
INTEROPERABLE VISUALIZATION OF 3D CITY MODELS USING OGC’S STANDARD

3D PORTRAYAL SERVICE

A. Koukofikis 1, V. Coors 1, R. Gutbell 2

1 Hochschule für Technik Stuttgart, Faculty Geomatics, Computer Science and Mathematics, Schellingstr. 24, 70174 Stuttgart -

(volker.coors, athanasios.koukofikis)@hft-stuttgart.de
2 Fraunhofer Institute, Fraunhoferstr. 5, 64283 Darmstadt - ralf.gutbell@igd.fraunhofer.de

Commission IV, OGC

KEY WORDS: 3D Portrayal Service, OGC, Interoperability, 3D City Models, Visualization, I3S, 3D Tiles

ABSTRACT:

The demand of serving large 3D spatial data, mainly of urban areas, reflects the need of hierarchical data structures for 3D data.

During the last years the OGC community standard I3S (Indexed 3d Scene Layer, ESRI) and 3D Tiles (Analytical Graphics, Inc.)

emerged in order to deal with this challenge. Conceptually, hierarchical structures for 3D data operate similarly to web map tiles,

differing only in the implementation. Although 3D hierarchical formats can transmit arbitrary sized geospatial data, they are not

interoperable with consuming/visualization technologies on the client. A series of prototype implementations focus on rendering of

hierarchical organized massive 3D data in various web client technologies employing the 3D Portrayal Service. As a result, the user

can query a scene via the 3D Portrayal Service by specifying a spatial region, rather than a specific resource via a URI. The result is

delivered either using I3S or 3D Tiles as a data delivery format, depending on which data is available for the specified region. The

client APIs are capable of rendering either the I3S or the 3D Tiles content.

1. INTRODUCTION

1.1 Interoperability

The technological pluralism in 3D web visualization constantly

increases the need of interoperability. The availability of several

3D delivery formats and client consumers indicates a need for a

generic approach for accessing 3D information. This paper

defines an attempt to realize the interoperability between

geospatial data web consumers (web globes) and OGC’s 3D

Portrayal Service (Coors et al., 2017) regarding the request of

hierarchical 3D data storages. 3D Tiles (3D Tiles Specification,

2018) and I3S (I3S Specification, 2018) are the latest

implementations of hierarchical data storages.

1.2 OGC Testbed 13

OGC Testbed 13 focuses on the overall architecture developed

in the "Interoperability of 3D Tiles and I3S using a 3D Portrayal

Service and performance study of 3D tiling algorithms" activity.

It summarizes a proof-of-concept of the use of 3D Tiles and I3S

as data delivery formats for the OGC 3D Portrayal Service

interface standard. The conducted report captures the results

from the interoperability tests performed as part of the 3D Tiles

and I3S testbed work package. The present study gives an

insight into OGC’s Testbed 13 experiments 2 and 3 which relate

to 3D Portrayal Service interoperability capabilities.

2. RELATED WORK

Use cases of the 3D Portrayal Service appear to be scarce, since

the version 1.0 of the standard was released recently. (Gaillard

et al. 2015) utilized the 3D Portrayal Service View conformance

class for client side rendering of tiled 3D city models. Building

geometry, originating form CityGML, was converted and served

as JSON using a GetScene request. (Gutbell et al. 2016)

implemented a server-side rendering framework to visualize 3D

city models using the 3D Portrayal Service GetView request.

Cesium as visualization component is used in several cases.

(Krämer & Gutbell, 2015) produced a surface model

visualization using Cesium’s Terrain Builder. (Kim et al. 2017)

presented a visual extension of Cesium to visualize moving

objects in a space-time cube. (Lu, Guerrero, Mitra & Steed,

2016) implemented an online 3D city model interactive editor

using a light-weight viewer based on Cesium.

3. CONCEPT & METHODOLGY

OGC Testbed 13 aims at testing the interoperability of

streaming capabilities relating to the OGC I3S Community

Standard and the 3D Tiles specification, which is a OGC

Community Standard candidate. A number of tests were

formulated in order to examine the interoperability and

performance characteristics of streaming efficiency relating to

the 3D Tiles and I3S specifications. More specifically, it

provided a prototype demonstration to test and validate the

interoperability of the OGC 3D Portrayal Service standard using

the 3D Tiles and I3S data delivery formats in an urban-centric

scenario based on a CityGML data store.

To implement the visualization pipeline, several experiments

using CityGML data stores were conducted. AGI created the

necessary processing algorithms to convert CityGML into 3D

Tiles within its 3D Tiles processing Tools; ESRI provided the

necessary processing algorithms to convert CityGML into I3S

within ArcGIS and by using FME (Feature Manipulation

Engine, Safe Software); Fraunhofer, an institute for applied

science, and the SME virtualcitySYSTEMS created the

necessary processing algorithms to convert CityGML with and

without application domain extension into 3D Tiles as

extension on top of GeoRocket (GeoRocket, 2018). Further,

ESRI and HFT Stuttgart investigated the ability to convert

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-113-2018 | © Authors 2018. CC BY 4.0 License.

113

CityGML into I3S and display it in Cesium to prove

interoperability of I3S and Cesium using the 3D Portrayal

Service. The processing algorithms took into consideration

high- versus low-geometrically complex features, textured

features, and the geographic distribution of features. 3D clients

performed query operations using the 3D Portrayal Service to

return appropriate tiles. Data was streamed according to the 3D

Tiles and I3S formats. In addition, runtime visualization

strategies were developed and profiled.

Experiments 2 and 4 investigated source data management

using GeoRocket. For these experiments, a 3D Portrayal Service

instance was implemented on top of GeoRocket (see Figure 4).

Experiments 1 and 3 investigated source data processing using

AGI’s 3D Tiles Pipeline and ESRI’s ArcGIS.

3.1 Visualization pipeline

The visualization pipeline provides the key structure like any

visualization system. (Moreland, 2013) gives a survey of

visualization pipelines of several applications. In this report, the

concept of the visualization pipeline for the interactive portrayal

of geospatial data is based on Doyle & Cuthbert (1998). It

consists of three main components:

1. Filter

2. Map and

3. Render (Figure 1)

The Filtering step (sometimes called selecting) extracts data

from larger geospatial data set that should be displayed on the

screen. The Mapping step maps features to geometrical

elements such as triangles and material definitions for an

illumination model. This mapping can be done based on a style

guide or based on individual appearance definitions per feature

(see CityGML Appearance module as an example). During the

Rendering step, the display elements are rendering into a screen

buffer (or into an image) to be displayed on the screen.

Figure 1. The Visualization Pipeline.

User interaction is possible in each step, depending on the

system architecture and the purpose of the system. A simple

map visualization system may allow interaction in the rendering

(zoom, pan, change position of the camera); a visual data

analytics system needs to enable user interaction on Mapping

and Filtering as well.

The experiments described by this report focused on the use of

OGC standards in the Filtering and Mapping step to enable a

distributed visualization pipeline (Figure 2). The rendering is

the core of Computer Graphics, libraries such as DirectX,

OpenGL, and WebGL are used in this step. It has its own

conceptual model, the so-called rendering pipeline. The

rendering pipeline has changed tremendously during the last

decade, from transformation and illumination models on CPUs

to vertex and pixel shaders on GPUs.

The visualization pipeline can be distributed between client and

server as follows (Schilling & Kolbe, 2009).

Filtering on the server, Mapping and Rendering on the client:

This approach is very common in 2D, where a Web Feature

Service (WFS) is used to select data. The selected features are

transferred to the client - be it a desktop client or a web

browser. The Mapping is done on the client side based on a

style and the selected features will be displayed on the screen in

a map. In 3D, this approach works fine for small models, but

does not scale for larger models. One reason is that the

Rendering pipeline is fast if the display elements are ordered by

material rather than by features, since the scene graph is

significantly smaller in the first case.

Filtering and Mapping on the server, Rendering on the client:

The data is stored in a spatial database or file based on the

server. The selected features will be mapped to display elements

and will be stored in an intermediate file set (often called a

scene graph) that is optimized for data streaming and

visualization. It may use tiling strategies and binary data

formats to reduce the amount of data transferred to the client.

The client takes the intermediate data to render it on the screen.

This approach is supported by the conformance class Scene of

the 3D Portrayal Service. In this report, this distribution of the

visualization pipeline was analyzed using CityGML as file-

based data storage, and GeoRocket as a spatial database. The

results of the Mapping step are stored in I3S as well as in 3D

Tiles.

Filtering, Mapping and Rendering on the server: The entire

visualization pipeline is executed on the server. The Rendering

step writes an image that is transferred to the client. This

approach is usually called server side rendering. The 3D

Portrayal Service conformance class view supports this

approach. However, it was out of the scope of this testbed.

Two datasets were used in the experiments:

 CityGML New York City DoITT Data set: The data

set contains 1.1 million buildings modeled as

CityGML in Levels of Detail 1 and 2 (LOD1 and 2),

though this data does not include textures.

 CityGML model of Berlin: The Berlin 3D City Model

was also utilized since the DoITT buildings did not

have textures. The 3D City Model of Berlin has been

developed by Land Berlin’s Senate Administration for

Urban Development, Senate Administration for

Economics, Energy and Public Enterprises.

In the work described in this report, the second case of the

distribution of the visualization pipeline (filtering and mapping

on the server, rendering on the client), was investigated in more

detail. A special focus was placed on the use of CityGML for

the geospatial data sources, the I3S and 3D Tiles specifications

for data delivery from server to (web-based) client, and the

OGC 3D Portrayal Service Standard as a query interface.

Figure 2. Distributed Visualization Pipeline and the role of

OGC standards used in this experiment.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-113-2018 | © Authors 2018. CC BY 4.0 License.

114

3.2 OGC Testbed 13 Experiment 2 and 3

In OGC’s Testbed 13 experiments 2 and 3 analyzed the

capability of 3D Portrayal Service to support interoperability.

While experiment 2 focuses on utilizing the open-source

renderer Cesium for visualization of 3D Tiles and I3S data.

Another key feature of experiment 2 is the use of the open-

source datastore GeoRocket to deliver the CityGML datasets.

The following subsections discuss the setups in detail.

3.2.1 Experiment 2: 3D Tiles and I3S in Cesium using the

3D Portrayal Service

In experiment 2 the open source data store GeoRocket was used

for the CityGML data store. GeoRocket is intended to be a

high-performance data store for geospatial files. It can store 3D

city models (e.g. CityGML), GML files or any other geospatial

data sets provided in the XML or GeoJSON formats.

The CityGML scenario data was stored in GeoRocket and was

exported as CityGML answering spatial queries. Figure 3

sketches the most important elements of GeoRocket.

Of the available data store options, the local hard drive option

was chosen. The CityGML dataset was initially imported via the

GeoRocket HTTP API. Clients could then query via the same

HTTP API spatial regions and receive a CityGML file with

spatially corresponding content.

Figure 3. This diagram sketches the most important elements of

GeoRocket from the supported data stores to the API, which the

client can use.

The delivered CityGML files are then processed to 3D Tiles or

I3S. These processes are explained in detail in the following

subsections.

3.2.1.1 Experiment 2a: 3D Tiles in Cesium via the 3D

Portrayal Service

This experiment evaluated the complete flow of data from its

originating CityGML format to a web-enabled visualization

with Cesium via OGC’s 3D Portrayal Service. This data flow

included:

 The conversion from the CityGML data format served

by GeoRocket, to the 3D Tiles format.

 The import of the 3D Tiles dataset to the 3D Portrayal

Service Framework.

 The Cesium client which queried:

- The 3D Portrayal Service Framework for

the hierarchical organized 3D geometries.

- A separate Attribute Server, provided by the

HFT Stuttgart, serving further information

via the getFeatureById interface.

Figure 4 pictures this data flow:

Figure 4. The data flow from GeoRocket to the visualized 3D

Tiles, which are requested via the 3D Portrayal Service queries.

The resulting 3D Tiles dataset was then imported into the 3D

Portrayal Service framework, which is able to satisfy the spatial

queries. This saved time because it was not required that

CityGML content be transformed to 3D Tiles for every spatial

query. The data flow is pictured in Figure 5 as a sequence

diagram.

Figure 5. The data flow from GeoRocket to the visualized 3D

Tiles, which are requested via the 3D Portrayal Service queries.

3.2.1.2 Experiment 2b: I3S in Cesium via the 3D Portrayal

Service

This experiment investigated if and how a workflow similar to

that used in experiment 2a could be established using the ESRI

I3S format.

Since the 3D Portrayal Service framework uses a modified

GeoRocket version, which can handle 3D Tiles, the data flow of

this experiment differed from that used in experiment 2a. The

following figure highlights the differences with red arrows.

Figure 6. This image shows two dataflows: 1: The supposed

dataflow (in red) from GeoRocket which exports CityGml, to

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-113-2018 | © Authors 2018. CC BY 4.0 License.

115

converted I3S (not implemented), which are then visualized in

the Cesium client via 3D Portrayal Service queries.

Figure 6 points out that the spatial queries would be forwarded

to GeoRocket for every spatial 3D Portrayal Service GetScene

request to retrieve the spatially bounded CityGML data, which

was then converted to the I3S data format. Since I3S is a recent

technology, the availability of conversion tools from CityGML

to I3S is limited. Moreover, an implementation of our own

converter would not be an effortless task due to the complexity

of I3S.

The focus of the experiment was shifted to the rendering of I3S

in the Cesium client using the 3D Portrayal Service. As a result,

the user could query a scene via 3D Portrayal Service by

specifying a spatial region (rather than a specific resource via a

URI. The result can be delivered either using I3S or 3D Tiles as

a data delivery format, depending on which data is available for

the specified region. The Cesium client can render both the I3S

as well as the 3D Tiles content. This interoperability between

geospatial data web consumers and 3D Portrayal Service

regarding the request of hierarchical 3D data storages was

proven by a prototype implementation.

The main goal was to investigate if the 3D Portrayal Service

could abstract the access of 3D Tiles or I3S in a dedicated web

client/consumer which is designed to be compatible with

specific formats (e.g. Cesium, 3D Tiles). Cesium is a web globe

API designed to support 3D Tiles. ESRI’s ArcGIS API for

JavaScript is designed to consume I3S. The first approach

attempted to render I3S data in Cesium employing a request

scheme similar to 3D Portrayal Service’s getScene request,

pictured in Figure 7.

Figure 7. Rendering I3S in Cesium overview.

On the client side, a request was sent to the server when the

camera changed event was triggered in Cesium. On the server

side, which acts as a broker, the implemented API was

responsible for handling any requests from the client. The core

action of the broker service was to apply the I3S node selection

criteria, then generate a response (including the nodes'

description) to be rendered in Cesium (Figure 8).

Figure 8. Communication Synopsis.

3.2.2 Experiment 3: CityGML to I3S to ArcGIS

The CityGML data provided by the New York City Department

of Information Technology & Telecommunications (NYC

DoITT) consisted of 20 discrete CityGML files for different

sections of the city. These files varied in size from 210MB to

1.4GB.

Each file type was processed individually using a Safe FME

workbench to convert the CityGML formatted data into discrete

file Geodatabase features (Figure 9). These features consisted of

“BuildingShell” single multipatch feature of each individual

building by building ID and “BuildingShellPart” which

outputted the CityGML LOD2 discrete features (roof, walls,

ground) for each individual building by building ID. The 20

individual area outputs were merged to a single file

Geodatabase. Building attributes from the city’s building

footprint were added to the building features.

The resultant file Geodatabase was then processed through the

I3S geoprocessing tool to create an I3S scene layer package

(SLPK). The resultant SLPK is then either uploaded or

published directly to ArcGIS Online.

Figure 9. FME workbench to convert CityGML to I3S.

4. EXTENDED 3D PORTRAYAL SERVICE

IMPLEMENTATION

An agile software development approach was used in this study

to implement both a 3D Portrayal Service server and a web-

based client. The 3D Portrayal Service is implemented utilizing

the Play Framework in Java programming language. The code

base of the client application is modularized using the Dojo

Toolkit. The user is able to dynamically define a cartographic

bounding box which is spatially intersected by the 3D Portrayal

Service available extents in order to identify the requested

resource, either 3D Tiles or I3S. Additionally, a cartographic

buffer is generated around the requested bounding box to

include neighboring I3S nodes (Figure 10).

Figure 10. I3S nodes rendered in Cesium. Blue rectangle:

requested bounding box. Green rectangle: buffer. Red pins:

centers of the minimum bounding spheres.

The 3D Portrayal request is extended with URL parameters

which are not defined in the request scheme of the standard.

These parameters, originating from Cesium, are used to apply

the I3S node selection criteria and to reject outdated responses

by the 3D Portrayal Service (Figure 11).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-113-2018 | © Authors 2018. CC BY 4.0 License.

116

Figure 11. Extended 3D Portrayal request with additional

parameters highlighted in blue.

5. EVALUATION OF EXTENDED 3D PORTRAYAL

SERVICE

To assess the performance of the extended 3D Portrayal

Service, request/response measures were determined and

compared with an equivalent ArcGIS JavaScript API

application, which served the same I3S Scene layer. To ensure

that the same I3S tree space would be traversed, both

applications requested the same scene determined by the camera

position/orientation in 3D space and view frustum geometry.

The camera was positioned above the city of Berlin at

geographic position (WGS84) 13.4050 degrees longitude,

52.5200 degrees latitude and oriented to produce a “bird’s eye”

view with 45 degrees tilt, 0 degrees heading and 60 degrees

field of view. Additionally, three distinct camera height

positions would formulate three request scenarios, i.e., high

camera position (3000 meters) where a large city area is visible

(Figure 12), medial camera position (1000 meters) where some

city blocks are visible (Figure 13) and low camera position (400

meters) where a small city area is visible (Figure 14).

Figure 12. I3S scene of Berlin with camera position at 3000

meters rendered in ArcGIS JavaScript API (left) and extended

3D Portrayal Service/Cesium (right).

Figure 13. I3S scene of Berlin with camera position at 1000

meters rendered in ArcGIS JavaScript API (left) and extended

3D Portrayal Service/Cesium (right).

Figure 14. I3S scene of Berlin with camera position at 400

meters rendered in ArcGIS JavaScript API (left) and extended

3D Portrayal Service/Cesium (right).

To perform a realistic comparison between the ArcGIS

JavaScript API and the extended 3D Portrayal Service/Cesium

applications a specific subset of the total amount of the http

requests/responses was measured. This is due to the extended

3D Portrayal Service/Cesium implementation, which requests

only the mesh geometry and the face normals from an I3S node,

whereas the ArcGIS JavaScript API requests additionally shared

resources, i.e., material definitions and textures. The average

time spans recorded for both applications include the

handshake/capabilities phase and the I3S node traversal

excluding the payload fetching, payload processing and

rendering. The average DOM Content Load Time and the

average Page Load Time were recorded but not considered in

the evaluation process (Table 15).

Client

application

Camera

height

[m]

DOM

Content

Load [sec]

Page Load

Time [sec]

Handshake/I3S

traversal [sec]

AJS API 3000 1.40 4.02 4.70

x3DPS 3000 0.99 5.46 6.42 (+36%)

AJS API 1000 1.46 3.99 5.61

x3DPS 1000 1.13 5.37 6.60 (+18%)

AJS API 400 1.33 3.86 4.05

x3DPS 400 1.26 5.45 4.84 (+20%)

Table 15. Performance comparison between ArcGIS JavaScript

API (abbreviated to AJS API) and extended 3D Portrayal

Service/Cesium (abbreviated to x3DPS).

6. SUMMARY AND FUTURE WORK

This paper presents the experiments performed in OGC’s

Testbed 13 including the 3D Portrayal Service Standard. The

standard has proven to be a flexible interface for requesting

portrayals of massive georeferenced data in form of 3D city

models.

The experiments covered the whole data flow of storing raw

CityGML data with GeoRocket, a cloud-enabled open source

data store for Geodata, to the final visualization based on

WebGL renderer.

The experiments proved that the 3D Portrayal Service can be

the connecting element in between the user and the renderer,

which are still bound to their specific formats. This was shown

by extending the popular renderer Cesium and ArcGIS with the

3D Portrayal Service interface. This enables the end user to

change between systems using different renderer without having

to adopt to the specific APIs of the renderer.

Especially the GetFeatureById functionality of the 3D Portrayal

Service allowed easy inclusion of other different data sources,

like a simulation of heat demand for New York, enabling the

implementation of rich applications based on 3D Portrayal

Service.

It is important to understand that 3D Portrayal Service does not

define a data format to transmit data between client and server

and can’t transform the render format of one renderer to the

format of the other render. Our extended evaluation proved that

it is possible to embed services in between render client and

data server, which can perform this task.

This will be the focus of our future work, the challenge of

transforming data in between very specific formats having their

own pros and cons.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-113-2018 | © Authors 2018. CC BY 4.0 License.

117

REFERENCES

3D Tiles Specification, 2018. GitHub. Retrieved 27 March

2018, from https://github.com/AnalyticalGraphicsInc/3d-tiles

Coors, V., Hagedorn, B., Thum, S., Reitz, T., Gutbell, R., 2017.

3D PORTRAYAL SERVICE 1.0. (OGC Document Number

15-001r4)

Doyle, A., Cuthbert, A., 1998. Essential Model of Interactive

Portrayal. (OGC Document Number 98-061)

Gaillard, J., Vienne, A., Baume, R., Pedrinis, F., Peytavie, A.,

Gesquière, G., 2015. Urban data visualisation in a web browser.

Proceedings Of The 20Th International Conference On 3D Web

Technology - Web3d '15. doi: 10.1145/2775292.2775302

GeoRocket, 2018. GitHub. Retrieved 27 March 2018, from

https://github.com/georocket/georocket

Gutbell, R., Pandikow, L., Coors, V., Kammeyer, Y., 2016. A

framework for server side rendering using OGC's 3D portrayal

service. Proceedings Of The 21St International Conference On

Web3d Technology - Web3d '16. doi:

10.1145/2945292.2945306

I3S Specification, 2018. GitHub. Retrieved 27 March 2018,

from https://github.com/Esri/i3s-spec

Kim, K., Kim, D., Jeong, H., Ogawa, H., 2017. Stinuum: A

Holistic Visual Analysis of Moving Objects with Open Source

Software. SIGSPATIAL/GIS. doi: 10.1145/3139958.3140011

Krämer, M., Gutbell, R., 2015. A case study on 3D geospatial

applications in the web using state-of-the-art WebGL

frameworks. Proceedings Of The 20Th International

Conference On 3D Web Technology - Web3d '15. doi:

10.1145/2775292.2775303

Lu, Z., Guerrero, P., Mitra, N., Steed, A., 2016. Open3D.

Proceedings Of The 21St International Conference On Web3d

Technology - Web3d '16. doi: 10.1145/2945292.2945302

Moreland, K., 2013. A Survey of Visualization Pipelines. IEEE

Transactions On Visualization And Computer Graphics, 19(3),

367-378. doi: 10.1109/tvcg.2012.133

Schilling, A., Kolbe, T., 2009. Web 3D Service 0.4.0. (OGC

Document Number 09-104r1)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-113-2018 | © Authors 2018. CC BY 4.0 License.

118

