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ABSTRACT: 

The analysis of dynamical models for prediction and geosimulation using the information extracted from a geographical region 
processed from the data provided by multispectral remote sensing systems provides useful information for urban planning and resource 
management. However, several topics of interest on this particular matter are still to be properly studied. Using the remote sensing 
data that has been extracted from multispectral images from a particular geographic region in discrete time, its dynamic study is 
performed in both, spatial resolution and time evolution, in order to obtain the dynamical model of the physical variables and the 
evolutionary information about the data. This provides a background for understanding the future trends in development of the 
dynamics inherent in the multispectral and high-resolution images. This proposition is performed via an intelligent computational 
paradigm based on the use of dynamical filtering techniques modified to enhance the quality of reconstruction of the data extracted 
from multispectral remote sensing images and using high-performance computational techniques to unify the available data scheme 
with its dynamic analysis and, therefore, provide a behavioral model of the sensed data. 

1. INTRODUCTION 

Dynamic is a term that refers to a phenomenon that produces time 
changing patterns, the characteristics of that pattern at a particular 
time is related with those at other times.  

The term is nearly synonymous with time evolution or pattern of 
change (Luenberger, 1979). Nearly all the observed phenomena 
every day, or in a scientific research, have important dynamic 
aspects. Scientific examples may arise in: 

1. A physical system, such as a signal traveling through
the space, a home heating system, or in the mining of a 
mineral deposit. 

2. A social system, such as the movement within an
organization hierarchy, the evolution of a tribal class 
system, or the behavior of an economic structure. 

3. A life system, such as that of genetic transference,
ecological decay, or population growth. 

Many dynamic systems can be understood and analyzed 
intuitively without resort to mathematics and without 
development of a general theory of dynamics. However, in order 
to approach unfamiliar complex situations efficiently, it is 
necessary to proceed systematically. Mathematics can provide 
the required economy of language and conceptual framework; 
therefore, the term dynamics takes a dual meaning. It is a term 
for the time evolution phenomenon in the real world, and a term 
for that part of mathematical science that is used for its 
representation and analysis (Luenberger, 1979). Dynamic 
systems are represented mathematically in terms of either 
differential or difference equations. These equations provide the 
structure for representing time linkages among variables.  

The use of either differential or difference equations to represent 
dynamic behavior corresponds, respectively, to whether the 
behavior is viewed as occurring in continuous or discrete time.  

Continuous time corresponds to the usual conception, where time 
is regarded as a continuous variable and is often viewed as 
flowing and smoothly passing (Luenberger, 1979). In 
mathematical terms, continuous time is quantified in terms of the 
continuum of real numbers.  

Discrete time consists of an ordered sequence of points rather 
than a continuum. In terms of applications, it is convenient to 
introduce this type of time when events and consequences either 
occurring are accounted for only at discrete time periods, such as 
daily, monthly, or yearly. Accordingly, dynamic behavior viewed 
in discrete time is usually described by equations relating the 
value of a variable at one time to the values at adjacent times. 
Such equations are called difference equations. 

2. DYNAMIC MODEL 

An innovative paradigm that has been developed is presented, its 
objective is the mathematical analysis of the dynamical model in 
both, spatial resolution and time evolution, of a particular 
geographical region obtained from multispectral remote sensing 
data (MRSD) in discrete time.  

This is performed via the Multispectral Dynamic Filtering 
(MDF) method, which unifies the MRSD mapping scheme with 
its dynamic analysis to provide a high-resolution mapping of the 
MRSD in discrete time. If the attributes of interest of a system 
are changing in time, then it is referred to as a dynamic system. 
The MDF process provides the mathematical model of change in 
space resolution and time evolution of such a dynamic system 
(Grewal et al., 2001).  
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a. CT domain: t-continuous time argument. b. DT domain: k-discrete time argument. 

Figure 1. Representation of linear dynamic systems. 
 
 
 
2.1 Mathematical model in continuous time 

The model of MRSD of interest treated as a linear dynamic 
system (LDS) is presented in its state variables (Falkovich et al., 
1989) described over the continuous time (CT) domain	(𝜏	 ∈ 	ℑ) 
and the discrete time (DT) domain (𝜅	 ∈ 	ℜ). The LDS is 
represented in CT and DT as shown in Figures 1(a) and 1(b), 
respectively. 
 
For the LDS presented in CT and DT, ∑(𝜏) and {∑(𝜅)} are the 
inputs to the linear system, 𝛬(𝜏) and {𝛬(𝜅)} are the outputs of 
the linear system, respectively. 
 
The model of the equation of observation (EO) in CT is 
represented as ∑(𝜏) = 𝑆/𝛬(𝜏)0 + 𝜈(𝜏) (Falkovich et al., 1989), 
where 𝜈(𝜏) is the white observation Gaussian noise and 𝜏	 ∈ 	ℑ, 
starting at t0 (initial moment of continuous time), and the linear 
amplitude-modulated model (Falkovich et al., 1989) is 
𝑆/𝛬(𝜏)0 = 𝛬(𝜏)𝑆3(𝜏), where 𝑆3(𝜏) represents the deterministic 
carrier of the image frame of a given model, and 𝛬(𝜏) is the 
unknown stochastic information process to be estimated via 
processing of the image observation data frame ∑(𝜏). Is assumed 
that 𝛬(𝜏) satisfies the dynamical model specified by the N-th 
order linear differential equation (Shkvarko et al., 2007) 
 
𝑑5𝛬(𝜏)
𝑑𝜏5 + 𝛼578

𝑑578𝛬(𝜏)
𝑑𝜏578 +⋯+ 𝛼3𝛬(𝜏)

= 𝛽578
𝑑578𝜉(𝜏)
𝑑𝜏578 +⋯+ 𝛽3𝜉(𝜏) 

(1) 

 
where a and b are the constant coefficients of the dynamical 
system model for evolution of the MRSD 𝛬(𝜏).  
 
This stochastic model can be redefined as follows: the differential 
equation (1) may be transformed into a system of linear 
differential equations of the first order via performing the 
following replacement of variables 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑧8(𝜏) = 𝛬(𝜏),

𝑧B(𝜏) =
𝑑𝑧8(𝜏)
𝑑𝜏 + 𝛼578𝑧8(𝜏) − 𝛽578𝜉(𝜏),

⋮

𝑧5(𝜏) =
𝑑𝑧578(𝜏)

𝑑𝜏 + 𝛼8𝑧8(𝜏) − 𝛽8𝜉(𝜏),

𝑑𝑧5(𝜏)
𝑑𝜏 = −𝛼3𝑧8(𝜏) + 𝛽3𝜉(𝜏)

 

(2) 

 
z(𝜏) = (𝑧8(𝜏) 𝑧B(𝜏)			… 𝑧5(𝜏))G. (3) 

 
Based on the replacement of variables specified by (2), the 
dynamic differential equation model (1) can be now represented 
in a canonical vector-matrix form as follows 
 

Iz(J)
IJ

= Fz(𝜏)+	Gξ(𝜏),            	Λ(𝜏) = Cz(𝜏). (4) 

 

F =

⎣
⎢
⎢
⎢
⎡
−𝛼578 1 0
−𝛼57B 0 1
… … …

			
… 0
… 0
… …

−𝛼8 			0 0			… 1
−𝛼3 			0 0			… 0 ⎦

⎥
⎥
⎥
⎤
,					 

G = X
𝛽578
𝛽57B
…
0

Y, 

C = [1 0			… 0].						

(5) 

 
The representation in the form of (4) is referred to as a canonical 
equation of linear dynamic system in state variables in 
continuous time. Here, 𝐳(𝜏) is the state vector, the vector C 
defines a linear operator that introduces the relation between the 
MRSD in continuous time and the state vector 𝐳(𝜏), F is a 
transition matrix, G is a transition vector, and x(t) represents the 
white model generation noise vector characterized by the 
statistics, 〈ξ(𝜏)〉 = 𝟎 and 〈ξ(𝜏)ξ𝑻(𝜏′)〉 = Pc(𝜏)𝜎(𝜏 − 𝜏′), 
respectively. Here, Pc(𝜏) is referred to as state model disperse 
matrix that characterizes the dynamics of the state variances 
developed in continuous evolution time 𝜏(𝜏3 ⟶ 𝜏) starting from 
the initial instant 𝜏3.  
 
The dynamic model equation in the continuous time states the 
relation between the MRSD map ∑(𝜏) extracted from the remote 
sensing scene, thus the desired dynamical map 𝛬(𝜏) is (Shkvarko 
et al., 2007) 
 
Σ(𝜏) = S3(𝜏)C(𝜏)z(𝜏)+ ν(𝜏) = H(𝜏)z(𝜏) + ν(𝜏),  
 
where H(𝜏)=S3(𝜏)C(𝜏). 

(6) 

 
The stochastic differential model of equations (4) and (6) allows 
applying the theory of dynamical filtration to reconstruct the 
desired MRSD map in continuous time incorporating the a priori 
model of dynamical information about the MRSD.  
 
The aim of the dynamic filtration is to find an optimal estimate 
of the desired MRSD, 𝚲k(𝜏) = C𝒛m(𝜏), developed in continuous 
time 𝜏(𝜏3 ⟶ 𝜏) via processing the MRSD maps ∑(𝜏) extracted 
from the remote sensing scenes and taking into considerations the 
a priori dynamic model of the desired MRSD map specified 
through the state equation (4).  
 
The optimal dynamic filter when applied to the RSG maps ∑(𝜏) 
specified by the dynamic image model (6) must provide the 
optimal estimation of the desired MRSD map 𝚲k(𝜏) = C𝒛m(𝜏). 
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2.2 Mathematical model of the MRSD 

The canonical solution to equation (4) in state variables for 
discrete time 𝜅 is expressed as follows (Falkovich et al., 1989)  
 
z(𝜅 + 1) = Φ(𝜅)z(𝜅) + 𝚪(𝜅)𝛏(𝜅),					 
 
𝚲(𝜅) = C(𝜅)z(𝜅), 

(7) 

 
where	Φ(𝜅) = F(𝜏q)∆𝜏 + I, 𝚪(𝜅) = G(𝜏q)∆𝜏 and ∆𝜏 represents 
the continuous time sampling interval for dynamical modelling 
of the MRSD map in discrete time. The statistical characteristics 
of the a priori information are as follows. 
 
Generating model noise {ξ(𝜅)}: 
 

〈𝛏(𝜅)〉 = 𝟎,			〈𝛏(𝜅)𝛏G(𝜅′)〉 = Pc(𝜅, 𝜅t). (8) 
 
Observation (MRSD) noise {ν(𝜅)}: 
 

〈𝛎(𝜅)〉 = 𝟎,			〈𝛎(𝜅)𝛎G(𝜅′)〉 = Pν(𝜅, 𝜅t). (9) 
 
State vector {ζ(𝜅)}: 
 

〈𝐳(0)〉 = mx(𝟎),			〈𝐳(0)𝐳G(0)〉 = Px(0). (10) 
 
where 0 argument implies the initial state for initial time instant 
(𝜅 = 0) . The disperse matrix Px(0) satisfies the following 
disperse dynamic equation (Shkvarko et al., 2007) 
 

Pz(𝜅 + 1) = 〈𝐳(𝜅 + 1)𝐳G(𝜅 + 1)〉
= Φ(𝜅)Pz(𝜅)ΦG(𝜅)
+ 𝚪(𝜅)Pξ(𝜅)𝚪G(𝜅). 

(11) 

 
2.3 Optimal and dynamic MRSD technique 

The strategy is to design an optimal decision procedure that, 
when applied to all MRSD observations will provide an optimal 
solution to the state vector z(𝜅)	subjected to its prior defined 
dynamic model given by the stochastic dynamic equation (7).  
 
The estimate of the state vector optimally defined in the sense of 
the Bayesian minimum risk strategy (Shkvarko, 2004a) in 
discrete time 𝜅 can be represented in the conditioned form 
 

𝐳m(𝜅)
yz{

=⟨𝐳(𝜅)|Σ(0),	Σ(1),… ,	Σ(𝜅)⟩, (12) 

 
were 〈∙〉 represents an ensemble averaging operator.  
 
For discrete time, the design procedure is based on the concept 
of mathematical induction (Falkovich et al., 1989). This is a 
supposition that after 𝜅 observations {𝛴(0),𝛴(1),… , 𝛴(𝜅)} the 
optimal estimate is 
 

𝐳m(𝜅) = 𝐳m(𝜅)
yz{

. (13) 

 
In order to use the estimate 𝐳m(𝜅)

yz{
 it is necessary to design an 

algorithm that produces the optimal estimate 𝐳(𝜅 + 1) 
incorporating new measurements Σ(𝜅 + 1) according to the state 
dynamic equation (7). This is, we have to design an optimal 
decision procedure (optimal filter) that, when applied to all 
reconstructed MRSD maps {𝚺(𝜅)}  ordered in discrete time 
𝜅(𝜅3 ⟶ 𝜅), provides an optimal reconstruction of the desired 
MRSD map represented via the estimate of the state vector 

𝐳(𝜅)	subject to the numerical dynamic model (7). To proceed 
with derivation of such a filter, the state dynamic equation (7) in 
discrete time 𝜅 is 
 

𝐳(𝜅 + 1) = Φ(𝜅)z(𝜅) + 𝚪(𝜅)𝛏(𝜅). (14) 
 
2.4 Dynamic MRSD reconstruction 

According to the dynamical model of equation (14), the 
anticipated mean value for the state vector can be expressed as 
 

mz(𝜅 + 1) = 〈𝐳(𝜅 + 1)〉 = ⟨𝐳(𝜅 + 1)|𝐳m(𝜅)⟩. (15) 
 
The mz(𝜅 + 1) is considered as the a priori conditional mean 
value of the state vector for the (𝜅 + 1)-st estimation step, thus, 
from equations (14) and (15)  
 
mz(𝜅 + 1) = 𝚽⟨𝐳(𝜅)|Σ(0),	Σ(1),… ,	Σ(𝜅)⟩ + 𝚪〈𝛏(𝜅)〉

= 𝚽𝐳m(𝜅), 
(16) 

 
hence, the prognosis of the mean value becomes 
 

mz(𝜅 + 1) = 𝚽𝐳m(𝜅). (17) 
 
From the analysis of equations (14) thru (17), it is possible to 
deduce that given the fact that the particular MRSD map 𝚺(𝜅) is 
treated at discrete time	𝜅, it makes the previous reconstructions 
{𝚺(0), 𝚺(1),… , 𝚺(𝜅)} irrelevant; hence, the optimal filtering 
strategy is reduced to the dynamical one step predictor described 
by the equation (14).  
 
Using these derivations, the dynamical estimation strategy can be 
modified to the one step optimal prediction procedure (Shkvarko 
et al., 2007)  
 
𝐳m(𝜅 + 1)
= ⟨𝐳(𝜅 + 1)|𝚺(0), 𝚺(1),… , 𝚺(𝜅), 𝚺(𝜅 + 1)⟩; 

𝐳m(𝜅 + 1) = ⟨𝐳(𝜅 + 1)|𝐳m(𝜅); 	𝚺(𝜅 + 1)⟩; 
𝐳m(𝜅 + 1) = ⟨𝐳(𝜅 + 1)|𝚺(𝜅 + 1);	mz(𝜅 + 1)⟩. 

(18) 

 
For the current (𝜅 + 1)-st discrete evolution time 
estimation/prediction step, the dynamical MRSD map estimate of 
the equation (6) in discrete time becomes 
 

𝚺(𝜅 + 1) = 𝐇(𝜅 + 1)𝐳(𝜅 + 1) + 𝛎(𝜅 + 1), (19) 
 
with the a priori predicted mean calculated by the equation (15) 
for the desired state vector given by (14).  
 
Applying the Wiener minimum risk strategy (Shkvarko, 2004b) 
to solve the equation (19) with respect to the state vector 𝐳(𝜅)	and 
taking into account the a priori information summarized by the 
equations (8) thru (10), the dynamic solution for the MRSD map 
state vector is obtained, defined by the Equation (20) as 
 

𝐳m(𝜅 + 1) = mz(𝜅 + 1)
+ 𝚯(𝜅 + 1)[𝚺(𝜅 + 1)
− 𝐇(𝜅 + 1)mz(𝜅 + 1)], 

(20) 

 
where the desired dynamic filter operator is defined as 
 

𝚯(𝜅 + 1) = KΘ(𝜅 + 1)𝐇G(𝜅 + 1)𝐏�78(𝜅 + 1), (21) 
 

KΘ(𝜅 + 1) = [𝚿Θ(𝜅 + 1) + 𝐏x78(𝜅 + 1)]78, (22) 
 

𝚿Θ(𝜅 + 1) = 𝐇G(𝜅 + 1)𝐏�78(𝜅 + 1)𝐇(𝜅 + 1). (23) 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-213-2018 | © Authors 2018. CC BY 4.0 License.

 
215



 

Using the derived filter equations (20) thru (23) and the initial 
MRSD map state model of equation (7), the optimal filtering 
procedure for the dynamic reconstruction of the desired MRSD 
map can be represented in discrete time k as Equation (24) 
 

𝚲k(𝜅 + 1) = 	𝚽(𝜅)𝐳m(𝜅)
+ 𝚯(𝜅 + 1)[𝚺(𝜅 + 1)
−𝐇(𝜅 + 1)𝚽(𝜅)𝐳m(𝜅)] 

(24) 

 
3. MULTISPECTRAL DYNAMIC FILTER 

The described technique provides the dynamic MRSD 
reconstruction based on a collection of MRSD maps extracted 
from remote sensing scenes (Perry et al., 2002).  
 
This developed methodology is referred to as the Multispectral 
Dynamic Filter (MDF) method. The MDF method is defined in 
the form of equation (24) and based on the collection of MRSD 
maps in discrete time as Equation (25) 
 
𝚲k��� = 𝚲k(𝜅 + 1) 
𝚲k��� = 	𝚽(𝜅)𝐳m(𝜅)

+ 𝚯(𝜅 + 1)[𝚺(𝜅 + 1)
−𝐇(𝜅 + 1)𝚽(𝜅)𝐳m(𝜅)] 

(25) 

 
Here, the observation vector 𝚺 is formed by the threshold values 
of the same (i, j)-th pixel through the different MRSD maps of 
the atlas collection in the discrete time 𝜅.  
 
The estimate vector z is formed by the estimation values L one 
step prior in the same current discrete time. Figure 2 shows the 
detailed computational structure of the MDF method for 
environmental MRSD reconstruction of remote sensing imagery. 
 

4. SIMULATION EXPERIMENT 

Remote sensing is a tool or technique similar to mathematics 
(Mather, 2004) that use sensors to measure the amount of 
electromagnetic radiation (EMR) existing an object or 
geographic area from a distance and extracts valuable 
information from the data using mathematically and statistically 
based algorithms (Jensen, 2005). It functions in harmony with 
other spatial data collections techniques or tools of the mapping 
sciences, including geographic information systems (GIS) and is 
used for geosimulation processes (Fussell et al., 1986). 
 
In the simulation results, a set of 40 MRSD maps were extracted 
from multispectral remote sensing images with high-resolution 
values for of spectral and spatial resolution and for a particular 
geographical scene. The MDF methodology is applied to the 
collection of MRSD maps (Villalon, 2014) based on the 
computational structure described in Figure 2.  
 
First, the collection of MRSD maps (Marple, 1987) extracted in 
different times (discrete) for the same scene is set for the 
simulation. Therefore, the discrete evolution time k equals to 40. 
Second, the pixel evolution vector 𝚺�� is defined for this 
simulation as 
 
𝚺�� = /𝚺k��,8 𝚺k��,B 				… 𝚺k��,�30, (26) 

 
where 𝚺k represents the threshold values of the same (i, j)-th pixel 
from the MRSD maps (Yli-Harja et al., 1991).  
 
 

This is the observation signal to be post-processed with the 
dynamic post-processing method. Third, the measurement matrix 
H and the state transition matrix F are simplified to I because the 
equation of observation (7) and the stochastic dynamic state 
equation (19) are supposed to be ideal (noiseless, because the 
observation vector is directly extracted from the MRSD maps).  
 
The dynamic filter operator (gain matrix) Q determines the 
variance evolution of the observation values (26) of the 
dynamically reconstructed MRSD. The initial conditions are the 
initial observation value 𝚺(0) and its initial estimation 𝚲k(0) =
𝚲{𝚺(0)}.  
 
The MDF method specified by equation (25) is applied to 
estimate the ultimate value 𝚲k that is the next (𝜅 + 1)-st 
continuous time step of the observation vector 𝚺��. This process 
is performed through all the {(i, j)} pixels of the MRSD maps to 
obtain a single aggregated MRSD map 𝚲k���.  
 
The simulation results of application of the developed MDF 
method are presented in Figure 3. Figures 3(a) thru 3(e) show the 
first five MRSD maps (1024x1024-pixels) extracted from the 
first five remote sensing scenes that corresponds to the 
metropolitan area of the city of Guadalajara, in Mexico. This is 
performed in different time (𝜅 = 1,2,3,4 and 5) for the time 
evolution analysis, respectively.  
 
Figure 3(f) shows the dynamic MRSD map reconstructed with 
the application of the MDF method for the (𝜅 + 1) time step 
(𝜅 = 41) specified by the computational structure described in 
Figure 2. 
 
The MRSD map were reconstructed in a discrete time k, 
therefore, the MDF method produces the desired dynamic MRSD 
prediction for the next discrete time step (𝜅 + 1), which 
represents the prediction of changes in spatial resolution and time 
evolution (Johannsen et al., 2003). 
 

5. COMPUTATIONAL ALGORITHM 

The detailed stages of the computational algorithm for the MDF 
methodology is summarized as follows 
 
1. Set a collection of discrete time (𝜅) MRSD maps extracted 

from the remote sensing imagery for a particular scene. 
 

2. For each (i, j)-th pixel on the MRSD maps, perform the 
following process: 

 
• Set the pixel-based evolution vector 𝚺��, which 

contains the threshold MRSD values for the pixel 
in discrete time k. 

 
• Apply the MDF method to the vector 𝚺�� to obtain 

the prediction 𝚲k(𝜅 + 1), which conform the 
matrix	𝚲k��. 

 
3. The reconstructed	𝚲k�� matrix conform the 𝚲k���  dynamic 

MRSD image in discrete time 𝜅. 
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Figure 2. Computational structure of the MDF method. 
 

 
 
 

 
 

MRSD collection in discrete time 
𝜅	(𝜅	 ∈ 	ℜ) extracted from remote 

sensing scenes. 

MRSD map reconstructed in 
discrete time 𝜅	(𝜅	 ∈ 	ℜ) 

𝚲k��� 
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a. MRSD map from the RS scene for k = 1 discrete time. 
 

b. MRSD map from the remote sensing scene for k = 2 discrete 
time. 

 

  
 

c. MRSD map from the remote sensing scene for k = 3 discrete 
time. 

 

 
d. MRSD map from the remote sensing scene for k = 4 discrete 

time. 

  
 

e. MRSD map from the remote sensing scene for k = 5 discrete 
time. 

 
f. Dynamic prediction obtained with the MDF method for k = 

41 discrete time. 
 

Figure 3. Simulation results for dynamic MRSD map analysis. 
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6. CONCLUDING REMARKS 

From the presented simulations results, it is possible to deduce 
that the developed MDF method provides a possibility to perform 
the intelligent analysis of the dynamic behavior or the desired 
environmental map in both, spatial resolution and time evolution. 
This is achieved because the MDF algorithm aggregates the 
information of the MRSD collection of remote sensing images 
for a particular geographical region in discrete time and employs 
more detailed robust a priori information from the original 
reconstructed remote sensing scene. The resulting dynamic 
MRSD prediction map ensures a high accuracy in the estimation 
process and in the classification achieved.  
 
A real-time process (RTP) can be defined as the study of software 
systems which are subject to a real-time constraint (i.e., 
operational deadlines from event to system response). 
 
By contrast, a non-real-time system is one for which there is no 
deadline, even if fast response or high performance is desired or 
even preferred. The needs of RTP software are often addressed 
in the context of real-time operating systems, and synchronous 
programming languages, which provide frameworks on which to 
build RTP application software.  
 
A RTP may be one where its application can be considered 
(within context) to be mission critical. Moreover, RTP can be 
said to have failed if they are not completed before their deadline, 
where their deadline is relative to an event. A deadline must be 
met, regardless of system load. 
 

7. FUTURE WORK 

The results reported on this paper shows the qualitative analysis 
of the overall performance of the MDF method applied to remote 
sensing data for geosimulation purposes. The application as an 
auxiliary tool in geophysical information retrieval and data 
interpretation for land use management and analysis, and a more 
extensive quantitative analysis of the results are a matter of 
further studies. 
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