If the points of each seg-
ment are transformed using only the local transformation, over-
lapping areas or gaps in the point cloud may occur between the
segments. Figure 4 on the left illustrates overlapped segments
in their transition area. In order to overcome these artifacts, we
performed an interpolation between two subsequent segments i
and j. Each point pS is transformed twice according to the trans-
formations Ti and Tj from the corresponding ICP solution. For
pS , two different solutions (pTi and pTj ) are obtained, which are
then weight-averaged for the final solution using the following
equation:

pT = pTiwi + pTjwj , (3)
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Figure 4. Excerpt of the transformed point cloud in the transi-
tion between two segments without interpolation (left) and with
interpolation (right).

the weights wi and wj are calculated as follows:

wi =
di

di + dj
and wj =

dj
di + dj

, (4)

where di and dj represent the distance between the point pT and
the according centroid of the point sets from segments i and j
respectively.

4. EXPERIMENTS

This section gives insight into the data used in the different steps
of our approach and presents our conducted experiments and ex-
perimental results in detail facilitating replication.

4.1 Data settings

3D Point Cloud. The 3D point cloud has been recorded using
a mobile mapping system (Figure 5), which consists of a high
precision laser scanner (Leica HDS6100) a navigation grade iner-
tial measurement unit (IMAR inav-FJI) and an odometer (Corrsys
Datron CorreVit L-400).

The data set has been captured during a 5 minute drive through
the Campus Poppelsdorf of the University of Bonn / Germany.
The trajectory can be seen in Figure 1. It is important to note, that
the system provides raw sensor measurements (IMU and odome-
ter readings, GNSS observations and range & bearing measure-
ments from the scanner) in contrast to the final georeferenced
point cloud. The latter is created by custom algorithms, fusing

Figure 5. The used Mobile Mapping System with laser scanner,
odometer, GNSS receiver and inertial measurement unit.

GNSS, IMU and odometer data to a position and orientation in-
formation, which is then used to transform each laser measure-
ment into the global coordinate system, leading to the point cloud
shown in Figure 6 (top). Only due to this procedure we are able
to feed the transformation gathered by the proposed method back
to the trajectory and then to improve the quality of the final point
cloud.

Figure 6. Input data: kinematic 3D point cloud (top) and the cor-
responding 3D city model acquired from a WFS-Request (bot-
tom).

The absolute accuracy of the point cloud is determined by the
absolute accuracy of the trajectory estimation, which is limited
by the accuracy of the GNSS observations. In this data set, a code
based navigation solution has been used, leading to an accuracy
of several meters. This uncertainty can be easily seen later when
comparing the point cloud generated from driving past the same
buildings from both directions. It also provides a perfect example,
where the proposed method can improve the results.

3D City Model. A further important input for our approach are
building models in the surrounding of our driving area. In this
context, we used building models of the environment in the level
of detail 1 (LoD1) according to the standardized CityGML format
(Gröger et al., 2012). This level of detail includes models derived
from footprints with extruded heights. Figure 6 (bottom) visual-
izes an excerpt of the city model of our test area. The buildings
are acquired performing a Web Feature Service (WFS) request
specifying a bounding box of the region of interest. The WFS is
hosted on a GeoServer 2 providing CityGML models from open
authoritative data sources from OpenGeodata.NRW 3 of the state
of North Rhine-Westphalia in Germany 4. The two dimensional
position accuracy amounts few centimeters which enables to im-
prove the accuracy of the according point clouds and in turn the

2http://geoserver.org/
3https://www.opengeodata.nrw.de/produkte/
4https://www.bkg.bund.de/EN/Home/home.html
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Class no-Building Building precision (%)
pred. no-Building 1276804 7220 99.44
pred. Building 7732 222403 96.64
recall (%) 99.40 96.86

Table 2. Results of the point-based classification of building and
no-building points.

accuracy of the GNSS trajectory. The height, however, is charac-
terized by a lower accuracy (around 5m).

Coordinate systems. Both the 3D point cloud and the 3D city
model are represented in an Universal Transverse Mercator (UTM)
coordinate system. The heights of the 3D points are however el-
lipsoidal, as GNSS systems provide these per default, whereas
those of the city model are represented as physical heights with
respect to the German main height network. In this context, an
adjustment step is needed in order to map both heights. To this
end, the geoid undulation has to be determined. We make use of
a precise network of measured heights provided by the German
federal agency for cartography.

4.2 Experimental results

Point-based classification. For the supervised learning, we la-
beled points from the 3D point cloud as “building” and “no-
building” points manually for the training phase. For the training
dataset, a support vector machine has been learned based on the
labels and the corresponding derived features (cf. Table 1). As
kernel function we used the RBF kernel (Schölkopf and Smola,
2002) in order to perform a non-linear classification with the pa-
rameters γ = 0.25 and the penalty parameter c = 304.43. In
order to determine the optimal values of these two a-priori not
known parameters, we performed a grid parameter optimization
(Hsu et al., 2003). For building the SVM-Model (training), we
choose the parameter set with the lowest error rate performing in
a 10-fold cross-validation. An overall accuracy of 99.01% has
been achieved.

Figure 7. A code-based solution with an accuracy of several me-
ters before the application of our method (left). An offset is no-
ticed driving past the same building during the outward (green)
and return (red) journey. The incorporation of 3D city models in
our approach improves the point cloud accuracy (right).

For the evaluation of our learned model, we tested on an inde-
pendent dataset achieving an overall accuracy of 98.01%. The

Figure 8. Excerpt of the point cloud with two segments (red)
and (green). Small segments are influencing the result. Results
without a pre-transformation of the point cloud (left) and with a
pre-transformation (right) are depicted.

detailed confusion matrix is depicted in Table 2. For our experi-
ments, the libSVM toolbox has been used (Chang and Lin, 2011).
Our points of interest, i.e. the class building, are predicted with a
recall of about 97%. Hence, the error rate of 3% does not turn out
to be critical to sample appropriate facade points. Further, the use
of trimmed ICP reduces as mentioned the impact of misclassified
points in this context.

Segmentation and registration of the point cloud. The result
of our developed approach is exemplary illustrated in Figure 7
where an extract of the point cloud is shown before (left) and af-
ter (right) the application of our method. The pre-classified point
cloud has been partitioned in 12 different segments of 100 meters
as depicted in Figure 10. The segments have been subsequently
registered using ICP and an interpolation for a seamless transi-
tion has been applied according to the steps described in section
3.3. The green points in Figure 7 stem from the outward journey
whereas the red points belong to scans from the return journey. A
deviation between the two original point clouds on the left can be
stated. On the right side, this deviation cannot be observed after
the application of our approach.

The same point cloud is illustrated in the bottom of the figure
projected on an orthophoto of the driving area. Beside the consis-
tency, an improvement of the absolute position is achieved. The
deviation to the building on the left has been corrected enabling
points locations which even reflect the building positions.

The visual analysis of the results shows that the procedure im-
proves the point cloud significantly. However, since the data set
does not have any fixed reference points, it is difficult to quantify
the results. In order to obtain a rough estimate of the magnitude of
the changes, we analyze the distances of the points to the building
models before and after the registration step which can be shown
in Table 3. We consider the median of the distances instead of
the mean which is highly affected by outliers (e.g. misclassified

Figure 9. Impact of our approach on the recorded trajectory (left).
The corrected trajectory (right) using our method. The underlying
point cloud (blue).
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segment id 1 2 3 4 5 6 7 8 9 10 11 12
origin points 5.3 5.1 5.2 5.3 5.2 2.9 4.0 6.1 5.7 3.7 5.3 2.4
registered points 0.4 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.1 0.4 0.2 0.3

Table 3. Overview of the median distance [m] between the point cloud and the according building model per segment, after and before
the registration.

Figure 10. The segmentation of the point cloud in 12 segments (different colors). Overlapped colored areas represent segments from
outward and return journeys.

points). Using the original point cloud, the median of the differ-
ences amounts from 2.4 to 6.1 meters, whereas its value after the
registration is in a range of few decimeters (0.1 to 0.4). Hence, an
improvement of the point cloud position between 2 and 6 meters
has been achieved.

The improvement of the point cloud position is reflected in the
trajectory as already described in Figure 1. There is no drift more
to notice at the start and the end point of the trajectory. Besides,
the offset to the road has been corrected as well.

Interpolation after the piecewise segmentation. The noticed
overlapping between two consecutive segments in the partitioned
point cloud from Figure 4 is attributed to the fact that these seg-
ments belong to areas from the point cloud dominated by facades
which are parallel to the driving direction. In this context, the ICP
does not yield a unique solution due to the sparsely structured fa-
cade planes and the resulting transformation has to be considered
as an outlier. In these cases, the interpolation between two seg-
ments may lead to a distortion of the cloud, as visible on the left
side of Figure 8. Here, some points which belong to the green
segment have been assigned to the rear of the building rather than
to the front facade. Together with the subsequent interpolation,
the point clouds become distorted. As mentioned in section 3.2,
we avoid these effects by providing the ICP algorithm with an
improved start solution, given by the resulting transformation of
the previous segment. The right part of the figure shows the result
of this method.

We tested our method with different segment sizes between 50
m and 200 m. As mentioned, too small segments do not pro-
vide enough spatial structure to obtain a unique solution of the
ICP, whereas too big segments increase inaccuracies as well as
the influence of sensor drifts. For point clouds segments around
100 m, we achieved very good and stable results leading to a
significant improvement of the point cloud accuracy and the tra-
jectory as well. Figure 9 shows the improvement achieved using
our approach leading to an update of the trajectory estimate. Nev-

ertheless, the segment length as measure is not the optimal mea-
sure. The integration of further parameters such as the number
of curves or the spatial distribution of the recorded points will be
addressed in future work.

5. CONCLUSION AND OUTLOOK

The paper presents a novel approach for improving trajectories
using 3D city models and kinematic point clouds for highly ac-
curate positioning. The method has been demonstrated on a data
set captured by a mobile mapping system. The latter relies on
the combination between relative and absolute positioning sen-
sors to generate their trajectories from a captured 3D point cloud.
A combination of 3D building models and mobile mapping sys-
tems enabled to bridge weak GNSS signals and drifts character-
izing drives within shadowed cities. We consecutively registered
segments of the kinematic point cloud using the building model
of the surrounding area using a point-to-plane trimmed iterative
closest point (ICP). An informed sampling of candidate match-
ing points is possible performing a classification task which pre-
filters facade points using support vector machines (SVM). The
resulting transformation has been applied to update the trajectory
using an interpolation between segments and the new trajectory
have been used to update the point cloud. The accuracy of the
classification of facade points showed an accuracy of 99%. The
general functionality of the method and the impact on the point
cloud and the trajectory have been demonstrated using a real data
set taken with a mobile mapping system. The results show that
3D building models turn out to be suitable to improve the posi-
tioning of vehicles in shadowed cities.

By now, we showed, that it is possible to derive correcting trans-
formations to the trajectory by matching point cloud segments to
a city model and that these transformations are able to improve
the trajectory. However, the next step would be to formally in-
tegrate these transformations into the actual trajectory filtering
process in the form of a measurement. Then the method could
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be applied in real-time to obtain better positioning information.
In this context, it has to be investigated, which segment sizes are
suitable and how often the correction has to be applied. It would
also be possible to integrate this transformation in the form of
constraints to the trajectory estimation process. A rigorous quan-
titative evaluation of the accuracy improvement using a high ac-
curacy reference trajectory and a larger data set are also subjects
of current research.
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