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ABSTRACT:  
Egress (or Evacuation) modelling has the purpose to simulate how the people inside a building can move outside in a safe manner and 
as quick as possible in case of an emergency. The goal can be to assess the safety of an existing building or a building design, to 
establish evacuation routes and install signage, or even to give real-time guidance to the evacuating crowd during an emergency. In all 
cases, the availability of a three-dimensional building model allows to generate the necessary input for the egress modelling software.  
The algorithms for such software can be subdivided into two major categories, working with navigation grids or navigation networks, 
respectively. The purpose of this paper is to illustrate that voxel-based building models are particularly suited to provide input for both 
categories. We further illustrate how to process might continue using an algorithm based on (electrical) network analysis, which can 
be applied in both a gridded and a network-based simulation. We provide preliminary results for the gridded case. 
 
 

1. INTRODUCTION 

At the Geospatial Research, Innovation and Development 
(GRID) group at the University of New South Wales we are 
developing a comprehensive infrastructure for the representation 
of three-dimensional geographic information using voxels, next 
to the more common vector representation models. We strongly 
feel that voxel representations offer a wide range of possibilities 
for numerical 3d data analysis and information extraction that 
would be too complicated to perform on the basis of vector data. 
An example of such an analysis might be path finding, in the 
context of indoor navigation, as we recently described in (Gorte 
and Zlatanova, 2019, Koopman 2016). In the current paper, we 
want to carry this further into the application of evacuation 
modelling, addressing the problem of how a crowd of people 
egresses from a building in case of an emergency. 
 
Evacuation (or Egress) modelling may generally be performed 
for two different purposes, which we will call simulation and 
guidance. Simulation is meant to predict how a crowd of a given 
number of people with a given spatial distribution over the 
building behaves in an emergency, while evacuating the building 
via regular and emergency exits. It is usually assumed that the 
situation in the building, for example concerning the available 
exit routes and the way in which these are indicated by signage, 
is static. Furthermore, a number of assumptions about the 
crowd’s behaviour is being made, for example concerning: how 
quickly do people start moving after an alarm is given; is 
everybody moving precisely along the shortest route to the 
nearest exit or can they make detours; do they obey exit signs; do 
groups always stay together or will they split if they do not easily 
fit through some corridor and alternatives are available (Helbing 
and Molnar, 1995). Studies towards the validity of those 
assumptions are available in literature (Daamen et al 2017), 
although they are difficult to conduct, since (for example) the 
induction of a realistic level of ‘panic’ into an experimental 
setting is unethical. 
  
The purpose of guidance is to optimize the process by giving 
instructions to the evacuating crowd (Spartalis e.a. 2014). Even 
when the crowd behaves ‘well’, each individual cannot predict  
to which extent doing ‘the right thing’ may lead to congestion 
later in the process. Such a prediction would require that 

everybody has full knowledge about everybody else’s current 
position and future behaviour, and of the full consequences of 
planned and alternative behaviours. This cannot be expected 
from people, but in the presence of sensors that monitor the 
situation, software may be able to make such predictions and 
prevent sub-optimal situations by directing people away from 
them. An additional advantage is that the software can take the 
dynamics of the emergency into account, for example by 
excluding routes from the solution that are currently unavailable. 
The above description, however, already suggests that finding the 
optimal solution is challenging – it is an NP-hard problem indeed. 
Another challenge is how to communicate the results of the 
algorithm as directions to the crowd (by dynamic signage, 
announcements, smartphone apps etc.) and how to make people 
obey those. 
 
Many approaches towards evacuation modelling have been 
studied (Kulagowski et al. 2010). Evacuation modelling on the 
basis of an available 3d model first requires the building model 
to be translated into a representation that is suitable for the 
selected algorithm. There are two major approaches, a gridded 
and a networked one. In the gridded approach, the floorspace of 
the building is subdivided into square tiles of (for example) 50cm 
x 50cm, in which people, modelled as ‘agents’ in certain software 
approaches, move from tile to tile (Wirth and Szabó, 2017). Also 
cellular automata approaches make use of tiling (Kirchner and 
Schadschneider, 2002). 
 
Alternatively, a network of possible paths, i.e. a graph consisting 
of nodes and edges, is derived from the building model. People 
enter the graph at the nodes, according to the assumed 
distribution of the ‘input crowd’ around the network, and then 
move from node to node along the edges, as prescribed by the 
algorithm (in both the simulation and the guidance case) to finally 
reach an exit node. Edges can have capacities attached to them, 
depending on widths of stairs, doors and corridors in the 3d 
model. Algorithms are often based on physical (hydrodynamical) 
models and the notion of a crowd as a “thinking fluid” is coined 
by (Hughes, 2003). 
 
The purpose of the current paper is mainly to show that both 
approaches (gridded and network) can have their inputs easily 
derived from a voxel building model. En passant, in order to 
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illustrate our findings, we introduce an evacuation modelling 
approach based on Kirchhoff’s first law for electrical circuits, 
which can be applied to gridded and networks models alike.  
 
We feel that the gridded approach (a) may be the more suitable 
one in general and (b) fits better to the voxel representation of our 
input model – this formulation is meant to leave room for 
discussion and is not intended as a conclusion or a verdict.  We 
introduce both approaches but work out the gridded approach in 
greater detail. 
 

2. OHM-KIRCHHOFF EGRESS MODELLING 

Ohm’s law relates the potential difference (voltage) U over a 
resistor with resistance R to the current I flowing through the 
resistor as U=I*R. It can be applied to compute the equivalent 
resistance of two serial resistors as R1+R2, or of two parallel 
resitors as R1R2/(R1+R2). In complex configurations a more 
general approach is needed to compute the equivalent resistance 
of the network. Figure 1 shows a network with four nodes (circled 
numbers), connected by five edges containing resistors (rectangle 
with indicated resistances). If we set the potential at node 0 to be 
0V, and the potentials at nodes 1, 2 and 3 as 8V, 12V and 20V, 
respectively, then by Ohm’s law the currents through the edges 
can be easily computed (Fig. 1). According to Kirchhoff’s first 
law, the sum of the (signed) currents at each node is 0. This is 
satisfied at nodes 1 and 2, but at node 3 there is a deficit of 12A, 
which has to come in from an additional edge (the arrow). 
Similarly, a surplus of 12A goes out of the network via an 
additional edge at node 0. 
 

 
Figure 1. A simple resistor network, where nodes have 
potentials (measured in Volt) and edges have current  

(in Ampere) flowing through resistors with  
resistances in Ohm. 

 
The relationship with egress modelling is that the network 
represents the available evacuation routes, where the lengths of 
the edges are represented as resistances. Currents express 
people’s movements. Therefore, the shortest route between two 
nodes corresponds to the path with the smallest equivalent 
resistance in the network. However, as the example shows, 
currents do not necessarily follow shortest paths, but get 
distributed over the network in such as way that the total 
(equivalent) resistance of the entire network is minimal. Here, it 
is 5V / 3A = 5/3 Ohm, whereas along the shortest path it would 
have been 3 Ohm. In egress modelling terms this means that the 
capacity is maximized, which can be considered a ‘good 
behaviour’ of the currents. This behaviour implies that groups 
will split, e.g. when noticing that a ‘preferred’ corridor is 
congested while alternatives are available.  
The remaining issue is that in an egress simulation only the 
‘incoming current’ is known (and therefore also the outgoing 
current). The voltages are unknown, as are the currents along the 
edges. How to compute these? The algorithm treats the 
input/output currents at the nodes as observations and the 
potentials as unknowns. We set up a ‘forward model’ that can 
derive the observations from the unknowns if they were known: 
from the potentials and resistances over the edges we compute 

currents and add them up at each node, as above, to get an 
equation that yields an ‘observation’ at each node. With N nodes, 
we have N-1 potentials (the Nth one being 0) and N observation 
equations, which are solved by adjustment. They have a unique, 
exact solution when the sum of the incoming currents equals the 
sum of the outgoing ones – otherwise, we would get a least-
squares approximation. Therefore, this does yield us the voltages 
that we weren’t interested in, but meanwhile also the currents 
became known. 
 
It gets even better in Fig. 2, where we have incoming currents at 
each node, representing people distributed all over the building, 
except for one node with an outgoing current at the building exit. 
Again, the figure shows an ‘optimal’ distribution of currents over 
the network. (The voltages are 25V, 33V and 40V at nodes 1, 2 
and 3, respectively.) 
 

 
Figure 2.  The network of Fig. 1 with input currents at multiple 

nodes (1, 2 and 3) and a single output at node 3. This is  
closer to an egress scenario. 

 
 

2.1 Maximum-current extension 
 
On a side note, it is possible to extend the above algorithm by 
putting a limit to the maximum current in each edge, in order to 
try to ensure that maximum capacities are not exceeded. The 
algorithm will then send more current through alternative routes. 
The way this works is by adding  a variable amount to each 
resistance depending on the current in the edge (or, equivalently, 
on the potential difference over the edge): for small currents, the 
resistance is as usual, but when a current approaches the limit, 
the resistance increases exponentially. The least-squares 
inversion now becomes non-linear and needs to be solved 
iteratively. Fig. 3 shows the result when the limit for current is 
set to 20A in each edge.   
 

 
Figure 3.  As Fig 2. but with a different distribution of  

currents, being maximized at 20A per edge.  
 
 

2.2 Time Dependency 
 
The results of the algorithm can be interpreted in two different 
ways. The first interpretation is that there is a certain batch of 
people to be evacuated; they move along the different edges of 
the network in an optimal way, and the algorithms correctly 
predicts how many people will have travelled along each segment 
when the evacuation is over. In the second interpretation, a given 
number of people per unit of time is moving towards the exit, in 
a continuous fashion that resembles water flowing through a 
network of pipes. Now the algorithm correctly tells the flow of 
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people travelling along each segment per unit of time.  Both 
interpretations, however, do not correctly reflect an evacuation, 
where we are interested how a single batch of people moves 
through the network as a function of time. During the process the 
traffic in each edge fluctuates, and rather than knowing the total 
charges through edges we would like to know the maximum (over 
time) of the currents. 
 
In order to learn about the time-dependent flow inside a segment 
we consider which are the nodes that will eventually contribute 
to it. All these nodes have different distances to (the start node 
of) the segment. By assuming that the flow has a constant 
(walking) speed, it can be predicted after how much time the 
contribution from each node will arrive at the segment. In other 
words, the histogram of distances of the input currents at the 
nodes contributing to a segment yields the time-dependent flow 
through that segment. Such methods are used in Hydrology to 
estimate the unit hydrograph of a river catchment during run-off 
modelling on the basis of a DEM (Ramirez, 2011). 
 
In DEM run-off models the river network forms a tree in which 
the DEM cells are leaves: each cell follows a unique path towards 
the root of the tree. The same would apply if we modelled the 
evacuation along the shortest paths from each node to the exit. 
Dijkstra’s shortest path algorithm, for example, transforms a 
(directed) graph into a tree. In our Ohm-Kirchhoff method, 
however, a node may contribute to several subgraphs. This leads 
to weights being taken into consideration while establishing the 
distance histograms of nodes for each edge. The algorithm is 
implemented recursively: starting at the exit node it works its way 
upstream through the network. Nodes may be visited several 
times; the first time the result is stored in a list of histograms, one 
per node, from which it is taken directly at subsequent visits. 
 
 

3. ANALYZING A VOXEL BUILDING MODEL 

In the next section we will discuss how to extract input for egress 
modelling from a voxel building model. In general, egress 
modelling requires input about the building and about the people 
inside it (at least their number and the distribution over the 
different rooms, perhaps even about other characteristics, such as 
age, disabilities, familiarity with the environment etc.). We 
would like to stay away from that, and assume people are evenly 
distributed over the building: the number of people in each room 
solely depends on the room size. As an advantage we could 
imagine that the generated result pertains to the building and is 
independent of varying building usage. It is a constant 
characteristic of the building, describing something like the 
“building egressability”. One could also imagine that for a sports 
arena, a school or a cinema this characteristic should be “better” 
than for a residential building. 
 
A 3d voxel model of the Arboretum Professional Centre building 
in Seattle, Washington, USA was created on the basis of publicly 
available floorplans, retrieved from the website of the building 
management, http://coho-apc.com/building-floor-plans. The 
model contains the floors, walls, stairs and roofs of the building; 
other building elements, including doors, were removed from the 
floor plans before going 3D. The voxel resolution of the model 
equals 4.55 cm (Fig. 4). 
 
A ‘navigable space’ is created by constructing a 5-voxel 
(22.75cm) thick layer of voxels onto every horizontal surface 
using a dilation operation. This ensures that on a stairway the top 
of the layer on one step gets adjacent to the bottom of the layer 

on the next-higher step, and therefore the entire stairway gets 
covered by a single connected component in the navigable space. 
 

 
 

Figure 4. Sample three-storey building “Arboretum  
Professional Centre” at Seattle, WA (USA) 

 
In fact, the entire set of layer voxels is submitted to a 3d 
connected component labelling operator. This yields one very 
large component that extends over all the floors in the entire 
building (Fig. 5), plus several smaller components (mostly 
located between a ceiling and the next floor) which we discarded. 
 

 
Figure 5. The (connected) navigable space in the sample building 
 
Next we did four iterations of erosion on this largest component, 
taking away voxels from the top of the layer, if this does not break 
the connectivity with neighbouring voxels. As a result, we obtain 
an approximately one-voxel thick layer just above the building’s 
floor voxels. A final clean-up was done using the surface skeleton 
algorithm of (Palagyi, 2002) 
 
The result is a representation of the entire floor space of the 
building, extending over all the storeys, in single connected 
component, consisting of a minimal number of voxels (Fig. 6). 
 

 
Figure 6. The surface skeleton of the navigable space 

 
Based on this result, we can choose to continue in a network 
approach, or in a gridded approach. 
 
 

4.   SURFACE SKELETON TO NETWORK 

We extract a line skeleton from the surface skeleton (Palagyi and 
Kuba, 1995) (Fig. 7).  (We could have extracted both the line and 
the surface skeleton independently from the eroded navigable 
space, but then the line skeleton might not be fully inside side the 
surface skeleton). 
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Figure 7. Line skeleton  

 
 
The line skeleton represents the navigation network. In this 
network nodes and edges can easily be identified (Fig. 8). The 
values of the edges should represent their lengths, which can be 
obtained by counting the participating voxels. We consider that 
4-connected voxel pairs contribute less to the length than 8-
connected ones. Also, it is considered that vertical movement 
leads to larger resistance than horizontal, and therefore to a 
higher ‘perceived’ distance. We have not yet fully completed 
these kinds of calibration. 
 

 
Figure 8. Detection of nodes and edges needed to derive the  

navigation network from the line skeleton 
 

 
The input current at a node is supposed to represent the fraction 
of the crowd entering the network at that node. This is estimated 
from the area of the floor space to which that node is the closest 
node. We identified 250 nodes in the line skeleton, separated into 
leaf nodes (at the loose ends of edges) and connection nodes 
(where three or more edges meet). To determine the input current 
at each node, we subdivide the floor space (i.e. the surface 
skeleton) into 250 different parts by assigning to each surface 
skeleton voxel the value of the nearest node in the line skeleton 
and afterward counting those voxels into a histogram. The 
assignment is accomplished by a modified distance transform in 
3D. A distance transform (Borgefors, …) assigns to each 
background pixel in a raster data set (an approximation of) the 
distance to the nearest object pixel, by applying a two-pass 
recursive 3x3x3 neighbourhood operation. We made two 
extensions to this algorithm. First, we restrict the distance 
propagation to take place through a subset of voxels (the surface 
skeleton), rather than through the entire space. Therefore, 
distances are measured along the surface skeleton, and the 
influence of a node pixel cannot ‘jump’ through the empty space 
to other parts of the surface. This makes the algorithms multiple-
pass instead of two-pass. Secondly, we not only propagate 
distances (to nearest nodes), but also id-s (of nearest nodes), and 
assign these to another output data set, which can be considered 
a Voronoi diagram of the surface skeleton (Fig. 9), from which 
the above-mentioned histogram is derived. 
 

 
Figure 9. Subdivision of surface skeleton into a Voronoi 

diagram according to the nearest node in the line skeleton 
 
It is easy to see how this approach would continue: by assigning 
some nodes as exits and submitting the network, having edge 
lengths and node input currents, to the algorithm of Section 2. 
Still missing, however, is an estimate of the capacity of each 
edge, which could be used either as a maximum current in the 
non-linear adjustment of Section 2.1, or as a criterion to be 
compared to the histogram-method for flow over time (Section 
2.2) . We think such an estimate could be obtained by making 
another Voronoi diagram of the floor space, now on the basis of 
edges rather than nodes. Given that line skeletons share 
geometric characteristics with medial axes, we can assume that 
the distance from an edge to the outside of its Voronoi region 
relates to the width of the path represented by the edge. Those 
distances can be established in yet another distance transform, 
but this has to be further investigated. 
 
 

5. SURFACE SKELETON TO NAVIGATION GRID  

Our gridded approach also sets up a network. Each grid cell 
(voxel) of the surface skeleton is a node, and edges are links 
between adjacent skeleton voxels. A cell could in theory have 26 
neighbours, but in a surface skeleton this is unlikely. Many 
voxels on the building floors have eight neighbours, however. 
 
Current will flow along edges from node to node, i.e. from voxels 
to neighbouring voxels. The resolution of our voxel model being 
4.55 cm, such a very detailed modelling of people’s movements 
would be exaggerated and computationally demanding. 
Therefore, we sub-sample the surface skeleton to a courser 
resolution: in this case with a factor 9, leading to a 41cm voxel 
size. This needs to be done with care, in such a way that the 
relevant objects (floors and stairs) remain present, but also the 
holes and gaps in the surfaces (caused by walls in the 3d model) 
remain. Although slightly experimental, we obtained good results 
by sub-sampling floors and stairs separately after 9x9x1 ‘erosion’ 
and 9x9x9 ‘closing’ operators and combine the results (Fig. 10). 
 

 
Figure 10. Surface skeleton, subsampled to 41cm resolution, to 

be used as a navigation grid. Red voxels indicate main and 
emergency exits. 

 
We obtained 5121 voxels and numbered them as nodes 1 to 5121. 
Designated nodes, shown red in Fig. 10, were marked as exits 
and were linked to a ‘virtual’ exit node with number 0. All other 
nodes were connected to each other by edges according to their 
adjacencies. We assigned lengths (resistances) of 3, 4 or 5, 
depending on voxels being 4, 8 or 26-adjacent; the links between 
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the exit nodes and node 0 have a just-above-0 resistance. Next we 
assign an input current of 1 to each node (1 .. 5121) and an output 
current of 5122 to node 0, and run the algorithm of Section 2. 
 
This causes currents being generated through all edges; the result 
of summing these up (unsigned!) per voxel is shown in Fig. 11. 
 

 
Figure 11. Current flowing through voxels during evacuation 

 
Figure 11 shows how the evacuation proceeds according to the 
Ohm-Kirchhoff method, without taking the distribution of flow 
over time into account. To get this distribution we apply the 
algorithm of Section 2.2, computing distance histograms of 
nodes to all contributing ‘upstream’ nodes. For the busiest node 
(one of the red exit nodes in Fig. 11) this gives the distribution of 
Fig. 12.  
 

  
Figure 12. Current as function of time in the busiest voxel  of Fig. 
11, according to Ohm-Kirchhoff model 
 
For comparison, we made the same computation for an 
evacuation strategy where movements are strictly according to 
the shortest paths to the exit (Fig. 13).  Then, the average time of 
arrival is a bit earlier, but the total flow is much larger, whereas 
in Fig. 11 the traffic is spread out over a wider corridor of voxels.  
 

 
Figure 13 Current as function of time in busiest voxel in the 
building, according to shortest path evacuation model 
 It should be noted that all quantities shown are dimensionless 
numbers. They are expected to have (linear) relationships to 
relevant variables, such as crowd densities, speeds and durations, 
but the conversion factors have not been established yet. 

6. CONCLUSION 

We have demonstrated that a 3d voxel building model can be a 
good basis for studying various aspects of Egress modelling, 
using different approaches. The information required for egress 
modelling, either gridded or networked, can be readily extracted 
from a voxel model, using straightforward and well documented 
operation steps. 
 
Furthermore, as an illustration, we introduced a new egress 
modelling approach, which may have potential in itself; this 
however needs further investigation. In principle, the approach 
works in both the networked and the gridded case. For networks 
we would have to refine the estimation of edge capacities, 
whereas a remaining issue in the gridded case is the size of the 
problem. The example shown required inverting a 5121 x 5122 
matrix, which is feasible, but the sample building is not 
particularly large. 
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