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ABSTRACT: 

 

The demand of serving large 3D spatial data, mainly of urban areas, reflects the need of hierarchical data structures for 3D data. 

During the last years the OGC community standard I3S (Indexed 3d Scene Layer, ESRI) and 3D Tiles (Analytical Graphics, Inc.) 

emerged in order to deal with this challenge. Conceptually, hierarchical structures for 3D data operate similarly to web map tiles, 

differing only in the implementation. Although 3D hierarchical formats can transmit arbitrary sized geospatial data, they are not 

interoperable with consuming/visualization technologies on the client. A series of prototype implementations focus on rendering of 

hierarchical organized massive 3D data in various web client technologies employing the 3D Portrayal Service. As a result, the user 

can query a scene via the 3D Portrayal Service by specifying a spatial region, rather than a specific resource via a URI. The result is 

delivered either using I3S or 3D Tiles as a data delivery format, depending on which data is available for the specified region. The 

client APIs are capable of rendering either the I3S or the 3D Tiles content. 

 

 

1. INTRODUCTION 

1.1 Interoperability 

The technological pluralism in 3D web visualization constantly 

increases the need of interoperability. The availability of several 

3D delivery formats and client consumers indicates a need for a 

generic approach for accessing 3D information. This paper 

defines an attempt to realize the interoperability between 

geospatial data web consumers (web globes) and OGC’s 3D 

Portrayal Service (Coors et al., 2017) regarding the request of 

hierarchical 3D data storages. 3D Tiles (3D Tiles Specification, 

2018) and I3S (I3S Specification, 2018) are the latest 

implementations of hierarchical data storages. 

 

1.2 OGC Testbed 13 

OGC Testbed 13 focuses on the overall architecture developed 

in the "Interoperability of 3D Tiles and I3S using a 3D Portrayal 

Service and performance study of 3D tiling algorithms" activity. 

It summarizes a proof-of-concept of the use of 3D Tiles and I3S 

as data delivery formats for the OGC 3D Portrayal Service 

interface standard. The conducted report captures the results 

from the interoperability tests performed as part of the 3D Tiles 

and I3S testbed work package. The present study gives an 

insight into OGC’s Testbed 13 experiments 2 and 3 which relate 

to 3D Portrayal Service interoperability capabilities. 

 

2. RELATED WORK 

Use cases of the 3D Portrayal Service appear to be scarce, since 

the version 1.0 of the standard was released recently. (Gaillard 

et al. 2015) utilized the 3D Portrayal Service View conformance 

class for client side rendering of tiled 3D city models. Building 

geometry, originating form CityGML, was converted and served 

as JSON using a GetScene request. (Gutbell et al. 2016) 

implemented a server-side rendering framework to visualize 3D 

city models using the 3D Portrayal Service GetView request. 

Cesium as visualization component is used in several cases. 

(Krämer & Gutbell, 2015) produced a surface model 

visualization using Cesium’s Terrain Builder. (Kim et al. 2017) 

presented a visual extension of Cesium to visualize moving 

objects in a space-time cube. (Lu, Guerrero, Mitra & Steed, 

2016) implemented an online 3D city model interactive editor 

using a light-weight viewer based on Cesium. 

 

3. CONCEPT & METHODOLGY 

OGC Testbed 13 aims at testing the interoperability of 

streaming capabilities relating to the OGC I3S Community 

Standard and the 3D Tiles specification, which is a OGC 

Community Standard candidate. A number of tests were 

formulated in order to examine the interoperability and 

performance characteristics of streaming efficiency relating to 

the 3D Tiles and I3S specifications. More specifically, it 

provided a prototype demonstration to test and validate the 

interoperability of the OGC 3D Portrayal Service standard using 

the 3D Tiles and I3S data delivery formats in an urban-centric 

scenario based on a CityGML data store. 

 

To implement the visualization pipeline, several experiments 

using CityGML data stores were conducted. AGI created the 

necessary processing algorithms to convert CityGML into 3D 

Tiles within its 3D Tiles processing Tools; ESRI provided the 

necessary processing algorithms to convert CityGML into I3S 

within ArcGIS and by using FME (Feature Manipulation 

Engine, Safe Software); Fraunhofer, an institute for applied 

science, and the SME virtualcitySYSTEMS created the 

necessary processing algorithms to convert CityGML with and 

without application domain extension into 3D Tiles as 

extension on top of GeoRocket (GeoRocket, 2018). Further, 

ESRI and HFT Stuttgart investigated the ability to convert 
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CityGML into I3S and display it in Cesium to prove 

interoperability of I3S and Cesium using the 3D Portrayal 

Service. The processing algorithms took into consideration 

high- versus low-geometrically complex features, textured 

features, and the geographic distribution of features. 3D clients 

performed query operations using the 3D Portrayal Service to 

return appropriate tiles. Data was streamed according to the 3D 

Tiles and I3S formats. In addition, runtime visualization 

strategies were developed and profiled. 

 

Experiments 2 and 4 investigated source data management 

using GeoRocket. For these experiments, a 3D Portrayal Service 

instance was implemented on top of GeoRocket (see Figure 4). 

Experiments 1 and 3 investigated source data processing using 

AGI’s 3D Tiles Pipeline and ESRI’s ArcGIS. 

 

3.1 Visualization pipeline 

The visualization pipeline provides the key structure like any 

visualization system. (Moreland, 2013) gives a survey of 

visualization pipelines of several applications. In this report, the 

concept of the visualization pipeline for the interactive portrayal 

of geospatial data is based on Doyle & Cuthbert (1998). It 

consists of three main components:  

1. Filter 

2. Map and  

3. Render (Figure 1)  

 

The Filtering step (sometimes called selecting) extracts data 

from larger geospatial data set that should be displayed on the 

screen. The Mapping step maps features to geometrical 

elements such as triangles and material definitions for an 

illumination model. This mapping can be done based on a style 

guide or based on individual appearance definitions per feature 

(see CityGML Appearance module as an example). During the 

Rendering step, the display elements are rendering into a screen 

buffer (or into an image) to be displayed on the screen. 

 

Figure 1. The Visualization Pipeline. 

User interaction is possible in each step, depending on the 

system architecture and the purpose of the system. A simple 

map visualization system may allow interaction in the rendering 

(zoom, pan, change position of the camera); a visual data 

analytics system needs to enable user interaction on Mapping 

and Filtering as well. 

 

The experiments described by this report focused on the use of 

OGC standards in the Filtering and Mapping step to enable a 

distributed visualization pipeline (Figure 2). The rendering is 

the core of Computer Graphics, libraries such as DirectX, 

OpenGL, and WebGL are used in this step. It has its own 

conceptual model, the so-called rendering pipeline. The 

rendering pipeline has changed tremendously during the last 

decade, from transformation and illumination models on CPUs 

to vertex and pixel shaders on GPUs. 

 

The visualization pipeline can be distributed between client and 

server as follows (Schilling & Kolbe, 2009). 

 

Filtering on the server, Mapping and Rendering on the client: 

This approach is very common in 2D, where a Web Feature 

Service (WFS) is used to select data. The selected features are 

transferred to the client - be it a desktop client or a web 

browser. The Mapping is done on the client side based on a 

style and the selected features will be displayed on the screen in 

a map. In 3D, this approach works fine for small models, but 

does not scale for larger models. One reason is that the 

Rendering pipeline is fast if the display elements are ordered by 

material rather than by features, since the scene graph is 

significantly smaller in the first case. 

 

Filtering and Mapping on the server, Rendering on the client: 

The data is stored in a spatial database or file based on the 

server. The selected features will be mapped to display elements 

and will be stored in an intermediate file set (often called a 

scene graph) that is optimized for data streaming and 

visualization. It may use tiling strategies and binary data 

formats to reduce the amount of data transferred to the client. 

The client takes the intermediate data to render it on the screen. 

This approach is supported by the conformance class Scene of 

the 3D Portrayal Service. In this report, this distribution of the 

visualization pipeline was analyzed using CityGML as file-

based data storage, and GeoRocket as a spatial database. The 

results of the Mapping step are stored in I3S as well as in 3D 

Tiles. 

 

Filtering, Mapping and Rendering on the server: The entire 

visualization pipeline is executed on the server. The Rendering 

step writes an image that is transferred to the client. This 

approach is usually called server side rendering. The 3D 

Portrayal Service conformance class view supports this 

approach. However, it was out of the scope of this testbed. 

Two datasets were used in the experiments: 

 CityGML New York City DoITT Data set: The data 

set contains 1.1 million buildings modeled as 

CityGML in Levels of Detail 1 and 2 (LOD1 and 2), 

though this data does not include textures.  

 CityGML model of Berlin: The Berlin 3D City Model 

was also utilized since the DoITT buildings did not 

have textures. The 3D City Model of Berlin has been 

developed by Land Berlin’s Senate Administration for 

Urban Development, Senate Administration for 

Economics, Energy and Public Enterprises. 

 

In the work described in this report, the second case of the 

distribution of the visualization pipeline (filtering and mapping 

on the server, rendering on the client), was investigated in more 

detail. A special focus was placed on the use of CityGML for 

the geospatial data sources, the I3S and 3D Tiles specifications 

for data delivery from server to (web-based) client, and the 

OGC 3D Portrayal Service Standard as a query interface. 

 

Figure 2. Distributed Visualization Pipeline and the role of 

OGC standards used in this experiment. 
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3.2 OGC Testbed 13 Experiment 2 and 3 

In OGC’s Testbed 13 experiments 2 and 3 analyzed the 

capability of 3D Portrayal Service to support interoperability. 

While experiment 2 focuses on utilizing the open-source 

renderer Cesium for visualization of 3D Tiles and I3S data. 

Another key feature of experiment 2 is the use of the open-

source datastore GeoRocket to deliver the CityGML datasets.  

 

The following subsections discuss the setups in detail. 

 

3.2.1 Experiment 2: 3D Tiles and I3S in Cesium using the 

3D Portrayal Service 

In experiment 2 the open source data store GeoRocket was used 

for the CityGML data store. GeoRocket is intended to be a 

high-performance data store for geospatial files. It can store 3D 

city models (e.g. CityGML), GML files or any other geospatial 

data sets provided in the XML or GeoJSON formats. 

 

The CityGML scenario data was stored in GeoRocket and was 

exported as CityGML answering spatial queries. Figure 3 

sketches the most important elements of GeoRocket. 

 

Of the available data store options, the local hard drive option 

was chosen. The CityGML dataset was initially imported via the 

GeoRocket HTTP API. Clients could then query via the same 

HTTP API spatial regions and receive a CityGML file with 

spatially corresponding content. 

 

Figure 3. This diagram sketches the most important elements of 

GeoRocket from the supported data stores to the API, which the 

client can use. 

 

The delivered CityGML files are then processed to 3D Tiles or 

I3S. These processes are explained in detail in the following 

subsections.  

 

3.2.1.1 Experiment 2a: 3D Tiles in Cesium via the 3D 

Portrayal Service 

This experiment evaluated the complete flow of data from its 

originating CityGML format to a web-enabled visualization 

with Cesium via OGC’s 3D Portrayal Service. This data flow 

included: 

 The conversion from the CityGML data format served 

by GeoRocket, to the 3D Tiles format. 

 The import of the 3D Tiles dataset to the 3D Portrayal 

Service Framework. 

 The Cesium client which queried: 

- The 3D Portrayal Service Framework for 

the hierarchical organized 3D geometries. 

- A separate Attribute Server, provided by the 

HFT Stuttgart, serving further information 

via the getFeatureById interface. 

 

Figure 4 pictures this data flow: 

 

 

Figure 4. The data flow from GeoRocket to the visualized 3D 

Tiles, which are requested via the 3D Portrayal Service queries. 

 

The resulting 3D Tiles dataset was then imported into the 3D 

Portrayal Service framework, which is able to satisfy the spatial 

queries. This saved time because it was not required that 

CityGML content be transformed to 3D Tiles for every spatial 

query. The data flow is pictured in Figure 5 as a sequence 

diagram. 

 

Figure 5. The data flow from GeoRocket to the visualized 3D 

Tiles, which are requested via the 3D Portrayal Service queries. 

 

3.2.1.2 Experiment 2b: I3S in Cesium via the 3D Portrayal 

Service 

This experiment investigated if and how a workflow similar to 

that used in experiment 2a could be established using the ESRI 

I3S format. 

 

Since the 3D Portrayal Service framework uses a modified 

GeoRocket version, which can handle 3D Tiles, the data flow of 

this experiment differed from that used in experiment 2a. The 

following figure highlights the differences with red arrows. 

 

Figure 6. This image shows two dataflows: 1: The supposed 

dataflow (in red) from GeoRocket which exports CityGml, to 
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converted I3S (not implemented), which are then visualized in 

the Cesium client via 3D Portrayal Service queries.  

 

Figure 6 points out that the spatial queries would be forwarded 

to GeoRocket for every spatial 3D Portrayal Service GetScene 

request to retrieve the spatially bounded CityGML data, which 

was then converted to the I3S data format. Since I3S is a recent 

technology, the availability of conversion tools from CityGML 

to I3S is limited. Moreover, an implementation of our own 

converter would not be an effortless task due to the complexity 

of I3S. 

 

The focus of the experiment was shifted to the rendering of I3S 

in the Cesium client using the 3D Portrayal Service. As a result, 

the user could query a scene via 3D Portrayal Service by 

specifying a spatial region (rather than a specific resource via a 

URI. The result can be delivered either using I3S or 3D Tiles as 

a data delivery format, depending on which data is available for 

the specified region. The Cesium client can render both the I3S 

as well as the 3D Tiles content. This interoperability between 

geospatial data web consumers and 3D Portrayal Service 

regarding the request of hierarchical 3D data storages was 

proven by a prototype implementation. 

 

The main goal was to investigate if the 3D Portrayal Service 

could abstract the access of 3D Tiles or I3S in a dedicated web 

client/consumer which is designed to be compatible with 

specific formats (e.g. Cesium, 3D Tiles). Cesium is a web globe 

API designed to support 3D Tiles. ESRI’s ArcGIS API for 

JavaScript is designed to consume I3S. The first approach 

attempted to render I3S data in Cesium employing a request 

scheme similar to 3D Portrayal Service’s getScene request, 

pictured in Figure 7. 

 

Figure 7. Rendering I3S in Cesium overview. 

 

On the client side, a request was sent to the server when the 

camera changed event was triggered in Cesium. On the server 

side, which acts as a broker, the implemented API was 

responsible for handling any requests from the client. The core 

action of the broker service was to apply the I3S node selection 

criteria, then generate a response (including the nodes' 

description) to be rendered in Cesium (Figure 8). 

 

Figure 8. Communication Synopsis. 

 

3.2.2 Experiment 3: CityGML to I3S to ArcGIS 

The CityGML data provided by the New York City Department 

of Information Technology & Telecommunications (NYC 

DoITT) consisted of 20 discrete CityGML files for different 

sections of the city. These files varied in size from 210MB to 

1.4GB. 

 

Each file type was processed individually using a Safe FME 

workbench to convert the CityGML formatted data into discrete 

file Geodatabase features (Figure 9). These features consisted of 

“BuildingShell” single multipatch feature of each individual 

building by building ID and “BuildingShellPart” which 

outputted the CityGML LOD2 discrete features (roof, walls, 

ground) for each individual building by building ID. The 20 

individual area outputs were merged to a single file 

Geodatabase. Building attributes from the city’s building 

footprint were added to the building features. 

 

The resultant file Geodatabase was then processed through the 

I3S geoprocessing tool to create an I3S scene layer package 

(SLPK). The resultant SLPK is then either uploaded or 

published directly to ArcGIS Online. 

 

Figure 9. FME workbench to convert CityGML to I3S. 

 

4. EXTENDED 3D PORTRAYAL SERVICE 

IMPLEMENTATION 

An agile software development approach was used in this study 

to implement both a 3D Portrayal Service server and a web-

based client. The 3D Portrayal Service is implemented utilizing 

the Play Framework in Java programming language. The code 

base of the client application is modularized using the Dojo 

Toolkit. The user is able to dynamically define a cartographic 

bounding box which is spatially intersected by the 3D Portrayal 

Service available extents in order to identify the requested 

resource, either 3D Tiles or I3S. Additionally, a cartographic 

buffer is generated around the requested bounding box to 

include neighboring I3S nodes (Figure 10). 

 

Figure 10. I3S nodes rendered in Cesium. Blue rectangle: 

requested bounding box. Green rectangle: buffer. Red pins: 

centers of the minimum bounding spheres. 

The 3D Portrayal request is extended with URL parameters 

which are not defined in the request scheme of the standard. 

These parameters, originating from Cesium, are used to apply 

the I3S node selection criteria and to reject outdated responses 

by the 3D Portrayal Service (Figure 11). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-113-2018 | © Authors 2018. CC BY 4.0 License.

 
116



 

 

Figure 11. Extended 3D Portrayal request with additional 

parameters highlighted in blue. 

 

5. EVALUATION  OF EXTENDED 3D PORTRAYAL 

SERVICE  

To assess the performance of the extended 3D Portrayal 

Service, request/response measures were determined and 

compared with an equivalent ArcGIS JavaScript API 

application, which served the same I3S Scene layer. To ensure 

that the same I3S tree space would be traversed, both 

applications requested the same scene determined by the camera 

position/orientation in 3D space and view frustum geometry. 

The camera was positioned above the city of Berlin at 

geographic position (WGS84) 13.4050 degrees longitude, 

52.5200 degrees latitude and oriented to produce a “bird’s eye” 

view with 45 degrees tilt, 0 degrees heading and 60 degrees 

field of view. Additionally, three distinct camera height 

positions would formulate three request scenarios, i.e., high 

camera position (3000 meters) where a large city area is visible 

(Figure 12), medial camera position (1000 meters) where some 

city blocks are visible (Figure 13) and low camera position (400 

meters) where a small city area is visible (Figure 14). 

 

Figure 12. I3S scene of Berlin with camera position at 3000 

meters rendered in ArcGIS JavaScript API (left) and extended 

3D Portrayal Service/Cesium (right). 

 

Figure 13. I3S scene of Berlin with camera position at 1000 

meters rendered in ArcGIS JavaScript API (left) and extended 

3D Portrayal Service/Cesium (right). 

 

Figure 14. I3S scene of Berlin with camera position at 400 

meters rendered in ArcGIS JavaScript API (left) and extended 

3D Portrayal Service/Cesium (right). 

To perform a realistic comparison between the ArcGIS 

JavaScript API and the extended 3D Portrayal Service/Cesium 

applications a specific subset of the total amount of the http 

requests/responses was measured. This is due to the extended 

3D Portrayal Service/Cesium implementation, which requests 

only the mesh geometry and the face normals from an I3S node, 

whereas the ArcGIS JavaScript API requests additionally shared 

resources, i.e., material definitions and textures. The average 

time spans recorded for both applications include the 

handshake/capabilities phase and the I3S node traversal 

excluding the payload fetching, payload processing and 

rendering. The average DOM Content Load Time and the 

average Page Load Time were recorded but not considered in 

the evaluation process (Table 15). 

 

Client 

application 

Camera 

height 

[m] 

DOM 

Content 

Load [sec] 

Page Load 

Time [sec] 

Handshake/I3S 

traversal [sec] 

AJS API 3000 1.40 4.02 4.70 

x3DPS 3000 0.99 5.46 6.42 (+36%) 

AJS API 1000 1.46 3.99 5.61 

x3DPS 1000 1.13 5.37 6.60 (+18%) 

AJS API 400 1.33 3.86 4.05 

x3DPS 400 1.26 5.45 4.84 (+20%) 

Table 15. Performance comparison between ArcGIS JavaScript 

API (abbreviated to AJS API) and extended 3D Portrayal 

Service/Cesium (abbreviated to x3DPS). 

 

6. SUMMARY AND FUTURE WORK 

This paper presents the experiments performed in OGC’s 

Testbed 13 including the 3D Portrayal Service Standard. The 

standard has proven to be a flexible interface for requesting 

portrayals of massive georeferenced data in form of 3D city 

models. 

The experiments covered the whole data flow of storing raw 

CityGML data with GeoRocket, a cloud-enabled open source 

data store for Geodata, to the final visualization based on 

WebGL renderer.  

The experiments proved that the 3D Portrayal Service can be 

the connecting element in between the user and the renderer, 

which are still bound to their specific formats. This was shown 

by extending the popular renderer Cesium and ArcGIS with the 

3D Portrayal Service interface. This enables the end user to 

change between systems using different renderer without having 

to adopt to the specific APIs of the renderer.  

Especially the GetFeatureById functionality of the 3D Portrayal 

Service allowed easy inclusion of other different data sources, 

like a simulation of heat demand for New York, enabling the 

implementation of rich applications based on 3D Portrayal 

Service. 

It is important to understand that 3D Portrayal Service does not 

define a data format to transmit data between client and server 

and can’t transform the render format of one renderer to the 

format of the other render. Our extended evaluation proved that 

it is possible to embed services in between render client and 

data server, which can perform this task. 

This will be the focus of our future work, the challenge of 

transforming data in between very specific formats having their 

own pros and cons. 
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