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ABSTRACT: 

 

The use of intelligent technologies within 3D geospatial data analysis and management will decidedly open the door towards 

efficiency, cost transparency, and on-time schedules in planning processes. Furthermore, the mission of smart cities as a future 

option of urban development can lead to an environment that provides high-quality life along stable structures. However, neither 

geospatial information systems nor building information modelling systems seem to be well prepared for this new development. 

After a review of current approaches and a discussion of their limitations we present our approach on the way to an intelligent 

platform for the management and analysis of big 3D geospatial data focusing on infrastructure projects such as metro or railway 

tracks planning. three challenges are presented focusing on the management of big geospatial data with existing geo-database 

management systems, the integration of heterogeneous data, and the 3D visualization for database query formulation and query 

results. The approach for the development of a platform for big geospatial data analysis is discussed. Finally, we give an outlook on 

our future research supporting intelligent 3D city applications in the United Arab Emirates. 
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1. INTRODUCTION  

The use of 3D intelligent technologies within planning 

processes will decidedly lead to efficiency, cost transparency, 

and on-time schedules. The mission of smart cities as a future 

option of urban development is to build an environment that 

provides high-quality life along a favourable, stable structure. 

To improve and simplify the decision-making processes, 

multiple technologies work collaboratively within the 

construction of a city. Different vendors of diverse fields such 

as IT, energy, and infrastructure provide more and more 

collaborative solutions to achieve steadily developments for 

better cities. This procedure leads to multiple systems and the 

collection of huge data sets, which demand a professional 

organized data management. The handling and integration of 

such big city data is a challenge especially for the design and 

maintenance of smart cities. Obviously the long-time data-

availability for all participants within a construction project 

leads to an easier and earlier determining of risks and planning 

costs.  

 

This paper is structured as follows: In section 2 we refer to 

related work in the field of big 3D geospatial data management 

and analysis, respectively, followed by the restrictions of 

current solutions in section 3. In section 4 challenges for the 

management and analysis of big geospatial data are discussed. 

First results on the management of big 3D data based on the 

geo-database management system PostGIS are presented. In 

section 5 our approach to big geospatial data analysis is 

presented. Finally, section 6 summarizes the paper and gives an 

outlook on our future research. 

 

2. RELATED WORK: MANAGEMENT AND ANALYSIS 

OF BIG GEOSPATIAL DATA  

Nowadays Geospatial Information Systems (GIS) can manage 

relatively small spatial data sets up to 2.5D, however the 

capabilities for handling big 3D data is much more challenging. 

Since some years, new achievements to support 3D objects and 

buildings with multi-patch feature classes are in development 

(Schön et al., 2009). Nevertheless, the sufficient support for the 

storage and management of big 3D geospatial data is still a 

major research topic (Breunig et al., 2016; Sugumaran et al., 

2012; Breunig and Zlatanova, 2011; Schön et al 2009; Liu et 

al., 2009). 

 

Striking open standards in the BIM and GIS domains, 

respectively, such as the Industry Foundation Classes (IFC) 

(IFC, 2018; buildingSMART International, 2018) and 

CityGML (CityGML, 2018) are providing a framework for the 

integration of objects from the built environment (Biljecki, 

2017). Obviously these standards have to be adapted for the 

modelling of big geospatial data, having in mind that there is no 

obvious frontier to divide big data and regular data (Chen et al., 

2014). It is well known that Laney characterized big data by his 

“3Vs model” including volume, velocity, and variety (Laney, 

2001, Berman, 2013). For the first time, other characteristics 

rather than volume have been defined for big data. Afterwards, 

multiple studies added veracity (IBM Big Data & Analytics 

Hub, 2018), value and variability to the V model (McNulty, 

2014). Because of their complexity, the handling of big data 

systems demands particular techniques and algorithms 

supporting data streaming and parallel computing (Amirian et 

al., 2014). A constructive building model with unified building 

information must provide a synchronized database capable to be 

accessed simultaneously by all participants of a construction 
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project (Breunig et al., 2017). Furthermore, the modelling and 

development of a mathematical representation for any complex 

surface in 3D space or any volume, e.g. to represent buildings, 

are challenging tasks. Also modelling the variations of a 

building can lead to benefits but also to new problems in urban 

planning, mapping, and visualization, emergency response, etc. 

(Volk et al., 2014).  

 

Intelligent buildings, smart infrastructures, and smart cities 

require 3D data for more convenience. For example, the 

application of BIM technologies at an airport terminal prior to 

the construction may support the simulation and prediction of 

directions for passengers within the building. Decision makers 

may examine how a building operates and may come to accurate 

assessments of the building plan. With the increasing use of 

information modelling in Architecture Engineering 

Construction (AEC), various governments push for the 

obligatory use of BIM to improve the quality of buildings and 

to reduce cost (Digital Built Britain, 2015; Federal Ministry of 

Transport and Digital Infrastructure in Germany (BMVI), 2015; 

Building Information Modeling (BIM) e-Submission, 2018). 

 

There are several attempts to store and manage big BIM data: 

Software products such as MapReduce® and Bigtable® are 

used in several studies as DBMS solution (He et al., 2008; 

Ekanayake et al., 2008; Schatz, 2009; Zhao et al., 2009; 

McKenna et al., 2010; Lin et al., 2010; Taylor, 2010; Seo et al., 

2010; Xiaoqiang et al., 2010; Yu et al., 2012). Project 

participants and engineers develop BIM models with the help of 

commercial BIM software and utilize data centres such as 

CloudBIM® to share their 3D models and parsed building 

information with subcontractors and co-workers. BIMServer® 

is a popular open source model server supporting IFC (Beetz, et 

al, 2010). There are several examples of frameworks for the 

storage and analysis of massive BIM data. Hung-Ming Chen 

and others developed a BIM data centre that can be accessed by 

multiple users and is able to manage massive BIM data by using 

cloud technologies. A web-based visualization using Web 3D 

technologies is available by Chen et al. (2016). Chen addressed 

cloud (network) computing technologies as a solution to resolve 

the limits of stand-alone systems. Since the web-based user 

interface and the display of an individual query do not need 

high-performance hardware, they still can be applied 

simultaneously by multiple users. Solihin et al. (2016) observed 

trends of the continuous growth of BIM models, e.g. caused by 

the integration of building sensor data that lead to additional 

data represented as point clouds. Multiple frameworks such as 

the SOA4BIM® framework (Jardim-Goncalves et al., 2010), 

the conceptual framework proposed by Amarnath et al. (2011), 

the BIM visual system developed by Chuang et al. (2011), and 

the framework proposed by Wu et al. (2012) were developed for 

the storage and management of 3D BIM data in general.  

 

However, to provide solutions for the operative management of 

big 3D building information models, data storage issues have to 

be considered by experts of both the BIM and the GIS domain. 

The cooperation with users in real projects is essential to find 

practical solutions. Furthermore, building information has a 

continuous information chain in the life-cycle of objects. Within 

this life-cycle the planning and in-situ data are changing 

continuously and they must be stored and retrieved accordingly. 

To process both in a unified way, BIM has to be integrated with 

other technologies such as GIS, point cloud processing as well 

as virtual (VR) and augmented reality (AR). E.g. the project 

‘Future City Pilot’ ran by the Open Geospatial Consortium 

(OGC) observes the possibility of the integration between GIS 

and BIM in urban planning projects (Open Geospatial 

Consortium, 2016).  

 

The Analysis of Big Data requires the utilization of parallel 

processing on groups of servers, see Figure 1. To accomplish 

this, it is important to monitor all the components of the inquiry 

and to combine the outcomes into a dataset. Google® has 

introduced several tools to accomplish this task. Most likely, the 

best-known Big Data instrument available is the Apache 

Establishment's Hadoop®. The essential part of this tool’s 

calculation is to deal with the coordination and management of 

all the distributed analysis processes working in parallel, also to 

deal with adaptation to internal failure and excess. The analysis 

of big geospatial data results in the classification and sorting of 

source data into streams of data which are then passed to a tree 

of specialist servers dedicated to deploy a suite of big data 

analytics. These servers will pass their outcome back to the 

main server, which will consolidate all results of data mining 

tasks carried on source data into a final outcome to the original 

query utilizing spatial predicates.  Hadoop can be utilized to run 

examination on greatly vast volumes of information on server 

groups with any number of hubs. However, Hadoop is not 

designed to utilize Geospatial predicates on inquiries or 

applications.  

 

 
Figure 1. Computational arrangement in clusters, grids, clouds, 

and supercomputers (adapted from (Karimi, 2014)) 

 

A solution emerged from Esri® to this problem is 'GIS Tools 

for Hadoop’, a toolbox using Esri Geometry API for Java® to 

provide Hadoop with vector geometry tasks. Furthermore, 

Spatial Framework® for Hadoop, which empowers Hive Query 

Language® (HQL) to utilize spatial information tasks and 

Geoprocessing Tools for Hadoop®, is an arrangement of 

geoprocessing devices for ArcGIS® that empowers clients to 

move their information all through Hadoop to execute work 

processes.  Utilizing these devices, it is conceivable to take 

information held in a spatial data mine, bundle and transfer it 

into a Hadoop bunch. Complex investigation can at that point 

be performed on the information, and the aftereffects of the 

investigation downloaded straightforwardly into ArcGIS for 

Desktop where additional detailed examinations can be 

performed.  This toolbox provides a suitable approach for 

handling the analysis of big geospatial data, as large volumes 

can be reduced into a more manageable subset on which 

definite spatial examination can be performed. For instance, it 

could be used to perform the starting point / target examination 

on a high volume of traffic data by handling and breaking down 

a large number of GPS directions over the course of a day. The 

GPS instructions could be reduced to a suitable size applicable 

to a particular region by transferring the spatial determination 

queries to Hadoop. The chosen subset can then be brought over 
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into ArcGIS work areas where a more specific system 

investigation has to be performed.  

 

3. LIMITATIONS AND ISSUES                                               

OF CURRENT SOLUTIONS  

The current handling of 3D geospatial data related to the BIM 

and the GIS domain rises multiple challenges and issues that 

need to be addressed. One of these is the integration of BIM and 

GIS data. Both domains show similarities and connections 

when affecting infrastructure and buildings. The data 

integration between GIS and BIM is therefore very valuable for 

upcoming 3D city modelling projects. It has been suggested that 

the elaborated BIM data can provide the fine details that the city 

models of the GIS domain are usually lacking (Ohori et al., 

2017). Biljecki (2017) discussed the level-of-detail problem in 

3D city models. However, there are some critical problems that 

need to be addressed. Ohori et al. (2017) studied geometric and 

topological issues such as bad georeferenced BIM data as well 

as geometric and topological problems in BIM models from the 

perspective of GIS. In this process, they discovered a suitable 

method for the transformation of data between the IFC format 

and the CityGML format. They also mentioned further problems 

that are common in the GIS domain. For example, intersections 

between objects and self-intersection as well as different objects 

that are shown as one object or vice versa. Additionally, some 

non-planar faces occur as flat surfaces in GIS applications. 

Some of these errors can lead to errors during advanced spatial 

analysis in the GIS field.  

 

One of the major drawbacks in using commercial BIM servers 

such as Autodesk Revit BIM Server® (Autodesk Revit, 2018), 

Graphisoft ArchiCAD BIM Server® (Graphisoft ArchiCAD, 

2018) or Bentley ProjectWise Integration Server® (Bentley, 

2018) seems to be that they operate on a single computer only. 

With these servers, it is necessary to download an entire BIM 

file to view or query the model. However, a dynamic model that 

changes over time and continually expands with the continuous 

monitoring of a BIM project, must be stored and managed 

effectively and accurately presented. Jiao et al. (2013) designed 

a cloud approach to solve the big-data management problem in 

AEC applications. But there are still multiple obstacles in 

hosting and managing large amounts of BIM data. In most 

applications it is necessary to process big data with the help of 

parallel algorithms and in heterogeneous networks. Therefore, 

ordinary databases are usually not compatible with big data 

solutions (Correa, 2015).  

 

The service developed early by Dean et al. (2008) uses Apache 

Hadoop® to stabilize multiple distributed servers for a BIM 

data centre and utilizes MapReduce® for the parallel processing 

of big dynamic BIM datasets. They outline several reasons that 

reliable management of large BIM datasets can be realized with 

CloudBIM®. Two major drawbacks of using such systems, 

however, are the poor computing resources and the access 

restriction by a single user.  

 

4. CHALLENGES FOR THE MANAGEMENT               

AND ANALYSIS OF BIG GEOSPATIAL DATA  

In our research we identified three major challenges concerning 

the processing of big 3D geospatial data. 

 

4.1 First challenge: Managing big geospatial data with 

existing geo-database management systems 

The first challenge we target is the management of large 

amounts of geospatial data with existing geo-database 

management systems. For a typical application, e.g. a railway 

track planning and construction project, we expect an amount of 

~50TB of thematic and geospatial data. Such an amount of data 

cannot be handled by a database working on one single 

computer. Therefore we need to use distributed databases that 

are scalable and work on clusters. However, such distributed 

database solutions often do not support spatial or even spatio-

temporal database queries. 

Also the PostGIS/PostgreSQL community advances solutions 

for a fast access on mass data by extending existing multi-

dimensional access methods such as the R-Tree and the more 

abstract access method GiST (Generic Index Structure), 

PostgreSQL supports a new index type, called BRIN. BRIN 

stands for Block Range Index and enables a generic indexing 

taking slight physical memory. It obviously is useful for large 

tables. BRIN splits the table into block ranges and compresses 

entities into min and max values. It supports the horizontal 

partitioning of a database and can improve the handling of large 

datasets in terms of writing and querying. One of the limitations 

of the GiST-based index implemented in PostGIS is the size of 

the RAM that is available. Thus it does not work smoothly, 

once the available amount of RAM exceeds. The continuous 

update of object values or update operations decrease the 

efficiency of the GiST-index. I.e. the index must be updated 

manually by calling the method REINDEX. With BRIN, the 

computed minimum bounding boxes of the managed objects are 

mutually exclusive. Therefore, the resulting index will be 

smaller, and the index structure can be more efficient than GiST 

in cases we deal with overlapping data. In such cases the GiST 

index – in PostgreSQL implemented on top of the R-Tree – is 

disadvantaged as sub-trees of the R-Tree must be searched 

multiple times. However, as our research showed, for practical 

real data sets this is not necessarily an issue and it is worth to 

use a GiST-based R-Tree index. Comparing both index 

structures, the BRIN technique takes less time for creating 

compared to the GiST structure (Mazroobsemnani, 2017). 

Furthermore, parallel query execution is provided (PostgreSQL, 

2018). 

 

Since the support for 3D geospatial data types is still not fully 

evolved, there is a demand to improve the handling of huge 

amounts of 3D spatial data within spatial databases. 

Furthermore, robust topology structures for 3D objects, 

especially for various parts of a building, should be explored 

within existing geo-database management systems to improve 

the performance of the 3D query operations. 

 

4.2 Second challenge: Integration of heterogeneous data 

The second challenge we face is to handle heterogeneous 

geospatial data, e.g. raster images, 2D shapes and 3D solids 

simultaneously. Each model has its own requirements and needs 

to be handled properly. Furthermore, we need to reflect the 

links between such data, e.g. from raster images to 3D solids 

and vice versa. In the following we refer to a typical application 

scenario of a 3D railway tracks project consisting of planned 

and existing tracks. The data to be expected come in different 

data formats and primarily focus on raster data: 
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a) Data from helicopter flights 

Large-area aerial survey of new routes and existing sections 

represented as Triangulated Irregular Networks (TIN) in formats 

such as *.ecw for the digital orthophotos or the raw data from 

laser scans in the format *.asc. 

 

b) Data from drone flights 

Elaborated shots from new tracks in the connection area 

between an existing and a new route represented as a digital 

terrain model in formats such as *.stl *.dwg, *.fbx, point clouds 

in formats such as *.e57, *.las, *.rcp, and digital orthophotos in 

formats such as *.tiff and *.jpg. 

 

c) Data from stationary laser scans 

Detailed recording of the existing bridges with digital terrain 

model in a format such as *.dwg, point clouds in formats such 

as *.las and *.rcp, raw laser scans data in the format *.asc. 

 

d) 2D GIS Data  

Various information and shape files of the network in the 

format *.shp and oracle dump *.dmp. 

 

e) Track geometry 

Laser scan data of the existing tracks, taken with a light 

measuring system in the format *.asc. 

 

f) Traditional 2D plans 

Plans of the existing network from archives in the formats 

*.dwg and *.pdf or as paper plans. 

 

g) Data from already existing models 

Based on existing 2D plans and 3D existing records, object-

oriented models in formats such as: *.ifc, *.rvt, and *.pdf being 

created for the entire planning area. 

 

h) Data from 3D, “4D”, and “5D” planning models 

For planning purposes, complex models have to be created, 

which usually consist of subject-specific sub-models, created by 

different specialist planners. The 3D, “4D” (3D + time), and 

“5D” (3D + time + costs) models are created using various 

applications such as Autodesk Revit®, Autodesk Navisworks®, 

and Autodesk Civil 3D®. 

 

Obviously data integration coming from heterogeneous data 

sources can only be successful, if the data refer to the same 

examination area, if there are no semantic conflicts between 

different data, and if the geometric raster representations of the 

data are compatible to each other. It must be ensured that the 

data collection is unified and valid. 

 

4.3 Third Challenge: 3D visualization of database query 

formulation and query results 

For many DBMS the query language SQL is used as a well-

established standard. Spatial extensions of SQL such as Geo-

SQL® or Spatial SQL® are used to support the analysis of 

geospatial data. But when it comes to handle heterogeneous 

data with different data formats, an adjusted spatial access 

method is needed. Our approach to overcome this problem is to 

design and implement a spatio-temporal access method with a 

graphical 3D/4D interface that allows an appropriate 

visualization for the formulation and result-visualization of 

3D/4D database queries. 

 

To identify the necessary functionality needed for the 

visualization of the query formulation and database query 

results, respectively, the special requirements for 3D/4D queries 

have been identified. Typical requirements are: 

 

• Changing the colours of single objects when being 

touched in the 3D cave; 

• selecting sets of objects in space and time by defining 

rulers indicating spatial and temporal intervals: 

• computing the distance between two objects by touching 

them in the 3D cave; 

• selecting the topological neighbours of an object by 

touching an object and the “neighbours” or “distance” 

button; 

• selecting a spatial and temporal minimal bounding box 

around an object as studied by Ohori et al. (2017). This 

supports the process of making explicit and discrete 

bounding representation geometries from the implicit 

and curved geometries. A main research question is how 

to support 3D and 4D database queries in a way that the 

users can intuitively examine the results of database 

queries. 

 

The 3D visualization can also be well used as a preliminary step 

to examine the meta data before analysing the real data: due to 

the preparation cost of large amounts of data, referred to as big 

data, it is advantageous to view the data before downloading the 

files. The 3D viewer needs to support open and proprietary file 

formats, must guarantee the data visibility through open formats 

and allow users to select a specific format for download. We are 

aware that this solution may have limitations on uploading and 

downloading data.  

 

5. FIRST STEPS OF OUR APPROACH  

5.1 Tests with PostGIS/PostgreSQL 

First, we studied the capabilities of PostGIS® for the 

management of big 3D spatial data focusing on issues such as 

spatial indexing, native partitioning, logical replication, and 

smart statistics for the query planner. We focused on the 

management of large amounts of point cloud data. However, 

PostGIS does not provide a dedicated data type and function for 

point cloud data. Thus the open source libraries PDAL® and 

pgpointcloud® were used to handle 3D point cloud data via 

PostGIS. Treating a point cloud merely as points can be 

challenging (Van Oosterom et al., 2015). With PDAL® and 

pgpointcloud® it is possible to define sets of points (point 

patches) to improve the data management performance. In order 

to support the access of a part of the point cloud, the data is 

retrieved by a 3D bounding box. PostgreSQL supports 3D 

features, data types and spatial indexes. However, a 3D point 

cloud query may have a bad performance for big database 

records even if it uses a proper index structure (Hinks et al. 

2012; Van Oosterom et al., 2015). Several other DBMS face 

performance difficulties, while working with databases over 

2GB (Zhang et al., 2016). 

 

The real dataset we used was chosen from the spatial 

component of a learning LIDAR dataset provided by the Institut 

National de l'Information Géographique et Forestière (IGN, 

2018) and the open data 3D building model from New York 

City (NYC, 2018). With the real dataset it takes approximately 

eleven times less time for creating the index with BRIN than 

with GiST, cf. Figure 2. The figure shows (f.l.t.r.) the total time 

for the index generation, the storage space that is needed by 

index and the average time that is needed for topological 

queries. 
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Figure 2. Comparison GiST vs. BRIN 

In our previous work, within the DFG research group 

"Computer-aided collaborative subway track planning in multi-

scale 3D city and building models" (Breunig et al., 2017), we 

focus on how 3D data can be queried and processed 

automatically from a collaborative data platform. This includes 

the support of transaction techniques for multi-scale modelling 

and the supply of spatio-temporal access methods such as 

examined in (Menninghaus et al., 2016). By scaling up 

solutions for the management of large amounts of 3D geospatial 

city and infrastructure data to be used in academia and practice, 

a prototype of a data integration platform for the management of 

large amounts of heterogeneous 3D spatial data will be 

developed. The primary target of the prototype is the support of 

data formats that are used for BIM processes in infrastructure 

planning, particularly railway tracks and tunnels.  

 

5.2 Data integration and 3D visualization 

Typical use cases to be covered by a data integration platform 

are the data import and the export, the preparation of the data 

for participating project partners, the 3D visualization of the 

data and the control and management of heterogeneous data 

types and formats.  

 

An overview of the potential software architecture to be used 

for our data integration platform can be found in Figure 3. 

 

 

Figure 3. Software configuration to support                      

visually supported 3D database queries 

In the long run we propose to integrate the heterogeneous data 

by a 3D visualization interface (3D cave) that enables the user 

to “dunk” into the 3D model and to inspect the different data by 

defining metric, geometric and topological methods. 

 

5.3 Intelligent platform for data analysis  

Our research is targeted on the development of a smart platform 

to employ new methodologies that will facilitate interactive and 

collaborative queries, and at the same time support the fast 

nature of big geospatial queries and geospatial big data. This 

platform needs to include smart visual interfaces and analytical 

reasoning algorithms to enable the user to effectively interpret 

long-term analytical processes using complex spatio-temporal 

big data. There is a need to evaluating the ability of current 

visual methods in thematic GIS to support geospatial big data 

analytics. The intelligent platform will adapt GIS generalization 

principles and techniques to support visual geospatial big data 

analytics.  It will combine computational methods and GIS best 

practices into an intelligent platform that is capable of 

proposing the sound design and prediction of real time 

decisions.  

 

The intelligent platform will incorporate methods that will 

embody the volume of geospatial big data and deploy the 

accurate methodology to the selection of the appropriate choice 

of geospatial big data overviews and create those at real time. 

The new platform will demonstrate new interfaces capable of 

handling the complexity and interpretation of spatio-temporal 

big data and its change over time. It is also necessary to address 

in new intelligent innovations the need for new methods to 

enhance the management of predictive analytics of dynamic 

events with visualizations. These visualizations will leverage 

geospatial big data by easing the process of handling such data 

for users. It is also necessary to address the issue of the velocity 

of the data so that intelligent applications will identify changes 

and the significance of the level of change dynamically from 

real time dynamic geospatial big data sources. Furthermore, the 

reliability of geospatial big data sources has to be assessed 

using sound data modelling techniques and assessing the 

certainty of geospatial big data. 

 

Last, but not least, new innovations will also focus on 

incorporating analytical methods such as Post Markov 

Assumption,  Estimate Neighbour Relationship from geospatial 

big data, and Place based Ensemble Models to address spatial 

heterogeneity. By this, an intelligent suite of algorithms will be 
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provided to facilitate the analysis of geospatial big data with 

ease.  

 
6. CONCLUSIONS AND OUTLOOK 

After having presented the state of the art and the limitations of 

existing approaches to manage and analyse geospatial data, we 

presented three challenges and consequently our approach on 

the way to solve the deficits and to develop an intelligent 

platform for the management and analysis of big 3D geospatial 

data. We focused on data typically used in metro and railway 

projects. The challenges considered in this paper concern the 

management of big geospatial data with existing geo-database 

management systems, the integration of heterogeneous data, and 

the 3D visualization of database query formulation and query 

results. Single steps towards the development of a platform for 

big geospatial data analysis have been discussed. 

 

In our future research we will focus on the development of new 

methods for parallel geo-databases supporting the parallel 

execution of metric, geometric, and topological database queries 

used for data analytics. Furthermore, we intend to extend the 

intelligent platform for the visualization of spatial 3D operators 

and 3D query results. Also the integration of BIM and geo-

referenced 3D GIS data will be an issue. Finally, it is our goal 

to apply the developed methods for intelligent 3D city 

applications in the United Arab Emirates. 
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