
COMPARATIVE ANALYSIS OF LSTM, RF AND SVM ARCHITECTURES FOR
PREDICTING WIND NATURE FOR SMART CITY PLANNING

Shubhi Harbolaa ∗, Volker Coorsb

a University of Stuttgart, Stuttgart, Germany - Shubhi.Harbola@ieee.org
b University of Applied Science, Stuttgart, Germany - (Shubhi.Harbola, Volker.Coors)@hft-stuttgart.de

KEY WORDS: Cities planning, machine learning, meteorological data, energy conversion, wind prediction

ABSTRACT:

Meteorological data and its effect have been the attention of the researchers of the smart city planning for thorough utilization and
management of resources, that help in effective government management, convenient public services and sustainable industrial devel-
opment. Renewable sources of energy like wind, solar, are being integrated into city planning to improve environmental quality. Wind
energy is utilized through wind turbines and requires foreknowledge of wind parameters like speed and direction. The aim of this paper
is to predict dominant wind speed and direction for time-series wind dataset, that can be incorporated into city planning for selecting
suitable sites for wind turbines. This paper proposes three one-dimensional (1D) algorithms using Long Short Term Memory (LSTM),
Random Forest (RF) and Support Vector Machine (SVM) for dominant wind speed and direction prediction. The proposed 1D LSTM
(1DLSTM), RF (1DRF) and SVM (1DSVM) take successive time values in terms of wind speed and direction as input and predict
the future dominant speed and direction, separately. The proposed algorithms are trained and tested using historical wind dataset of
Stuttgart and Netherlands respectively. Prediction using 1DLSTM results in total accuracies reaching up to 93.9% and 94.7%, up to
92.8% and 93.8% using 1DSVM and up to 88.7% and 89.3% using 1DRF for speed and direction, respectively. Thus, prediction of
wind nature using the proposed algorithms, will give city planners advanced knowledge of wind conditions.

1. INTRODUCTION

Due to the development and population growth, the energy de-
mand is increasing. Daily increases in gas and oil prices, accom-
panied by the release of harmful chemicals from the combustion
of these fossil fuels affects human health, environment, making
human life miserable. Therefore, renewable sources of energy
such as solar, wind, hydro have become popular as they provide
a safe, clean and renewable environment. The uncertain nature of
the wind makes it more demanding to model and predict its na-
ture. The requirements of the installation sites for wind turbines
would depend heavily on the impact of wind speed and direc-
tion (Reed et al., 2011, Aissou et al., 2015). Factors such as past
wind speed and direction, temperature, pressure are responsible
for the future wind trend. The installation of new wind turbines
and sensors on site requires a future forecast and pre-evaluation
of the wind nature accompanied by its highly governing wind
speed and direction factors. The Numerical Weather Prediction
(NWP) models (Louka et al., 2008), Machine Learning (ML)
(Filik and Filik, 2017) and the combination of both NWP and
ML (Vladislavleva et al., 2013) are used to model the wind pre-
diction. The NWP approach is based on the physical kinematic
equations, which use multiple meteorological variables as input
for the prediction model and work by solving the complex math-
ematical models (Zhou et al., 2011). In ML various concepts
can be used such as fuzzy logic (Monfared et al., 2009), neu-
ral networks (El-Fouly and El-Saadany, 2008, Daraeepour and
Echeverri, 2014, Yesilbodak et al., 2017) and statistical mod-
els (Miranda and Dunn, 2006, Jursa and Rohrig, 2008, Zhou et
al., 2011). Regression models using neural networks along with
techniques like particle swarm optimization, wavelet transform
(Martnez-Arellano et al., 2014), REP tree, M5P tree, bagging
tree (Kusiak et al., 2009b, Kusiak and Zhang, 2010), K-nearest
neighbor algorithm (Jursa and Rohrig, 2008, Treiber et al., 2016),
principal component analysis, moving average models (De Giorgi
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et al., 2009, Vargas et al., 2010), Markov chain (Kusiak et al.,
2009a, Treiber et al., 2016) have been used for wind analysis.
Support Vector Machines (SVM) and its variation, Least Square
Support Vector Machines (LSSVM) have also been used for fore-
casting wind speed (De Giorgi et al., 2009, De Giorgi et al.,
2014). Lot of work has been done using ML algorithms for differ-
ent types of wind predictions, very short term (some seconds to
less than 30 minutes ahead), short term (30 minutes to less than 6
hours ahead), medium term (6 hour to less than 1 day ahead) and
long term (1 day to less than 1 week ahead) time scales (Yesil-
budak et al., 2013, Yesilbodak et al., 2017). Although (Shi et
al., 2010) proposed a genetic algorithm-piecewise support vec-
tor machine model for short term wind power prediction. (Pour-
mousavi Kani and Ardehali, 2011) derived very short-term wind
speed prediction using an artificial neural network-Markov chain
model. (Yuan et al., 2015) proposed short-term wind power pre-
diction based on the LSSVM-GSA model. Moreover recently
(Kang et al., 2017) proposed short-term wind speed prediction
using the combination of Empirical Mode Decomposition (EMD)
with LSSVM, and hybrid EEMD i.e., EEMD-LSSVM Model.
(Ghaderi et al., 2017) presented a spatio-temporal wind speed
short term forecasting using LSTM taking wind mills in the north-
east of the U.S. as a case study. (Jiang et al., 2017) used a spatio-
temporal pattern network for predicting energy consumption giv-
ing a data-driven technique for producer and consumer side en-
ergy system. (Yusof and Zurita-Milla, 2017) mapped the frequent
spatio-temporal wind profile patterns using multi-dimensional se-
quential pattern mining. Smoothening and filtering techniques
used in several above discussed studies, ignore the noise in the
data, and modify the original wind dataset. Above research sug-
gests that there is, still a number of questions such as wind pre-
diction for user desired time frame (long/short), without modi-
fying the authenticity of the original temporal wind dataset, re-
main to be addressed. Thus, prediction methods which work
on the original wind data by taking into consideration the noise,
are still required. Therefore the current study proposes three
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one-dimensional (1D) algorithms based on LSTM, Random For-
est (RF) and SVM with following contributions, (i) dominant
wind speed and direction prediction using 1DLSTM, 1DRF, and
1DSVM, without applying any smoothening and noise removal
techniques, (ii) the time-frame of prediction is user-defined, (iii)
using 1D LSTM (1DLSTM), RF (1DRF) and SVM (1DSVM)
as classification instead of regression to enhance accuracy, and
(iv) comparative study of the 1DLSTM, 1DRF and 1DSVM ar-
chitectures. The proposed models will provide foreknowledge of
wind nature of an area, thereby helping in the proper selection of
sites for wind turbine installation. This will provide more utilisa-
tion of renewable energy for safe and better city planning, that in
turn would help in efficient management and development of the
city’s resources. The remaining paper is organized as follows,
proposed methods and datasets employed are discussed in sec-
tion 2 and section 3, respectively, section 4 explains the results,
followed by conclusion in section 5.

2. METHODOLOGY

The wind dataset comprises of wind speed and direction with
temporal resolution t and ti (i → 1 to k) denotes speed and di-
rection at time i, where 1 and k are the first and last values in
the dataset, respectively. Multiple samples are designed using the
dataset for training and testing the proposed algorithms. A sam-
ple consists of a feature vector as an input with a corresponding
output class. Vb (a scalar) consecutive values of wind speed from
ti to ti+Vb form a feature vector of dimension Vb × 1 which is
the input of the sample. Vf (a scalar) successive values of wind
speed after the last value in the input i.e., ti+Vb , are used to de-
fine the samples output class. Mean (µ), and standard deviation
(σ) of the wind speed of the entire dataset are calculated. Var-
ious class boundaries are designed using µ and σ as shown in
Table 1. Among Vf , count of values occurring in each class in
Table 1 is noted, and the class that has a maximum count i.e.,
dominant, is assigned to the sample. Similarly, multiple samples
based on wind speed are created by taking Vb values in the corre-
sponding input from ti to ti+Vb by varying i from 1 to k - Vf , at
an increment of 1. The outputs of these samples are designed as
discussed above. Likewise, samples based on wind direction are
created where direction instead of speed is considered both in the
input and output and µ and σ of direction are calculated. Thus, at
this stage, for Vb values in the input from ti to ti+Vb , there will
be two sets of samples, one based on wind speed and other based
on wind direction.

Table 1: Various classes designed ranges.
Class Lower Range Upper Range
1 µ− k1σ µ+ k1σ
2 µ+ k1σ µ+ k2σ
3 µ+ k2σ µ+ k3σ
4 µ+ k3σ +∞
5 µ− k2σ µ− k1σ
6 µ− k3σ µ− k2σ
7 −∞ µ− k3σ

The proposed 1DLSTM is a special kind of RNN (Recurrent Neu-
ral Networks) capable of learning long term dependencies with
chain-like structure. It has an input layer, four neural layers (N1,
N2, N3, N4), i.e., three sigmoid layers along with tanh layer and
an output layer. The input layer is 1D of the size of Vb. The
input layer is successively followed by 1D N1, N2, N3 and N4,
with the output layer in the end. The output layer is a softmax
layer (Goodfellow et al., 2016, Memisevic et al., 2010), having
the number of neurons same as the number of the classes. There
are seven classes in the present study as shown in Table 1.

The proposed 1DSVM algorithm classifies the data by finding the
best hyperplane that separates all data points of one class from
those of the other class. The best hyperplane for the 1DSVM sig-
nifies the one with the largest margin between the two classes.
The margin defines the maximal width of the slab parallel to the
hyperplane that has no interior data point in time. The support
vectors are the data point that are closest to the separating hyper-
plane; these data points are on the bounds of the slab. 1DSVM
can be used when data has exactly two classes. However, multi-
ple classes can be classified using the one-vs-all (OVA) approach,
one-vs-one (OVO), and all-vs-all (AVA) approach. In this study,
OVO method along with nonlinear Radial Basis Function (RBF)
kernel, have been used for classification.

The proposed 1DRF algorithm uses a decision tree as a deci-
sion support tool for classification. 1DRF uses a tree-like graph
to show the possible consequences. When the 1DRF is given a
training sample, it formulates a set of rules which are used to per-
form predictions. Moreover, 1DRF uses sufficient decision trees,
to ensure the classifier does not overfit the model while taking
the average of all the predictions to remove the biases. The ad-
vantage of the 1DRF as a classifier is that it can handle missing
values, and the classifier can be modeled for categorical values
and to get the relative feature importance, that contributes in se-
lection of the most favorable features for the classifier. Therefore
1DLSTM, 1DSVM and 1DRF are used to predict wind speed and
direction separately. When predicting dominant speed, samples
based on speed are used to train and test the 1DSVM. When the
dominant direction is to be predicted, then the samples based on
direction are used to train and test the 1DSVM. Similarly, the
1DLSTM and 1DRF are trained and tested with samples based on
speed for dominant speed prediction and direction for dominant
direction prediction. During training, the sample’s feature vector
of dimension Vb × 1, forms the input of the 1DLSTM, 1DSVM
and 1DRF, while the sample’s output class forms the output of
the 1DLSTM, 1DSVM and 1DRF.

3. DATASET

Stuttgart and Netherlands wind datasets are used in this study. In
the corner of Hauptstaetter Strasse 70173 Stuttgart, the historical
data from 30 years from 1987 to 2017 are taken from Stuttgart
station sensor1. This dataset contains the wind speed and direc-
tion with temporal information attached in a 30-minute interval.
The second dataset is of station 210 Valkenburg sensor from the
Netherlands with 37 years of historical data from 1981 to 20182.
Each area’s dataset is organised separately into individual month
by using time information, with past data first, followed by cur-
rent data. It helps to predict on a monthly basis, the dominant
wind speed and direction.

4. RESULTS

The proposed algorithms were implemented using Python and ex-
ecuted with four cores on Intel R© Core TM i7- 4770 CPU @3.40
GHz. Stuttgart’s 30-year historical data was separated by month
to create monthly data. Similarly, according to each month, 37
years of historical data from the Netherlands was grouped. For
each month data (individually for Stuttgart and Netherlands), each
algorithm was executed separately to predict the dominant wind
speed and direction. Several samples were created from the data
of a month, each with input and corresponding output, as de-
scribed in section 2.

1https://www.stadtklima-stuttgart.de/
2http://projects.knmi.nl/klimatologie/onderzoeksgegevens/
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Figure 1: Learning curves for testing samples.

Figure 2: Total accuracy for different months for Stuttgart (in
speed case).

Values of k1, k2 and k3 (Table 1) were determined empirically
as 0.15, 0.45 and 0.65 for both speed and direction. It ensured
that adequate number of samples was present in each class. Also,
Synthetic Minority Oversampling Technique (SMOTE) was uti-
lized to do up-sampling of the classes having inadequate number
of samples. Vb and Vf were taken as 50 in this study. All the
samples for a month, were randomly separated into training and
testing samples with 40% of the total samples as testing samples.
The three proposed algorithms were trained and tested with these
samples. In order to calculate the average accuracy values, the
previous procedure of random division of the total samples into
training and testing and the training of the proposed methods was
repeated ten times, taking into account the randomness of divi-
sion into training and testing.

Figure 3: Total accuracy for different months for Stuttgart (in
direction case).

1DLSTM learning curves for the testing samples of Stuttgart,
September’s month are shown in Figure 1, where blue curve is
for predicting the dominating speed, and orange curve is for pre-
dicting dominating direction. Similar learning curves were ob-
tained for the other months as well. Total accuracies of classifi-

cation for different months for the proposed algorithms both for
Stuttgart and Netherlands for the wind speed and direction cases
(separately) are shown in Figure 2, Figure 3, Figure 4, and Fig-
ure 5. For Stuttgart data, minimum and maximum total accuracy
for predicting dominant speed are 77.2% and 87.3% respectively
using the proposed 1DRF method, 83.9% and 90.9% respectively
using the proposed 1DSVM method, and 84.5% and 92.4% re-
spectively using the proposed 1DLSTM method. Prediction of
dominant direction of Stuttgart data, using the 1DRF results in
minimum and maximum total accuracy of 81.6% and 89.3% re-
spectively, 84.6% and 93.8% respectively using the 1DSVM and
87.4% and 93.3% respectively using the 1DLSTM (Figure 2 and
Figure 3). Similarly, for Netherlands data, minimum and max-
imum total accuracy for predicting dominant speed are 80.7%
and 88.7% respectively using the 1DRF method, while, 86.9%
and 92.8%, respectively using the proposed 1DSVM method, and
87.7% and 93.9%, respectively, using the proposed 1DLSTM
method. Prediction of dominant direction using the 1DRF method
results in minimum and maximum total accuracy of 80.6% and
88.3% respectively, whereas 87.7% and 92.4%, respectively us-
ing the 1DSVM method and 87.2% and 94.7%, respectively using
the 1DLSTM method, for the same Netherlands data (Figure 4
and Figure 5).

Figure 4: Total accuracy for different months for Netherlands (in
speed case).

Figure 5: Total accuracy for different months for Netherlands (in
direction case).

Figure 6 and Figure 7 shows precision and recall values of dom-
inant speed and direction prediction for June month of Stuttgart.
Similar results were obtained for other months as well. Maximum
precision and recall values are 92.6% and 92.7% respectively
using 1DRF, 92.4% and 93.1% respectively using 1DSVM and
93.7% and 93.4% respectively using 1DLSTM. Further, value of
Vb was varied to carry out its sensitivity analysis. In first case, Vb

were varied and Vf remains same as Vb. In second case, Vf was
kept constant at 50 while Vb varies. These were performed for
June month of Stuttgart and total accuracy for dominant speed
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Figure 6: Precision values of different classes for June month of
Stuttgart.

Figure 7: Recall values of different classes for June month of
Stuttgart.

prediction is shown in Figure 8 and Figure 9. As value of Vb

increases from 20 to 50, the total accuracy increases, which af-
ter 50, accuracy remains approximately similar for the 1DLSTM,
1DRF and 1DSVM. Thus, Vb and Vf were taken as 50 in this
study. Higher Vb value presents a larger feature vector as input of
a sample which contributes to more information and 1DLSTM,
1DRF and 1DSVM perform better.

Figure 8: Total accuracy variation for different Vb, with Vf = Vb.

4.1 Discussion

The proposed 1DRF using multiple decision trees is able to de-
tect patterns in the input feature vector of a sample and is able to
predict dominant wind speed and direction with good accuracy.
The 1DSVM method maximizes the margin between the support
vectors and the hyperplane and is able to perform better using a

Figure 9: Total accuracy variation for different Vb, with Vf = 50.

non linear radial basis function (RBF) kernel. The 1DSVM per-
forms better by up to 8.4% and 6.4% in comparison to 1DRF for
predicting dominant wind speed and direction respectively. The
1DLSTM with four recurrent layers with long term dependencies
performs better by up to 9.3% and 7.9% in comparison to 1DRF
for predicting dominant wind speed and direction respectively,
and by up to 1.0% and 1.5% in comparison to the 1DSVM. More-
over 1DLSTM and 1DSVM share simialr results for most of the
dataset cases. The performance of 1DLSTM improved with in-
creased numbers of neural layers with advanced activation func-
tions, moreover it requires better hardware resources though.
The higher number of classes (7) in the output ensures that the
proposed methods are able to learn varieties of samples during
the training and can predict with good accuracies during the test-
ing. Moreover, the higher number of classes helps to identify
the sudden changes in the wind speed and direction and ensures
that most of the minor and major details are learnt during the
training phase. During the designing of the samples, their out-
put classes were decided statistically using µ and σ of a particu-
lar month’s wind dataset, thereby representing the dataset better.
However, currently with 7 classes in the 1DLSTM, 1DRF and
1DSVM, for Stuttgart, total accuracy enhances by up to 6.7%
and 6.9% (for May month) using 1DLSTM and 6.3% and 6.6%
(for May month) using 1DSVM for wind speed and direction, re-
spectively, with respect to the corresponding month using 1DRF
(Figure 2 and Figure 3). Similarly, for Netherlands, using the
1DLSTM, total accuracy is enhanced by up to 7.1% and 5.4%
(for March month) and using 1DSVM by 6.9% and 5.5% (for
October month) for wind speed and direction, respectively, with
reference to the corresponding month using 1DRF (Figure 4 and
Figure 5).
The input feature vectors of samples are based on the original
wind data values. The proposed 1DLSTM, 1DRF and 1DSVM
algorithms take as input the original data without applying any
smoothening technique to filter out the noise and have only a sin-
gle user defined parameter Vb, thus making these algorithms less
susceptible to the noise along with the use of real data and mini-
mum parameter tuning.
The comparative study of the proposed 1DSVM with (De Giorgi
et al., 2014) and (Yuan et al., 2015) is performed, along with the
comparison of 1DLSTM with (Ghaderi et al., 2017), as these al-
gorithms are nearest to the proposed methods. (De Giorgi et al.,
2014) and (Yuan et al., 2015) have used SVM and LSTM but
with regression analysis (LSSVM) and smoothening and filtering
techniques have been applied to remove noise from the dataset.
Similarly,(Ghaderi et al., 2017) has used LSTM with regression
and noise has been removed from the dataset by smoothening
and filtering, thereby modifying the originality of wind dataset.
The samples used in present study are utilized to train and test
the (De Giorgi et al., 2014), (Yuan et al., 2015), and (Ghaderi
et al., 2017) discussed architectures. In this case outputs of the
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samples are changed to real-values (i.e., regression) and unlike
classification as in the 1DLSTM, 1DSVM and 1DRF. Values of
Vb and Vf are kept as same. Symmetric Mean Absolute Percent-
age Error (SMAPE) (Shuyang et al., 2017) for wind speed us-
ing (De Giorgi et al., 2014), (Yuan et al., 2015), and (Ghaderi
et al., 2017) are more or less similar and is 18.2% for Vf =
15 and increases as Vf increases, reaching up to 32.5% for Vf

= 50. Likewise results using (De Giorgi et al., 2014), (Yuan
et al., 2015), and (Ghaderi et al., 2017) architectures were ob-
tained for the wind direction. Thus, error increases substantially
when more values are predicted in future using state-of-the-art
SVM and LSTM based regression architectures (De Giorgi et al.,
2014), (Yuan et al., 2015), and (Ghaderi et al., 2017). However,
the proposed 1DSVM method for predicting dominant speed and
direction based on classification, achieves high accuracy reach-
ing up to 93.9% and 94.7% (1DLSTM), up to 92.8% and 93.8%
(1DSVM) and up to 88.7% and 89.3% (1DRF) for speed and
direction, respectively for Vf = 50 even without applying any
smoothening or filtering to the original data. Thus, the proposed
1DLSTM, 1DSVM and 1DRF methods are suited for predicting
dominant speed and direction for a larger time period in the fu-
ture unlike the (De Giorgi et al., 2014), (Yuan et al., 2015), and
(Ghaderi et al., 2017) regression based architectures.

5. CONCLUSION

Meteorological data have been the attention of the researchers
of the smart city planning for thorough utilization and manage-
ment of resources, which help in effective government manage-
ment, convenient public services and sustainable industrial devel-
opment. Using renewable energy supply would provide a healthy
and amiable city, and increased welfare in more general terms.
To ensure incorporation into the planning process, the renovation
of the existing planning is indeed the most promising field for
climate-related intervention. From a designers perspective, the
authors have stressed the need to include energy-conscious strate-
gies to improve environmental quality. The integration of new
knowledge, innovative technologies in sustainable transforma-
tion is the motive of this paper. The algorithms using 1DLSTM,
1DRF and 1DSVM have been proposed for predicting the dom-
inant wind speed and direction classes. Vb continuous values of
the wind speed and direction separately form an input sample and
predict the dominating speed and direction, among Vf values af-
ter the last value in the sample input, using 1DLSTM, 1DRF and
1DSVM. The proposed algorithms show promising results when
trained and tested using wind datasets of Stuttgart and Nether-
lands. The maximum total accuracy using the 1DRF in case of
Stuttgart for predicting dominant speed and direction are 83.7%,
89.3% respectively and for Netherlands 88.7%, 88.3% respec-
tively. Meanwhile, using the 1DSVM maximum total accuracy
for predicting the dominant speed and direction for Stuttgart are
90.9%, 93.8% respectively, and for Netherlands 92.8%, 92.4% re-
spectively. Further, using the 1DLSTM maximum total accuracy
for predicting the dominant speed and direction for Stuttgart are
92.7%, 93.5% respectively, and for Netherlands 93.9%, 94.7%
respectively. The total accuracy enhances by up to 6.7% and
6.9% (for May month) using 1DLSTM and 6.3% and 6.6% (for
May month) using 1DSVM for Stuttgart’s wind speed and direc-
tion, respectively, with respect to the corresponding month us-
ing 1DRF. At the same time for Netherlands’s, total accuracy
using the 1DLSTM is enhanced by up to 7.1% and 5.4% (for
March month) and using 1DSVM by 6.9% and 5.5% (for Oc-
tober month) for wind speed and direction, respectively, with
reference to the corresponding month using 1DRF. Accuracies
achieved in this work can be further improved with ensemble of
the proposed algorithms with the recent advanced machine learn-

ing algorithms. The future focus for the authors will be to im-
prove the proposed algorithms and utilising the outputs on inter-
active visual analysis dashboard applications. Meanwhile, pre-
dicted speed and direction has the potential for selecting a fea-
sible location for wind turbine installation, as the turbine power
output is highly dependent on the wind speed and direction and
moreover provide a foreknowledge for the better city planning.
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