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ABSTRACT: 

 

The aim of this study is to explore the applicability of Agent Based Modelling (ABM) for the simulation of rainfall runoff and soil 

erosion used in a watershed monitoring activity. The study utilizes Landsat 8 imagery for Land Use Land Cover (LULC) map 

generation, ASTER DEM for obtaining elevation information and Climate Forecast System Reanalysis (CFSR) 36 year weather data 

of Asan watershed, Uttarakhand, India. In the proposed model, four major agents (raindrops, soil, elevation and water amount) have 

been defined for estimating the soil erosion in the region. Moreover, the direct runoff has been simulated using the Soil Conservation 

Service (SCS) method. The analysis of the entire time series using this approach shows that there have been substantial changes in the 

rainfall runoff pattern primarily due to the varying environmental conditions of the study area since the late 1980s. Furthermore, a 

rough estimate of the soil erosion and deposition in the area have been computed which is aligned with the theory of sediment transport 

and deposition. In order to automate the entire model workflow, an open source cross platform tool has been developed using Python, 

R and NetLogo libraries. The Open Agent Based Runoff and Erosion Simulation (OARES) tool incorporates a generic interface for 

analysing large spatio-temporal datasets in watershed studies. The overall analysis concludes that the results obtained using ABM are 

comparable to that of the conventional hydrological models, and henceforth, ABM could be utilized as a future potential hydrological 

modelling paradigm.  

  

 

1. INTRODUCTION 

1.1 Rainfall Runoff and Erosion Processes  

One of the most classical approaches for simulating the peak river 

flow instigated by a noticeable or hypothetical rainfall forcing is 

illustrated by rainfall runoff modelling (Coskun & Musaoglu, 

2004). Runoff constitutes an important parameter for designing 

any hydrological structure by describing the relation between 

rainfall and runoff associated with the catchment area, drainage 

basin or watershed. This has been continuously used in the water 

scarce areas for an efficient conservation planning. The present 

study focusses on monitoring of Asan watershed based on spatio-

temporal analysis of rainfall runoff and erosion simulation using 

agent based approach. The runoff modelling impairs the need for 

understanding the hydrological condition and temporal 

behaviour of the watershed (which depicts a geo-hydrological 

unit contributing runoff to a single point) (Yaduvanshi, Sharma, 

Kar, & Sinha, 2017).  

 

However, human intervention in modifying the land surface 

characteristics also contribute to a serious change in the 

hydrological cycle making the land use and land cover (LULC), 

an important input parameter for modelling (Anderson, Hardy, 

Roach, & Witmer, 1976). Such consequent reduction in the 

number of trees and plant species result in high erosion in the 

region draining to a common point. Moreover, the capability of 

soil productivity and amount of water availability in the reservoir 

significantly degrades due to inflated levels of soil erosion. These 

processes result in the transfer of water or soil and plant nutrients 

from fields to adjacent land/water courses, respectively (Brandt, 

1990; Hudson, 1965; Morgan, Morgan, & Finney, 1984).  

______________________________ 

*   Corresponding Author 

The main factors affecting the runoff are: 1) Volume and 

intensity of rain events, 2) Types and properties of soil, 3) 

Steepness of the landscape, e.g. Slope and 4) Land use patterns 

and management (Gajbhiye, 2015). Hence, evaluation and 

inventory on surface runoff and soil erosion by water are vital 

sources for the formulation of watershed sustainable 

development. Accurate modelling would enable a better 

prediction of runoff volume for pre flood warning, precise water 

navigation, water quality aspects and other applications leading 

to a well enabled water resource management (Beven, 2012).        

 

1.2 Evolution of Hydrological Models  

For years, hydrologists attempted to predict the rainfall runoff by 

considering environmental system modelling. Conventional 

approaches followed estimation of runoff model parameters 

through ground truth measurements, which proved to be costly 

and time consuming. With increasing advancements in computer 

technologies, remote sensing integrated with a geographic 

information system (GIS) started gaining importance for 

retrieving land surface properties at spatio-temporal scales which 

indeed are useful input data for determination of hydrological 

parameters (Coskun & Musaoglu, 2004; Weng, 2001). 

Furthermore, a larger land coverage enables a cost effective 

technique to acquire extremely valuable input data for distributed 

hydrological models. Watershed topographic analysis based on 

digital elevation models (DEMs) provides a flexible environment 

for processing the data on GIS platforms for feature extraction 

and database development applications (Melesse & Shih, 2002). 

 

In the literature, it has been shown that a simple empirical 

approach for predicting annual soil loss on hilly slopes can be 

derived from large field sized regions (Morgan et al., 1984). The 

Morgan-Morgan-Finney (MMF) model has been later validated 
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using the erosion data and simulated for producing the measures 

of soil degradation over 100 year period under shifting 

cultivation (Finney, 1984; Morgan et al., 1984). Several 

researchers have then used the model for assessing the erosional 

consequences over a wide range of environmental conditions, 

ranging from Indonesia to Nepal and the rocky hilly terrain 

(Gaddam & Kulkarni, 2018; Hudson, 1965; Yaduvanshi et al., 

2017). In addition to this, soil conservation curve number method 

has been widely used for estimating surface runoff by combining 

watershed parameters and climatic variations into one entity (i.e. 

Curve Number (CN)) (Beven, 2012; Coskun & Musaoglu, 2004). 

Many researchers modified this method for long term 

evapotranspiration based hydrology simulations while estimating 

antecedent moisture condition (AMC) by adjusting CN values 

(Coskun & Musaoglu, 2004). Several integrated approaches 

involving GIS have then come into existence for quantifying 

surface runoff by storing, interpreting, analysing and displaying 

the factors leading to runoff (Gaddam & Kulkarni, 2018; Melesse 

& Shih, 2002; Weng, 2001). The GIS based methods proved to 

be more efficient, interactive and less cumbersome as compared 

to traditional approaches. US Army Corps of Engineers utilized 

GIS and remote sensing for designing a simulation based 

environment (Hydrologic Modelling System, HEC – HMS) of 

complete hydrological processes dedicated for dendritic 

watershed systems (Scharffenberg & Fleming, 2010). In addition 

to the traditional hydrologic analysis procedures, the software 

package also includes evapotranspiration, snow melt and soil 

moisture accounting for continuous simulation. Irrespective of 

the advanced modules, the entire workflow for producing the 

desired surface runoff is time consuming. Apart from this, the 

Soil and Water Assessment Tool (SWAT) was developed to 

assess the temporal impact of land use management on the water 

in large, complex watershed both qualitatively and quantitatively 

(Neitsch, Arnold, Kiniry, Srinivasan, & Williams, 2002). To sum 

up, distributed models have been found to be data intensive 

requiring quality data, complex configuration and exhaustive 

simulation and calibration time. The performance of these 

models has been found to be quite low in hydrological remote 

areas (data scarce regions). Contrary to this, the semi-distributed 

models lump metrological variables and physical parameters in 

to sub-basins, making the setup procedure convenient and hassle-

free (Abu El-Nasr, Arnold, Feyen, & Berlamont, 2005).  

 

1.3 Trends towards Open Source Geo-Simulation  

Gradually, the ability to model individual decision-making 

entities and their interactions tend to move towards free and open 

source utilities to aid and foster the associative evolution of open 

geospatial technologies and data. Such class of computational 

models for carrying out a simulation using the interaction of 

autonomous agents in a way to observe their effect on the system 

as a whole is Agent based Modelling (ABM) (Berglund, 2012). 

In this, each agent processes the situation based on a set of rules 

and displays different complex behavioural patterns than that of 

the other agent. Using repetitive inter-agent interaction, each 

agent learns about the system environment which allows the 

ABM to explore dynamics which is difficult to model by purely 

mathematical methods (Derksen, Branki, & Unland, 2012). 

Earlier studies showed the use of simulated agents for optimizing 

weather and crop yield forecasts to solve individual hydrological 

profits responding to the local environment (Finney, 1984; Fuka 

et al., 2014). Several multi agent modelling approaches have been 

adopted utilizing the urban water log, drainage system and 

environment which offered an optimal reservoir solution for 

storing excessive floods (Bao, Kim, Ai, Lai, & Wang, 2015). The 

efficiency of ABMs is often compared with Cellular Automata 

and visual modelling approaches such as System Dynamics. In 

addition to this, the artificial neural network provides a more 

feasible approach to geo-simulation and forecasting models 

where modelling of the internal watershed structure is not 

required. However, it does not utilize physically realistic 

parameters and requires large training data, making it unreliable 

and expensive for conceptual watershed modelling (Bao et al., 

2015; Nourani, 2017). Contrary to this, agents show the 

behavioural aspects along with their interactions to the 

environment proving them to be compatible with system wide 

macro patterns of the rainfall runoff distribution in the watershed 

(Derksen et al., 2012). The advantages that ABM offers to other 

approaches are: 1) It captures emergent phenomena adjacency, 2) 

time saving and cost effective, 3) It provides a natural description 

and 4) flexible programming module. In this study, the geo-

computation simulation is carried out using NetLogo tool, an 

open source multi agent programmable modelling environment 

(Wilensky, 2018).  

 

2. DETAILS ON STUDY AREA AND DATA 

ACQUISITION 

2.1 Study Area 

Being situated at the confluence of eastern Yamuna Canal and 

Asan River, the watershed forms an asymmetrical synclinal 

valley flowing north westwards and making it a suitable 

investigation site for the study. The physiographic units are 

extended to NW-SE and ENE-WSW, with major drainage 

patterns as sub-dendritic, parallel to sub-parallel, trellis, braided 

and intermittent. The topographical variations of the study area 

include elevations ranging from 352 m to 2230 m with respect to 

mean sea level. The climate is sub-tropical to temperate with 

average annual temperature ranging from 21o C in summers to 5o 

C in winters (Garg et al., 2012). Figure 1 shows the location map 

of Asan watershed.  

 

 
Figure 1. Study Area - Asan Watershed. 

 

2.2 Data  

In the present work, weather data acquired from third generation 

reanalysis product have been utilized. The Climate Forecast 

System Reanalysis (CFSR) is a global, high resolution estimate 

of coupled atmosphere, ocean, land, and sea-ice model with 

assimilated satellite radiances offering accurate meteorological 
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datasets for each hour since 1979 at 38 km horizontal resolution. 

The CFSR utilizes the information from the global weather 

stations and satellite-derived products for acquiring the hourly 

historic expected precipitation and temperatures for any location 

in the world (Fuka et al., 2014). Along with this, Soil 

Conservation Services (SCS) curve number grid of the watershed 

needs to be known as an essential input parameter for the tool. 

This could be derived by intersecting the LULC and 

Hydrological Soil Group (HSG) to assign CN for each 

combination. For extracting LULC, a supervised classification 

has been performed using 30 m resolution Landsat 8 images 

acquired over the study area. All the soil units of the watershed 

are characterized mainly into two HSG classes namely, B and C. 

Around 65% of the soil in the region is moderately infiltrated 

when thoroughly wetted (silt loam) while 35% of the soils are 

having slow infiltration rates (sandy clay loam) (Garg et al., 

2012). ASTER DEM tiles have been used for marking the 

elevation variations of the watershed. 

 

3. METHODOLOGY 

The workflow of the present study, as described in Figure 2, 

involves three primary phases: Input data preparation, Model 

simulation, and Quantitative analysis.  

 

3.1 Input Data Preparation 

The input datasets consist of Landsat 8 imagery for Asan 

watershed, two ASTER DEM tiles, weather data acquired from 

the CFSR repository and soil map for deriving HSGs. During this 

phase, the LULC generated using the Maximum Likelihood 

Classifier (MLC) is coupled with HSGs to compute the SCS 

defined CN grid. The two DEM tiles are mosaicked to form the 

elevation map of the complete study area and then converted into 

ESRI ASCII format. Furthermore, the CFSR data and CN grid 

data should be in CSV format. These prepared input datasets are 

then used as model simulation parameters in the next phase of the 

workflow.  

 

 
Figure 2. Proposed Methodology for OARES Framework. 

3.2 Model Simulation 

The Open Agent Based Runoff and Erosion Simulation 

(OARES) tool integrates Python, R and NetLogo libraries to 

automate the model simulation process. Here, the direct runoff is 

estimated using the SCS CN method (Coskun & Musaoglu, 

2004). This method uses an empirical equation (3) which is 

derived as follows: 

                                             
𝐹

𝑆
=

𝑄

𝑃 − 𝐼
                                              (1) 

𝑤ℎ𝑒𝑟𝑒, 
𝐹 ∶ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖𝑛 𝑚𝑚)  
𝑆 ∶ 𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 (𝑖𝑛 𝑚𝑚) 

𝑄 ∶ 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑖𝑟𝑒𝑐𝑡 𝑅𝑢𝑛𝑜𝑓𝑓 (𝑖𝑛 𝑚𝑚)  
𝑃 ∶ 𝑇𝑜𝑡𝑎𝑙 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 (𝑖𝑛 𝑚𝑚) 

𝐼 ∶ 𝐼𝑛𝑡𝑖𝑎𝑙 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑖𝑛 𝑚𝑚) 
 

From the continuity principle,  

 

                                             𝐹 = (𝑃 − 𝐼) − 𝑄                                  (2) 
 

The final equation is obtained by solving the equations (1) and 

(2) simultaneously wherein the initial abstraction is defined to be 

20% of the watershed storage,  

 

                                             𝑄 =
(𝑃 − 𝐼)2

𝑃 + 0.8𝑆
                                       (3) 

𝑤ℎ𝑒𝑟𝑒, 
𝐼 = 0.2𝑆 𝑎𝑛𝑑 𝑃 ≥ 𝐼 
 

The watershed storage S is related to the CN as in (4), 

 

                                           𝑆 =
25400

𝐶𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
− 254                         (4) 

 

In the conventional hydrological models, the CNs for each of the 

HSGs are calculated for a particular sub-basin based on a specific 

outlet point. In contrast, the present study implements the runoff 

and erosion modelling by taking into consideration a weighted 

average CN value for the entire area. This is computed in (5) as,  

 

         𝐶𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑟𝑜𝑢𝑛𝑑 (∑
𝑤𝑖

𝑛
 

ℎ

𝑖=1
∑ 𝐶𝑁𝑗𝑖

𝑛

𝑗=1
)               (5) 

 

𝑤ℎ𝑒𝑟𝑒, 
ℎ ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑆𝐺𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎 

𝑤𝑖 ∶ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓  𝑖𝑡ℎ 𝐻𝑆𝐺 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎, 0 ≤ 𝑤𝑖 ≤ 1  
𝑛 ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐿𝑈𝐿𝐶 𝑚𝑎𝑝 

𝐶𝑁𝑗𝑖 ∶ 𝐶𝑢𝑟𝑣𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑡ℎ 𝐿𝑈𝐿𝐶 𝑐𝑙𝑎𝑠𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑖𝑡ℎ 𝐻𝑆𝐺 

1 ≤ ℎ ≤ 4, 𝑛 > 0, ∑ 𝑤𝑖 = 1
ℎ

𝑖=1
 𝑎𝑛𝑑 0 ≤ 𝐶𝑁𝑗𝑖 ≤ 100 

 

The study area consists of two HSGs, B, and C having 

proportions w1 (0.6456) and w2 (0.3544) respectively. Moreover, 

the soil erosion has been simulated using elevation and water 

height, which is randomly defined based on the rate of 

precipitation on a particular day. Initially, the rain rate (r) is taken 

as 1 mm, which then accumulates over time until the total amount 

of precipitation for that day is equal to that of the procured CFSR 

weather data. Specifically, the water height (Wh) is defined as (6): 

  

               𝑊ℎ = {
𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑(1, 4)), 𝑟 < 70

𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑(4,6)), 𝑟 ≥ 70
                     (6) 

 

It has been assumed that the water height is less when there is 

low precipitation. This, being a free parameter, can be adjusted 
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by the user accordingly. Essentially, when there is existing water 

on a particular soil patch, the water height is added to it to 

quantify the accumulated water in that patch. A detailed 

explanation about inter-agent interaction is given in Appendix A.  

 

3.3 Quantitative Analysis and Validation  

On the completion of the NetLogo simulation, the Open Agent 

Based Runoff and Erosion Simulation (OARES) tool 

automatically produces several outputs which include modified 

DEM (ESRI ASCII format), coloured soil erosion and deposition 

image (PNG format), total precipitation-runoff graph along with 

its regression fit (for 36 years), yearly rainfall-runoff graphs 

along with their regression fits (the specific years can be defined 

by users) and total soil change graph (based on elevation 

changes). These outputs can be quantitatively analysed for 

characterizing the varying spatio-temporal changes as part of the 

watershed monitoring activity. In order to validate the proposed 

model, further analysis using the conventional hydrological 

models (HEC-HMS and SWAT) have been carried out for 

different years. 

 

4. RESULTS AND DISCUSSION 

4.1 LULC Supervised Classification  

The Asan watershed comprises of different LULC classes for 

which a supervised approach has been carried out on Landsat 8 

imagery using the Maximum Likelihood Classifier (MLC). This 

approach considers both variance and co-variance of the class 

signatures with an assumption that the samples from each class 

follow a Gaussian distribution. Based on these, a statistical 

probability is computed which is then used as a membership 

value for the belongingness of the cells to a particular class. A 

cell is assigned to a specific class provided it has the highest 

probability of being a member among other cells (Hütt, Koppe, 

Miao, & Bareth, 2016). After performing the classification, a 

Kappa coefficient of 0.8764 has been obtained which is 

considerably suitable for this study. Figure 3 shows the classified 

LULC map for various classes like scrubs, agriculture, 

settlements, forests, dry river bed, and water. The LULC map is 

further used to generate the CN grid for classifying the different 

soil groups present in the Asan watershed.  

 

 
Figure 3. Classified LULC using MLC 

4.2 Runoff Geo-Simulation  

The Natural Resource Conservation Service Curve Number 

(NRCS – CN) model has been selected for estimating the rainfall 

runoff using the ABM approach since it requires few parameters 

and is both realistic and robust. As discussed in the Methodology 

section, the initial step involves the defining of CN grid by 

intersecting the LULC and HSG. Then, a weighted average of 

CN values is made as one of the inputs to the model, with other 

parameters being DEM and CFSR weather data (1979-2014). In 

order to accurately establish a relationship between total 

rainfall/precipitation and direct runoff for 36 years, a higher order 

cubic polynomial has been fitted to the scatter plot, as shown in 

Figure 4 (b). This yields an R2 value of 0.976. Furthermore, it has 

been observed that in some instances there had been an abrupt 

increase or decrease in precipitation resulting in the increased 

outliers in the regression model. While simulating the real time 

condition in ABM, the runoff (shown in Figure 4 (a)) has been 

estimated using randomly generated rain drops which are acting 

as agents and determined by total amount of precipitation on a 

particular day, as in the Appendix A. The time series analysis 

showed that there have been varied changes in the precipitation 

resulting in the fluctuations of the runoff estimates. This analysis, 

in turn, clearly depicts the change in the environmental 

conditions of the study area over a period of 36 years.   

 

 
Figure 4. (a)  Rainfall – Runoff plot, and (b) Rainfall – Runoff 

relationship over a span of 36 years (1979 – 2014). 

 

In order to quantitatively measure the decadal variations in the 

procured rainfall data and the estimated runoff, further simulation 

has been carried out using the OARES tool. The observations as 

exhibited in Figure 5 (a) state that the average precipitation for 

each of the four years (1979, 1989, 1999, and 2009) is less than 

the average rainfall (946.94 mm) of the entire time series. In 

addition to this, the results obtained for direct runoff show a much 

lower trend, signifying alterations in the environmental 

conditions over the span of thirty years.   

 

The regression fit for the year 1979 displays a poor coefficient of 

determination due to the extreme deficit of precipitation. Also, it 

could be noted that as the average annual rainfall shifts towards 

the overall average precipitation (for 36 years), the regression 

model provides a good fit. Hence, the cubic regression model 

provides an inappropriate rainfall – runoff relationship for years 
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having low annual precipitation. In such cases, a lower order 

polynomial fit might have estimated a better R2. Figure 5 (b) 

represents the aforementioned scenario. Additionally, a 

comprehensive analysis has been performed on a different 

combination of years for both decadal and consecutive cases, as 

shown in Appendix B. The relative mean annual rainfall shift for 

the consecutive years (2010-2013) is found to be minimal as 

compared to that of the decadal analysis. In these years, the peak 

precipitation is observed to be more than 100 mm with an average 

annual runoff of 460 mm (Figure 6 (a)). The year 2012 recorded 

a comparatively higher rainfall runoff, with a peak precipitation 

of 226.24 mm and peak simulated runoff of 148.8 mm on 25th 

Aug. 

 

 
Figure 5. (a)  Yearly Rainfall – Runoff plot, and (b) Rainfall – 

Runoff relationship for Decadal Variations. 

 

Furthermore, due to the low relative mean shift, the regression 

model shows high R2 values for all the cases (Figure 6 (b)). 

Following the multi day cloud burst incident at Kedarnath in 

2013, a simulation study by Utah State University showed that 

due to the natural and anthropogenic influences on the climate, 

northern India has experienced increasingly large rainfall in June 

since the late 1980s (Cho, Li, Wang, Yoon, & Gillies, 2016). On 

analysing the effect of this incident on the study area with 

OARES tool, an intriguing standard deviation of 33.16 mm for 

the direct runoff has been estimated. 

 

4.3 Simulation of Soil Erosion  

The OARES tool 1 also provides an estimation of soil erosion 

based on three parameters: rain drops, elevation, and water 

height. The water height defines the amount of water present in 

one rain drop, acting as an agent. Based on the water flow criteria, 

the agents move around the system environment. The OARES 

tool has been modelled in such a way that each agent carries one 

unit of soil from one cell to another using the following 

algorithm:  

 

 

 

                                                                 
1 OARES source code: https://github.com/montimaj/OARES 

 
Figure 6. (a)  Yearly Rainfall – Runoff plot, and (b) Rainfall – 

Runoff relationship for Consecutive Variations. 

 

𝑖𝑓 𝐸𝐶𝑖
+ 𝑊𝐶𝑖

> 𝐸𝐶𝑗
+ 𝑊𝐶𝑗

 (𝑖 ≠ 𝑗), 

 

𝑚𝑜𝑣𝑒 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑓𝑟𝑜𝑚 𝐶𝑖  𝑡𝑜 𝐶𝑗 

𝑟𝑒𝑚𝑜𝑣𝑒 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑓𝑟𝑜𝑚 𝐶𝑖 
 

𝑤ℎ𝑒𝑟𝑒,  
𝐶𝑖 ∶ 𝑖𝑡ℎ 𝑐𝑒𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝐷𝐸𝑀 

𝐶𝑗 ∶  𝑗𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑐𝑒𝑙𝑙 𝑜𝑓 𝐶𝑖  

𝐸𝐶𝑖
∶ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑖 

𝐸𝐶𝑗
∶ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑗   

𝑊𝐶𝑖
: 𝑇𝑜𝑡𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑎𝑡 𝐶𝑖 

𝑊𝐶𝑗
: 𝑇𝑜𝑡𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑎𝑡 𝐶𝑗 

 

In addition to this, if the neighbouring cells of Ci have the same 

elevation, then the water content of each agent present in Ci gets 

accumulated over time. Figure 7 illustrates the comparison 

between the amounts of soil eroded and soil deposited of each 

pixel (cell) of the DEM. The positive and negative values in the 

Y axis depict the deposition and erosion (in meters) for the entire 

time series respectively.  

 

 
Figure 7. Soil Erosion – Deposits Relationship. 

 

The majority of soil deposits after the end of the simulation is 

found to be characterized along the Asan river flow path, as 

shown in Figure 8. This proclaims that the simulated result 

produced by OARES tool is aligned with the fact that the 

sediments are deposited in the river (Morgan et al., 1984).  
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Figure 8. Simulated Erosion using NetLogo ABM. 

 

4.4 Comparison with Conventional Hydrological Models   

For validating the simulated results of the OARES tool, a 

comparative study has been performed by utilizing the 

conventional hydrological models, such as HEC – HMS and 

SWAT. A recent study of the major hydrological models suggests 

that SWAT is a suitable model for streamflow estimation in the 

Himalayan watersheds (Gaddam & Kulkarni, 2018; Yaduvanshi 

et al., 2017). SWAT model prioritizes LULC and soil, water 

quality loading and flexibility of basin discretization for 

continuous temporal simulation. The model parameters can be 

auto-generated using SWAT GUI. These specifications are 

optimally aligned with the requirements of this study area. Also, 

SWAT is computationally less intensive as compared to other 

hydrological models (Malagò, Pagliero, Bouraoui, & Franchini, 

2015). Figure 9 denotes the estimated direct runoff for the year 

2013.   

 

 
Figure 9. Simulated Rainfall – Runoff using SWAT. 

 

Unlike SWAT, the input parameters for HEC – HMS need to be 

prepared beforehand using HEC – GeoHMS (ArcGIS Plugin). 

The steps for generating these parameters include terrain pre-

processing, HMS project setup, basin processing, stream and 

watershed characteristics, hydrologic parameters, and HMS 

model files (Scharffenberg & Fleming, 2010). Once these inputs 

are fed to the HEC – HMS model, further calibrations (like 

precipitation gauge calibration, etc.) need to be performed. The 

following simulated rainfall-runoff graph has been obtained for 

the year 2013 after successfully running the model (Figure 10).  

 

 
Figure 10. Simulated Rainfall – Runoff using HEC-HMS.  

 

OARES tool provides similar results as compared to the 

aforementioned models (Figure 6 (a)). In Table 1, a quantitative 

estimation of peak runoff (rounded) for each of the model has 

been shown which implies that the results of OARES closely 

resembles that of HEC – HMS.  

 

Simulation Tool Estimated 

Peak Runoff 

(2013) 

 mm 

HEC-HMS 72 

SWAT 75 

OARES 70 

Table 1. Comparison of Model Outputs.  

 

It should be noted that the runoffs for SWAT and HEC-HMS are 

generated based on a particular outlet location. However, the 

OARES tool results in the same runoff for the entire area. 

 

5. CONCLUSION AND FUTURE SCOPE 

In this preliminary work, an attempt has been made for 

developing a quick solution to evaluate the rainfall runoff and 

soil erosion of a watershed. The OARES tool aims to provide an 

automatic hydrological input parameter generation interface 

which in turn would simplify the cumbersome task of manually 

inputting these variables. Existing hydrological models consume 

heavy computational resources as these require an additional GIS 

support for preparing the model input parameters. On the 

contrary, the OARES tool is a lightweight cross platform 

application that completely runs on open source libraries 

(Python, R, and NetLogo) and enables the users to customize the 

tool as per requirements. Moreover, this tool is suitable for 

handling large time-series data which is a big challenge in 

conventional hydrological models. Although it serves as a 

generic open source framework, the study focusses on a specific 

Himalayan watershed for validating the implications of ABM in 

hydrological studies. In the presented work, the CFSR data have 

been utilized for providing the weather data of 36 years along 

with ASTER DEM and CN grid coupled with LULC. The 

simulated results show adequate accuracy in estimating direct 

runoff, having its peak of 148.8 mm on 25th Aug 2012. It also 

verified the fact that there has been an increasing trend in the 

rainfall runoff from 1985 onwards in this region. The average 

annual rainfall runoff from 1979 to 2014 is found to be 112.37 

mm with the highest average annual runoff of 2.32 mm in 2012. 

Apart from this, the model also simulates the erosion parameter 

by taking into account the change in the DN values of the DEM 

multiplied by the pixel size. The estimated erosion result is in 

concordance with the sediment transport and deposition theory 

(extensively used in geological studies for monitoring the 

ecosystem quality). The OARES tool yields a comparable result 

consistent with that of conventional models. However, one of the 

major limitations of this application is that it requires the DEM 

to be resampled (automatically performed by NetLogo using 

Nearest Neighbour approach), which might not be suitable for 

studies involving high precision of measurements. The raster 

window in the NetLogo interface for the OARES tool is 

dependent on the input DEM size and therefore, requires the user 

to statically specify the window size. Also, the OARES tool does 

not currently provide a feature for generating the sub basin 

parameters from a predefined outlet point (as is the case in 

conventional models) since it works on the basis of a lumped 

approach. Also, statistical significance testing has not been 

performed and therefore, is left as future work. In this regards, 

the study strongly recommends using alternative ABM models 

(like MASON, JADE, Repast, etc.) for solving the existing issues 

in this tool and optimizing the code wherever necessary.   
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APPENDIX A 

The intermediate steps during the simulation study for runoff and 

erosion modelling using NetLogo tool are illustrated in this 

appendix. This tool defines four types of agents: patches, turtles, 

links, and observer. Each patch is a square piece of ground having 

coordinates on which the turtles can move. Two turtles may be 

connected by a link. The role of the observer is to provide 

instructions to the agents. Initially, during the NetLogo model 

startup, there are no active turtles. The observer or the patches 

can create new turtles in this phase. In the OARES tool, elevation 

is the major patch which contains the height information of the 

ground. During this process, the DEM (stored in ESRI ASCII 

format), having one of the NetLogo specified projection systems, 

is resampled using Nearest Neighbour (by default). The DN value 

is then stored in each patch. The other patches include the amount 

of water used to display the graph in the NetLogo interface. The 

rain drops (one of the turtles) are generated according to the 

precipitation rate obtained from the CFSR weather data. 

Essentially, when the rain drops are unable to flow to a nearby 

patch with a lower elevation, they are transformed to “water” 

turtles which get accumulated over that particular patch based on 

the water height. Figure 11 shows the interface used in NetLogo 

for realising the simulation visually. It is noteworthy that, once 

the rain drops reach the edges of the map, they are destroyed.   

 

 
Figure 11. NetLogo Interface showing Rainfall Traces. 

 

Soil is one of the other turtles which is used for simulating the 

effect of raindrops on the ground. The DEM is modified based on 

the varying values of elevation and soil. Additionally, a user can 

disable this feature as per requirement. In this case, the 

consequence of rain drop on soil is ignored and hence, the DEM 

remains unaltered after the completion of the simulation. The 

patches with red, green and black colours signify soil erosion, 

soil deposition, and unmodified areas respectively as shown in 

Figure 12.    

 

 
Figure 12. NetLogo Interface showing the impact of rainfall on 

different patches. 

 

On a standard PC, the entire simulation process carried out by the 

OARES tool requires around eight minutes for this specific 

dataset. In order to further improve the simulation execution 

time, the user can run the NetLogo model as headless. Also, the 

“link” agents have not been applied to this tool and its 

practicability is left as future work.  

 

APPENDIX B 

Further simulation analysis by considering different random 

combinations of consecutive and decadal years from the time 

series data has been shown in Figure 13 and Figure 14. The 

outcome of the analysis indicated the changes in rainfall pattern 

as compared to the results described in section 4.2. The cubic 

regression model displayed a good fit (similar to the analysis 

carried out for the consecutive years 2010-2013) for the 

consecutive years from 1998 to 2001, as shown in Figure 13 (a). 

This relationship between rainfall and runoff is also reflected in 

the yearly precipitation graph, as in Figure 13 (b).      

 

 
Figure 13. (a)  Rainfall – Runoff relationship, and (b) Yearly 

Rainfall – Runoff plot for Consecutive Variations. 

 

However, the decadal analysis (1983, 1993, 2003, and 2013) 

showed a varied trend as compared to that of section 4.2. The 

overall analysis carried out in this study area justifies the ongoing 

environmental changes and displays a concern for the ecology.  

 

 
Figure 14. (a)  Rainfall – Runoff relationship, and (b) Yearly 

Rainfall – Runoff plot for Decadal Variations. 
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