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ABSTRACT: 

Agent-based modeling approaches have been used for various case studies related to the geospatial dynamics of complex systems. The 

proliferation of forest-fire smoke and the associated airborne particulate matter that behaves as complex systems make it important to 

develop reliable geospatial models that can simulate the propagation process to avoid impacts to human health and the environment. 

Therefore, the main objective of this research study is the development and implementation of an agent-based model (ABM) for the 

propagation of forest-fire smoke and other airborne particulate matter for use in studying patterns of spatio-temporal propagation. The 

developed ABM operates on a two-dimensional plane in the landscape where agents representing forest fires emit agents representing 

smoke. These smoke agents propagate through the study area based on measured atmospheric conditions. The model was developed 

using data from the 2017 forest fire season in British Columbia (BC) and parts of Alberta, Canada, particularly during the period 

August 10th-25th. The obtained simulation results provided patterns of spatio-temporal propagation of fire smoke over large areas of 

BC and Alberta, and were compared to the real smoke patterns covering the Edmonton metropolitan area, Canada on a similar date. 

The developed agent-based model can be used to support the emergency planning and decision-making process such as in regulating 

forest fire evacuations and in the prevention of health problems triggered by the exposure to smoke. 

1. INTRODUCTION

Forest fire severity and frequency increases with climate change 

and in turn contributes to the global climate change process 

(Running, 2006; van Mantgem et al., 2013; Westerling, 2006) 

leading to adverse effects on environment and human health. 

The 2017 fire season in British Columbia, Canada (BC) was one 

of the worst in BC’s history. The forest fires caused a 70-day 

long provincial state of emergency, the longest in BC’s history, 

and the first since 2003 (B.C. Wildfire Service, 2018). The BC 

Wildfire Service (2018) reports that over 1.2 million hectares 

burned and 65,000 people displaced during the 2017 fire season. 

In 2003, an increase in physician visits for respiratory related 

illnesses in BC was attributed to the forest fires during that year 

(Dennekamp and Abramson, 2011).  

In order to decrease smoke exposure, the BC Centre for Disease 

Control advises people to stay indoors and reduce physical 

activity during smoke events (Elliott, 2014). Different measures 

have to be established to better assist inhabitants in low and high 

dense urban areas affected by the hazards of smoke propagation 

(Henderson et al., 2011). The understanding, modeling and 

forecasting of the spatial dispersion of forest fire smoke is 

important because these can provide additional information for 

the emergency planning and decision-making process regulating 

forest fire evacuations, for advance warnings systems to limit 

exposure and for preventing health issues triggered by smoke. 

Forest-fire smoke models have been developed implementing 

various modeling methods and are predominantly numerical. 

One such modeling approach is the Weather Research and 

Forecasting with Chemistry (WRF-Chem) model that is capable 

of simulating forest fire smoke propagation (Grell et al., 2005). 

WRF-Chem combines various atmospheric and chemical 

models into one fully-coupled model to investigate and forecast 

the concentrations of trace gas and particulates, such as smoke, 

in the atmosphere (Grell et al., 2005). BlueSky, another smoke 

forecasting system, was developed by the U.S. Forest Service 

which implements the Hybrid Single Particle Lagrangian 

Integrated Trajectory (HYSPLIT) model (Rolph et al., 2009). 

The HYSPLIT model calculates smoke concentrations using 

methods from the Lagrangian and Eulerian views of fluid motion 

(Rolph et al., 2009). Smoke within HYSPLIT uses both 

movement and change to model smoke parcels which may grow, 

expand, and split depending on the atmospheric conditions 

(Escudero et al., 2006). 

While these existing modeling approaches are used by officials 

as smoke forecasting systems, they have some disadvantages. 

They do not represent smoke propagation as a continuous 

gradient of smoke concentration while using Lagrangian 

movement. The WRF-Chem does model smoke as a gradient of 

concentration (Grell et al., 2005) but it does not use Lagrangian 

movement and restricts the capability of the movement of 

smoke. HYSPLIT does use Lagrangian movement (Rolph et al., 

2009) but uses parcels of smoke instead of a gradient and this 

does not allow for smoke in the same area to be affected 

differently by the propagation processes. Creating a model that 

can incorporate both components would allow for the simulation 

of the interactions between smoke particles, the atmosphere, and 

the topography. A complex systems approach using the agent-

based modelling (ABM) method can incorporate the two 

components and represent the actual geospatial process and 

individual interaction of smoke particles for propagation. In this 

study, the main objective was to develop an ABM approach for 

representing the spatial dynamics of the propagation of forest-

fire smoke. The model development used datasets of measured 

atmospheric conditions during the 2017 forest fire season during 

the period of August 10th-25th in British Columbia (BC) and parts 

of Alberta, Canada. 
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2. THEORETICAL BACKGROUND

Geographical systems such as forest fires, land use and land 

cover change, and insect infestation, are often seen as complex 

systems as they are composed of multiple elements that interact 

among themselves and the environment in a nonlinear way, and 

thus are difficult to predict (Manson, 2001). The mathematical 

representation of complex systems can be operationalized with 

the theory of geographic automata systems (GAS) that compose 

two main approaches - cellular automata (CA) and agent-based 

modeling methods (Torrens and Benenson, 2005). These 

modeling methods are capable of capturing the complexity of 

geospatial processes at small or very fine geographic scales and 

propagating the resulting patterns at much larger or coarser 

spatial scales (Manson, 2001). Moreover, geospatial data 

commonly available from remote sensing (RS) and geographic 

information systems (GIS) can be used as GAS model input to 

realistically represent the dynamics of geographical processes. 

Particularly, ABM approaches have been used to represent the 

behavior and interactions of several individuals such as 

pedestrian movements (Zhu and Timmermans, 2011), land 

market and land use change (Filatova et al., 2013; Parker et al., 

2003), urban growth (Kocabas and Dragicevic, 2013), forest 

insect infestations (Anderson and Dragićević, 2015; Pérez and 

Dragićević, 2011), animal behavior (Bonnell et al., 2013) and 

human disease propagation (Perez and Dragicevic, 2009) to 

name a few. Further, to model ecological and coupled human-

environment systems, GAS models were used in physical 

processes including hydrology (Reaney, 2008), soil erosion 

(Heung et al., 2013), forest fires (Clarke et al., 1994; Hsu and W. 

S. Liu, 2015; Yassemi et al., 2008) sand dune patterns (Genois

et al., 2013), and airborne particle propagation (Jjumba and

Dragićević, 2015).

In the GAS models, CA and ABM can be explained as a bottom-

up modeling approach where small-scale processes are defined 

within the model and large-scale processes and patterns emerge 

during model processing (Crooks et al., 2008). The CA typically 

uses a grid of cells or rasters, where the state of each cell 

depends on the state of other nearby cells and governed by an 

established transition ruleset (White and Engelen, 2000). 

However, the ABM depends on small software routines or 

segments of code that are called ‘agents’ and are responsible for 

the decision-making process of interactions and behavior of real 

world entities being represented. Agents interact with each other 

and the environment to reach the goals that are set as priority. 

The ABMs can be coupled with other equation models which 

distinguishes them from other models such as statistical or only 

equations-based models that limits the capability to represent the 

spatio-temporal dynamics and spatial pattern of change (Brown 

et al., 2005). 

Both CA and ABM approaches can be used to spatially represent 

the smoke propagation phenomenon. For the modeling of smoke 

propagation, the cell states describe the concentration of smoke 

and change with each iteration of the rules depending on the 

wind patterns and concentration of smoke upwind (Yassemi et 

al., 2008). The challenge with using a CA is the inability to 

represent mobility of individual particles and their interactions 

that compose the smoke, thus cannot adequately capture the 

smoke propagation process in both space and time. Therefore, 

the ABM approach is better suited for simulation modeling of 

the forest-fire smoke and airborne particle matter propagation as 

it can represent individual particles interactions and behaviour 

of the overall process from very fine to coarse scales. Moreover, 

Brown et al. (2005) indicate that ABM can incorporate both the 

Lagrangian perspective as the description of movement and the 

Eulerian perspective as the description of change. 

3. METHODS

3.1 Model Overview 

The flowchart of the proposed ABM model is presented in 

Figure 1. The atmospheric conditions, wind speed, direction, and 

atmospheric pressure together with the elevation have all been 

used as the model input. The atmospheric conditions are reported 

as pressure isosurfaces that does not represent the elevation but 

instead a surface of constant pressure. The choice of elevation 

needs to be specified during model setup to define the modeling 

plane and calculate the atmospheric conditions along the plane. 

The model is composed of two types of agents - the fire and the 

smoke agents. The main purpose of the fire agents is to generate 

smoke agents that are emitted from a fire. The fire agents 

determine the overall number of smoke agents released to the 

atmosphere for simulation of the smoke particles propagation 

process. This is regulated by a variable that can change to 

accommodate the number and intensity of the fire events 

represented by the model. In scenarios with multiple fires, at 

Figure 1 – Flowchart of the agent-based model of 

forest-fire smoke propagation 
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least one fire agent must be located at each fire. The smoke 

agents incorporate the Lagrangian movement as vector of 

movement of the smoke particles after they are emitted into the 

atmosphere. The smoke agents move using two simultaneous 

processes, diffusion and wind. Both processes are calculated 

using the same atmospheric conditions and before any 

movement occurs. The movement of smoke agents occurs at a 

time interval called the processing resolution. 

The diffusion occurs when smoke agents move from areas of 

higher smoke density to areas of lower smoke density (Kellogg, 

1956). In order to calculate diffusion the agent uses nearby 

agents and the modeling grid of cells, or the neighbourhood, to 

determine smoke density. If the smoke agent is in the densest 

cell in the neighbourhood it will select a random direction to 

move. If the agent is not in the densest cell, it will move directly 

away from that cell. The distance to move in both cases is 

determined during the calibration of the model for the specific 

scenario. Diffusion is essential to the model because it spreads 

the smoke across the landscape. If diffusion did not occur, the 

smoke would stay in a narrow plume and would not produce 

realistic spread patterns. The direction and distance to move is 

saved in the model as the diffusion movement vector for use after 

the wind movement vector has been calculated.  

The diffusion process consists of two components - the distance 

to diffuse from the original cell and the surrounding 

neighbourhood – and so the model calibration is needed. 

Depending on the processing resolution for the modeling process 

and the number of smoke agents, these values need to be 

adjusted. The proposed ABM model calibration  was done to 

adjust to the measurements from the High Altitude Dust 

Diffusion study (Kellogg, 1956). This study was chosen because 

it measured dispersion in stable air, thus the measured diffusion 

was not affected by the turbulence in the air. The ABM 

calibration has been achieved to make the smoke diffuse to a 

spread diameter of approximately 100 m in 4 minutes and 150 m 

after 10 minutes. 

Movement by wind depends on the measured past atmospheric 

conditions or forecasted future atmospheric conditions, and it is 

directly obtained from the atmospheric condition dataset. The 

smoke agents use the wind speed and direction vectors to 

calculate locations where to move. The wind speed in meters per 

second needs to be converted into fractions of a cell per time 

step. Finally, the wind movement and diffusion movement 

vectors are added, and the agent moves to the new location 

designated by this new vector. After movement, the model 

checks for two conditions. First, the time to determine if a model 

output is scheduled. Second, it checks if new set of atmospheric 

conditions are available.  

The software Repast Simphony (North et al., 2013) with the Java 

programming language was used to implement the ABM model. 

The ABM is loosely-coupled with the ArcGIS software (ESRI, 

2018) for the purpose of the visualisation of the model outputs. 

The series of simulation outputs are mapped to represent the 

spatial dynamics of the smoke pattern propagation over the 

landscape. 

3.2 Study area and datasets 

In order to implement a sample scenario of the agent-based 

model, Southern British Columbia and parts of Alberta, Canada 

were chosen as the study area given the extensive forest fires 

during the summer 2017. The metropolitan areas of Vancouver, 

Seattle, Edmonton, and Calgary were severely affected during 

the 2017 forest fire season for multiple days with high smoke 

concentrations. 

Atmospheric conditions were obtained from the National 

Centers for Environmental Prediction (NCEP) in the form of the 

North American Regional Reanalysis (National Centers for 

Environmental Prediction et al., 2005). This dataset contains 

atmospheric conditions at 29 pressure levels of the atmosphere 

with a horizontal resolution of 32 km. Each layer represents one 

pressure isosurface, where all data in the layer represents 

conditions at the same pressure, although the elevation varies. 

While there are many variables in the dataset, the ones used in 

this study include the wind speed, wind direction, pressure, and 

elevation as specified in the model input. Wind speed and 

direction are in the form of north/south (u) and the east/west (v) 

wind vectors. These are converted into meters per second for 

speed and degrees from north for direction as required by the 

model. This dataset is updated every three hours and is created 

by averaging the conditions over the three hours. 

4. SIMUALTION RESULTS

The temporal resolution used is 3 hours due to the atmospheric 

conditions data and the model processing resolution is 1 minute. 

The spatial resolution of the model was 100 m with the diffusion 

neighbourhood of five cells as it produced accurate diffusion 

results during calibration.  

The initialisation of the agent-based model was set to correspond 

to the hypothetical fire located at the hill north of Khartoum Lake 

(49.900 N, -124.118 E); approximately 100 km northwest of the 

Metro Vancouver region to start on August 10th, 2017 at 12am 

and end on August 25th, 2017 at 12pm. This location was chosen 

because the wind data during the selected period was available 

and because it closely corresponded to the actual fire events in 

reality. Simulation results are generated every three hours for 15 

days, which involved a total of 21,240 model iterations. The fire 

was set to an elevation of 1,000 m. The simulations that represent 

15 days of smoke propagation took 4 hours and 20 minutes to 

process using an Intel Xeon E5-2620 v4 CPU with 64 GB RAM. 

Figure 2 presents the results of the simulation outcomes in the 

morning of the second (August 12th), fourth (August 14th), sixth 

(August 16th), and eighth (August 18th) day of smoke 

propagation in British Columbia and part of Alberta. 

At the beginning of the simulation, the smoke remains trapped 

in the areas of the straits of Georgia and Johnstone for 

approximately two days (+2 Days in Figure 2). Later the smoke 

was propagated towards north-northeast and separates into two 

plumes (+4 Days in Figure 2). By the sixth day, the northern 

plume has left the northeast and the southern plume is exiting 

towards the east (+6 Days in Figure 2). After eight days, the 

smoke is covering the Metropolitan area of Edmonton although 

it quickly passes (+8 Days in Figure 2) due to wind patterns. The 

visual comparison has been made for similar date to reports of 

smoke alerts for the Edmonton metropolitan area.  

5. CONCLUSIONS

The proposed agent-based model uses real geospatial and 

atmospheric data together with realistic physical process 

generation in order to demonstrate the potential of the GAS 

approach for representing forest-fire smoke propagation through 

the atmosphere at a large geographic scale.  
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The developed ABM has the capability to forecast spatio-

temporal pattern of the smoke dispersion initiated from a specific 

fire event. The simulated patterns of smoke propagation are 

similar to those observed in satellite and aerial images. 

Moreover, the proposed model is capable of handling multiple 

fire events and combining the smoke dispersion from different 

locations of forest fires as is often the case in nature. For the 

purposes of this research study, the hypothetical fire near 

Khartoum Lake was set for the initiation of the modelling 

procedure, however more accurate information of the location of 

actual forest fire ignition can be used to initiate the model. The 

obtained simulations have demonstrated that the smoke particles 

have been realistically propagated and impacted air quality for 

the major urban centres of British Columbia and Alberta. 

Additionally, Edmonton metropolitan area, Alberta experienced 

days with poor air quality due to forest fire smoke at the same 

time as demonstrated by the model. 

However, the proposed ABM needs further enhancement and 

full model calibration and validation to be able to realistically 

forecast the smoke propagation and thus be used for decision-

making purposes. Primarily, better atmospheric data is needed 

as the data currently used is too coarse to accurately model 

movement through smaller mountain valleys. While some 

valleys are several kilometres across, the wind data has a raster 

cell size of 32 km. The smoke will still pass through the valley 

but the variations in wind caused by the terrain will not be 

accounted for. Secondly, the exact location of the forest fire and 

the amount of smoke being released would also be beneficial. 

Obtaining data for smoke density has proven to be difficult and 

the best alternative found is a combination of meteorological 

station recordings of airborne particulate matter and satellite 

imagery for the days being modeled. Satellite imagery alone are 

not enough for validation procedures as they do not include 

smoke concentrations and the imagery may be processed to 

eliminate smoke from other sources and clouds. Finally, the 

addition of terrain data, in the form of a digital elevation model 

at high resolution, would permit the development of an improved 

ABM that can operate in 3D. Such an enhanced model would be 

Figure 2 – Simulation results of the smoke propagation patterns initialized with the forest fire near Khartoum Lake, BC and 

with snapshots captured for days 2, 4, 6 and 8 
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able to simulate smoke propagation at different elevations and 

use the terrain features to influence the actual movements. 

Nevertheless, the proposed ABM incorporates the Lagrangian 

movement and the smoke gradient as part of the smoke agents 

during their movement in the space, and therefore represents the 

actual dynamics of the process. The model can be also applied 

to forecast movement smoke from other sources such as 

hazardous pollution from a factory or urban pollution. With 

advanced calibration and validation, the developed ABM has the 

potential to be used in official alerts and warnings systems to 

prevent or mitigate the dangers of smoke exposure.  
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