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ABSTRACT:

Travel time estimation plays an important role in traffic monitoring and route planning. Taxicabs equipped with Global Positioning
System (GPS) devices have been frequently used to monitor the traffic state, and GPS trajectories of taxicabs also used to estimate
path travel time in an urban area. However, in most cases, it is difficult to find a trajectory that fits perfectly with the query path, as
some road segments may be traveled by no taxicab in present time slot. This makes it hard to estimate the travel time of the query
path. This paper proposes a framework to estimate the travel time of a path by using the GPS trajectories of taxicabs as well as map
data sources. In this framework, the travel time is represented as a series of residence time in cells (one cell is the gird segmentation
unit), thus the key issues of the estimation are: finding the local traffic patterns of frequently shared paths from historical data and
computing the stay time in cells. There are three major processes in this framework: trajectories preprocessing, establishing the
temporal-spatial index and cell-based travel time estimation. Based on the temporal-spatial index, an algorithm is developed that uses
similar route patterns, the cell-based travel time over a period of history and road network information to estimate the travel time of a
path. This paper uses GPS trajectories of 10,357 taxicabs over a period of one week to evaluate the framework. The results

demonstrate that this paper’s method is effective and feasible in city-wide scenarios.

1. INTRODUCTION

With the urban population increasing year by year and the
expanding urban area, the serious traffic congestion has brought
great pressure to the existing transportation facilities. The
demand and supply of road traffic is seriously unbalanced,
which increases the travel cost, especially the travel time. As an
important indicator of road traffic state, the travel time can be
used for traffic monitoring (Chawla et al., 2013), route planning
(Yuan et al., 2010), taxi dispatching (Yuan, 2013) and ride-
sharing (Wolfson et al., 2013). The travel time has been widely
concerned by researchers. How to accurately estimate the travel
time of a route at the current or future times is key technology
of modern navigation and location-based applications (Zheng,
2015a).

Vehicle trajectories not only express vehicle running status, but
also directly reflect the capacity of road network service after
map matching. Using vehicle trajectories as the entry point of
researching on traffic problem can not only make up for the
shortage of other traffic data collection methods, get traffic data
without interruption, but also can more fully express the space
and time state of traffic in the whole road network (Zheng,
2015b). Therefore, using vehicle trajectories to study the travel
time estimation problems has been widely accepted by
researchers.

At present, there are lots of research results in the fields of
travel time estimation by using trajectories. Different models
and methods have been presented to estimate the travel time,
which can be divided into two main categories: one is statistical
method based on mass historical data, such as support vector
regression (SVR) model for travel-time prediction using real
highway traffic data (Wu et al.,, 2004), a model described
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probability distributions of travel times (Hofleitner et al., 2011),
gradient-boosted regression tree model (Zhang et al., 2016); the
other is using low-frequency floating car data and other
auxiliary information (for example, points of interest (POI),
road network information, weather and so on) to predict the
travel time in real time, such as a dynamic travel time prediction
models with real-time data collected by probe vehicles on path
and its consisting link (Chen et al., 2001), a non-parametric
method for route travel time estimation using low-frequency
floating car data (FCD) (Rahmani et al., 2013), a model for
estimating hourly average of urban link travel times using
taxicab origin-destination (OD) trip data (Zhan et al., 2013),
three dimension tensor model which includes geospatial,
temporal and historical contexts (Wang et al., 2014).

Most of the research works are based on such a precondition:
the trajectories on a subset of the roads are observed by several
vehicles within a short time window. There is still no good way
to estimate the travel time by using sparse trajectories. Massive
vehicle trajectories are huge, grow and update dynamically. The
traditional way of spatial data management cannot meet the
actual application needs. How to use a spatio-temporal index to
organize and query these dynamically growing trajectories is
also a problem which has not been mentioned or solved in their
work. Furthermore, it is only valuable for travel time estimation
when trajectories have been matched on the road network,
which is also difficult in doing map-matching with sparse
trajectories. Based on above considerations, in this paper, we
propose a framework for travel time estimation based on
floating car data. This research work has three challenges: first
one is trajectory sparsity, only a few subset of trajectories will
be available in a specific period; secondly, outlier detection is
also a problem, because the large variance in travel time
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observations of the same path is obvious, which has a great
impact on map-matching; finally, the spatio-temporal index
should be well designed for querying in different situations. The
dynamic accumulation and growth of trajectories have a
significant impact on the performance of spatial and temporal
queries and travel estimations. Therefore, our solution will need
to handle data sparsity, various amount of uncertainty in travel
time observations and the spatio-temporal index. To address
these challenges, we use a cell-based approach, which
decomposes a path into a sequence of cells on the road network
by using the spatio-temporal index, and predicts the travel time
in cells by using similar route patterns in current time slot and
history. Our approach is different form link-based (Wang et al.,
2014) and path-based (Zhan et al., 2013) methods, and the road
network and trajectories are divided into fragments (called cells)
by using Google S2 index (Eric et al., 2017), both querying and
estimation are totally based on cells. The Google S2 index starts
by projecting the points/regions of the sphere into a cube, and
each face of the cube has a quad-tree where the sphere point is
projected into. After that, some transformation occurs and the
space is discretized, each face of the cube has been divided into
grids, which called the cells. The cells are an hierarchical
decomposition of the sphere into compact representations of
regions or points. And then, the cells are enumerated on a
Hilbert Curve. The Hilbert curve is a space-filling curve that
converts multiple dimensions into one dimension that has an
special spatial feature: it preserves the locality. So we can use
the Google S2 index to encode the spatial info of trajectories as
hexadecimal string, which is very convenient to be used as
index in database. So the keys to our travel time estimation
method are how to preprocess sparse trajectories, build spatio-
temporal index and estimate the travel time based on cells.

In this paper, we use Cassandra database as our trajectories data
storage. Apache Cassandra is an open-source column, family-
oriented database. Its architecture is peer-to-peer, so each node
in a cluster is assigned the same role, making it a decentralized
database. In Cassandra, data partitioning schema plays an
important role in data distribution across nodes (Vivek, 2015).
Each row in Cassandra may contain one or more columns. A
column is the smallest unit of data containing a name, value,
and time stamp. Each row has a unique identifier key, which
could be one column value or multiple column values. The keys
may contains the partitioning keys and clustering keys. The
partitioning key is used to determine which node the data is
stored, and the clustering key is used to determine the order of
data in the node. We design the row key schema, which
contains the spatio-temporal index information, to query the
trajectories.

The rest of the paper is organized as follows: Section 2
introduces the model and framework we used for travel time
estimation. Section 3 presents the preprocessing of road
networks and trajectories. Section 4 elaborates the method of
constructing spatio-temporal index. The algorithm of travel time
estimation is given in section 5. Section 6 presents the
experiments and we conclude the paper in Section 7.

2. MODEL AND FRAMEWORK
2.1 Data Model

This paper proposes a model to estimate the travel time for a
path and a framework based on the model.

Definition 1: Cell. A road network is divided into several
fragments ¥ according to Google S2 index. One cell C is one
grid unit on a certain level. Each Cell can be subdivided into
four cells just like what quardtree does.

Definition 2: Cell Route Pattern. A cell route pattern R. is a set
of road segments linked in the cell C. Each pattern is one sub-
path of road network in the cell. Different road segments linked
according to the rule of road network constitute the route
patterns in the cell.

Definition 3: Cell Stay Time. The cell stay time 7. is defined
that the time cost by passing through or staying in the cell C.
As Figure 1 illustrated, from the begin point B to the end point
E, there are several paths in different color. The whole road
network is divided into cells. In the cell C, it contains four cell
route patterns: R; (S1—S2), R> (S9—S10), R3 (S3—S4—S5) and
Ry (S6—87—S88). Each pattern R; includes several road
segments S; which are linked as subpaths of road network. For
example, R; is consisted of S; and S>, R; is consisted of S3, S«
and Ss.The time costed on R; can be considered as the time of
passing through the cell, is denoted by 7c,;, while the time
costed on R can be denoted by Tc,2. Tcr21s cell stay time in C,
but the route pattern R, does not cross C. So the travel time
TB” - form B to E at time slot 7 can be estimated by a serial of 7

in cells on the path.

T.etf = ZCE‘P Tct',RC (1)

Where ¥ is the set of cells on the route from B to E, TC’ "
Fvel

denotes the time pass through or stay in the cell C at ¢ time slot.
In this paper, we analyse the travel time of history data based on
the cells, and estimate the travel time of a path based on the
route pattern in each cell.

Ee

Figure 1. The model demonstration
2.2 The Framework

Generally, the trajectories collected by GPS cannot be directly
used for analysis. This paper proposes a framework to purify the
data, organize and index the data based the above model, and
analyze data, estimate the result finally. Figure 2 presents the
framework which is comprised of three main parts: the
preprocessing of road network data and trajectories, the
construction of spatio-temporal index and the estimation model
of the travel time.

In this framework, the road network data and trajectories have
been processed separately. The preprocessing procedure of road
network data includes decomposition and reconstruction by
using the spatio-temporal index; the trajectories have been
processed by three steps: detection, filtering and map-matching.
After these procedures above, the data have been imported into
Cassandra database, and indexed by the spatio-temporal index
strategy proposed in this paper. It is convenient to analyze the
trajectories and to gather statistics by using the spatio-temporal
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index. In this paper we use the historical data, current data and
the road network information to predict the travel time of a path.
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Figure 2. The framework of travel time estimation
3. DATA PREPROCESSING
3.1 Preprocessing of Road Network Data

The purpose of the preprocessing of road network data is to
obtain the route patterns in a cell. So firstly, we need to
decompose the road map data according to cells. Each road
segment in a cell keeps its attribute information, such as the
classification, the direction and its adjacent sections, which are
important to reconstruct the topology information in the cell.
Then, we need to find the intersection points of the road
segments and the edges of the cell. The intersection points may
be the start point or end point of route patterns, which can be
used to search the paths among the road segments. Finally, from
each intersection point, we do a depth-first search to find all
possible paths: the paths cross the cell which the end point is
another intersection point or the paths terminate in the cell.
P3

Figure 3. The cell route pattern demonstration

In Figure 3, the points P;, P3, P4, P7, Py, P;; and Pj3 are the
intersection points between the routes and the edges of cell, and
there are 4 route patterns:

Ry {S1:Pi—P2S2Pr—Ps},

R2:{So:P4—P5;S19:P5—Ps},

R3:{S3:P7—Ps;S4:Ps—P9.Ss:Po—P 0},
R4:{S6:P11—P9;S7:Po—P2:Ss:P1—P)3}.

The reconstructed road network data have been stored in
database, which is denoted as DB;oadnetwork-

3.2 Preprocessing of Trajectories

Before using trajectories, we need to deal with a number of
issues, such as abnormal points and stay points detection, noise
filtering and map-matching. This stage is a fundamental
procedure of trajectories analysis tasks. In this framework, this
stage consists of three steps:

Step 1: Abnormal Points and Stay Points Detection. The
abnormal points are the points at a strange position relative to

the near points in a time slot. These points make the direct
impact on results of filtering. So we need to check out these
exceptions and remove them by using a certain distance
threshold and a time interval threshold. Then, we need to find
out the stay points in the trajectories. In our model, each vehicle
has two states: driving or stopping. If the duration of the stop
state exceeds a time threshold(30 minutes used in this paper),
the vehicle needs to be marked as starting a new route. In this
way, the original trajectory will be divided into multiple
trajectories. In the stay points detection algorithm, we identifies
the location where a vehicle has stayed for a while within a
certain distance threshold. These stay points may stand for a
traffic jam or parking. We further classify stay points to
distinguish traffic congestion, which means the vehicle in the
original route, not a new route. The purpose of doing this is to
refine the time consuming of each road section and exclude the
parking time.

Step 2: Filtering. We use median filter to remove from a
trajectory some noise points that may be caused by the poor
signal of location positioning systems. The reason we chose
median filter is that it can keep the shape and width of the
trajectory unchanged while filtering out the noise. Suppose that
the data consists of a set xx (kK € [1,n],), the window size is m,
the sequence seq: {Xiv,Xiv+iy..sXiy Xitiy....Xi+v}, I 1S the central
position of the window, v = (m-1)/2, sort seq in ascending order,
then the middle of seq is selected as the output value.

p; =Med{x,,,x XXy Xt ()

i—v+12

where i €[1,n], v=(m-1)/2. In this paper, we use m = 5.

Step 3: Map-Matching. This step aims to project a sequence of
position measurements onto a corresponding road segment
where the point was truly generated. Hidden Markov Model
(HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process with unobserved
states. It assumes that the state is not directly visible, but the
output, dependent on the state, is visible. Each state has a
probability distribution over the possible output. This is the
same in map matching where a sequence of position
measurements, contains implicit information about an object's
movement on the map. Therefore, the sequence of output
generated by HMM gives some information about the sequence
of states. So we can use the sequence of position measurements
and the road network data to estimate its position on the road.
Two HMM map matching methods were proposed, offline map-
matching (Newson et al., 2009) and online map-matching (Goh
et al., 2012). Assume that a sequence of position measurements
m; at time slot ¢, 0 < ¢ < T. The matching candidates (the
estimated positions on the road segment) at time slot ¢ are
denoted by S, ={s,‘, , sj’} , each pair of S; and Si+; has a

transition probability p(s; | s~7). So the measurement

probabilities can be formulated as follow:

i
m,—s,
great—circle

2

20 (3)

P(m, |,

i 1 B
=5, )=—F—c¢
) \N2wo

denotes the great circle distance on the

great—circle

where Hmt -5

surface of the earth between the true location of a vehicle and
the trajectory point. The parameter o is the standard deviation of
the position measurements. For our test data, this default value
is 5 meters, which is a reasonable value for GPS noise. The
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transition probabilities can be set to be proportional to the
distance between S; on the road network, as follow:

] &
SAIISFS,’):Eeﬂ )

P(S

+1

U
St St+l

great—circle

®)

t+1

d, = ‘”mt —-m

route

where the route distance can be computed by the diver distance
between Stl and Silﬂ on the road network, £ is a rate parameter

of the negative exponential distribution.
After steps above, the matched trajectories have been imported
into database DBigjeciory-

4. SPATIO-TEMPORAL INDEX STRATEGY

To query the trajectories efficiently, we designed the row key
based on Cassandra database (Cassandra Development Team,
2017). Cassandra is NoSQL Database over P2P framework. It
has high scalability and availability without compromising
performance, which is very suitable for the storage of streaming
data, such as GPS trajectories.

4.1 Spatio-Temporal Index

Google S2 index is essentially a hierarchical space filling curve
strategy. It combines the quadtree with Hilbert Curve. In this
paper, we use S2 index to encode the spatial information of
trajectory after map-matching. In our framework, the 12
level(average cell area is about 5.067 km?) is used to divide the
map into cells for trajectories indexing, and the 14"
level(average cell area is about 0.3166 km?) is used to divide
road network data into cells for estimating the travel time, as
shown in Figure 4 and Figure 5. Each cell has a unique ID,
which we used as the identification of spatial information of
trajectory in a region. For example, one point of the map-
matching trajectory is (Lng:116.500393, Lat:39.906996), the
cell id at 12" level is 35flac3, the time stamp is 2008-02-06
18:10:58, we convert it to a long value which is the
milliseconds of the time from January 1, 1970 to that time (only
contains the year, month, day and hour fields), the minute and
second fields is also converted to milliseconds, its id is 6275, so
its spatio-temporal key can be presented as 1202292000000-
35f1ac1-658000-6275, which can be directly used as row key in
NoSQL database. Similarly, for reconstructed road network data,
we use the cell id, the year and the month as the spatio-temporal
key.

R S5 |
35f1a¢
—— 35f1act
g 35f1aeb
31acf

35flac5 ¢

- l
35f1ac3

| | =
¢ ‘\fe °

35f1ae9

35f1adb

o omacogo
o,
i 35f1add
oo

35f1ad7

35f1ae7

I 35f1ad9
35f1adf

Figure 4. One trajectory on the 12% level

Figure 5. Major road network and one trajectory on the 14"
level

In our design, the row key of matched trajectories is composed
of two parts: partition key and clustering key, the priority of
partition key is higher than clustering key’s. The time stamp (in
the format of yyyy-MM-dd HH:mm:ss) is split into the year-
month-day-hour field (yyyy-MM-dd HH) and the minute-
second (mm:ss) field. The partition key includes the date time
which is accurate to the hour, and the cell ID of S2 index at the
12th level. The clustering key includes the 14th level cell ID,
the minute, second and object ID. Figure 6 shows the format of
the row key which we used in Cassandra Database.
Correspondingly, the row key of reconstructed road network
data in one cell is shown in Figure 7.

Row Key

Column

Partition Key Clustering Key

12" level Cell ID | mm:ss Route ID X Y Status

¥¥yy-MM-dd HH

Object ID

Figure 6. The row key of map-matched trajectories

Row Key

Column

Partition Key Clustering Key

Road Name
Set

Single or two-way
Set

Geometry(Mul
ti-LineString)

Figure 7. The row key of reconstructed road network data

12" Level Cell | 14" Level Cell
) D

YYyy-MM

Route Pattern ID Road Tyve

Set

According to Distributed Hash Table (DHT), the row key is
mapping to Chord (Hash Ring Model) by its hash value, then
determine the location of the storage node in a clockwise
direction. As shown in Figure 8, the object i gets its hash value
Key(i) = hash(rowkey), then find the position on the Chord, it is
between the Node NV and Node / , so the object should be stored
on the Node /.

Object i

Row Key Columns

Figure 8. The Hash Mapping

4.2 Spatio-Temporal Query

In the model presented above, it is convenient to retrieve the
trajectory of one vehicle at a certain time or period, such as:
range queries and K-Nearest Neighbor (KNN) queries (Zheng,
2015¢).

Range queries: Retrieve the trajectories falling into a spatio-
temporal range, as shown in Figure 9. For example, if we want
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to retrieve the trajectories of vehicles passing a given
rectangular region R between 10 am. - 12 p.m. in one week.
The retrieved trajectories (or route patterns) can then be used to
derive features, such as the travel speed and traffic flow for
estimate the travel time. First, we can split the time interval into
hours, in this example are 10 a.m., 1lam. and 12 p.m., and
compute the set of cell IDs which covered the region R, then
according to the time value set (long type values) and the cell
ID set, generate the partition keys to query the database. These
queries can be executed in parallel in different node on the
Chord.

Figure 9. Range queries

KNN queries: Retrieve the top K trajectory points with the
minimum aggregate distance to a certain point or a specific
trajectory at certain time. For the first case, we just to find the
cell C which contains the point at the certain time and the
neighbor cells which are adjoining cells of C, we only need the
time and the cell IDs of the cells to compute the partition key;
then we get all the trace points, the rest of work is just do a
regular KNN query to find the nearest points, as shown in
Figure 10(a). For the second case, we can get the cells which
cover the specific trajectory at that time, and then find K
trajectories which have the minimum aggregate distance to this
trajectory, as shown in Figure 10(b). If we cannot find the

trajectories, we include neighbor cells to extend the query range.

The minimum aggregate distance depends on the definition a
similarity or distance function between two trajectories. In this
model, the aggregate distance is calculated as follow:

DRj,R, = ZreR, d i (7, R;) (6)
dmin (7", Rz) = min{d(f", Sr[n,n)} (7)
r,m|,if Gﬁﬁ >90°
d(r,Sf”)= r,n|, if0%;290° )

d (r,S' ), otherwise

where r is a point on route R;, duin is the minimum distance from
point r to route R;, the distance between R; to R; is defined as the
sum of the dpin. S”;l , 1s the segment of R;, and its endpoints are

m and n. So the distance from r to st depends on the included

angle among mn ,mr ,nm and nr . d,(r, S; D denotes the

perpendicular distance from 7 to S,"n .

®

Figure 10. (a) KNN point queries  (b) KNN trajectory queries

5. ESTIMATION OF TRAVEL TIME

To estimate the travel time, firstly we compute the historical
travel time based on the trajectories, which have already been
store in the database. Then we compute the travel time of each
route pattern by splitting travel time of whole trajectory into
segments according to cells. So we can obtain the travel time of
route patterns in each cell if there is route pattern similar to the
historical trajectory. Finally, based on the information obtained
above, we can do range queries or KNN queries to estimate the
travel time of any path.

5.1 Cell Route Pattern Search

In the preprocessing stage, we have already reconstructed the
route patterns in one cell, which can be easily retrieved from the
Cassandra database by using the row key designed above. To
find a route pattern matching a certain trajectory in one cell, one
trajectory is divided into fragments by cells. Each fragment is a
set of segments of road network, which could be a subset of
route patterns. So we need to find out the route pattern matched
the given fragment. We firstly use the minimum bounding box
and length of the segment to make a preliminary comparison,
and then we do a buffer operation to judge a route pattern
exactly equal to the given segment. If we cannot find a route
pattern which matches the given fragment, the KNN trajectory
queries mentioned above can be used to find a similarity route
pattern as a candidate. So a trajectory Pz (from B to E) can be
presented as a set of route pattern in cells: Py = {RC,C < \{l},

where Rc is a route pattern in cell C, ¥'is the cell set of Pp .

5.2 Cell Stay Time Estimation

According to the cell stay time defined above, it can be obtained
by the historical statistics. In section 5.1, each trajectory can be
divided into fragments in cells as sets of route patterns, so the
travel time of matched route pattern can be calculated according
to the travel time of the fragments in history. Ideally, after a
large number of trajectories statistics, most of route patterns
have an estimated travel time at a certain time slot. But there are
a number of route patterns cannot estimate travel time only
based on sparse trajectories generated by a sample of vehicles,
as a driver can only travel a few road segments in a short time
period. In our model, it follows such rules: firstly use the
statistics of the corresponding time in previous time slot; if we
cannot find such route pattern in current time slot, then use the
statistics in last few days; if there are no statistics available for
this route pattern, use the similarity route pattern referred above
as an approximation or the average travel time of this cell; if
there is still nothing that can be used, just use the speed limit of
the road to compute the travel time or refer to the adjacent cells.
In particular, for the start cell and the end cell which the
trajectory may not pass through cells generally, the travel time
need to be calculated proportionately according to attributes of
roads, such as the length and speed limit of a road segment.

5.3 Travel Time Estimation Base on Cells

To estimate one path Ppr from the starting position B to the
destination E at time slot 7, it can be described as the sum of
cell stay time on Pg , which has already defined in Formula (1).
So to get the travel time estimation, it mainly contains two key
operations: search the route patterns which Pgr passed,
calculate the travel time of each route pattern. It usually follows
steps below:

Step 1: Range query. Use the minimum bounding rectangle
MBRp of P to find the cell set ¥ which covers Pgr. Then use
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the cells ¥ to get the trajectories S at time slot 7 from DBy gjectory,
which is a series of range query operations. Similarly, use the
cells ¥ to retrieve the route patterns R from DBroadnerwork-

Step 2: Find the cell route patterns. Divide Pz £ into fragments
by cells. In order to find the matched route pattern Ppr, the
buffer spatial operation or the KNN trajectory queries may be
used which have already been described in section 5.1.

Step 3: Estimate the cell stay time. After retrieving S and R, the
stay time in cells can be calculated by rules mentioned in
section 5.2. Then the travel time estimation of P can be obtain
as the sum of stay time in cells.

6. EXPERIMENTS

In this section, we evaluate the effectiveness of the framework
proposed in this paper.

6.1 Experimental Data

Taxi trajectories. We test our algorithm using T-Drive data set
(Yuan et al., 2010), which are trajectories of GPS-equipped
taxis in Beijing provided by Microsoft Research (Yuan et al,
2011). This data set contains the GPS trajectories of 10,357
taxis during the period of Feb.2 to Feb.8, 2008 within Beijing.
The total number of GPS points reaches about 15 million and
the total distance is about to 9 million kilometers. We select 610
taxis as our experiment data to ensure that the selected taxis
have relative stable sampled trajectories, thus the trajectories
can be matched on to the road networks. During the
preprocessing stage, the GPS points in the trajectories are
marked with binary status labels: driving or stopping, and the
route ID which denotes a new route after a long time stop state.
The travel time during working days and weekends are very
different, it is largely influenced by resident trip rules. We only
have trajectories in one week period, so we can only use the
trajectories from Monday to Thursday as historical data and use
the ones on Friday as the current data, to verify our method.
Road networks. The road networks of Beijing are extracted
from the OpenStreetMap (OSM) (OpenStreetMap, 2015), which
are used for map matching. The road class information(e.g.
motorway, primary, secondary and tertiary road), the road
priority(different road class has different priority, which can be
used as one guidance for the selection in map-matching) and the
max speed limit in OSM data are also extracted for map-
matching and travel time estimation.

6.2 Evaluation Metrics

Mean Absolute Error (MAE) and Mean Relative Error (MRE)
are used to evaluate estimation accuracy over queries (Yuan,
2010):

z< ti _fi
MAE == 9)
n
z< ti _fi
MRE = =—— (10)
't

where ¢ and fl are the estimated travel time and the actual

travel time of the i-th path.
6.3 Travel Time Estimation Result

We estimate the travel time with cell stay time in current time
and history. The cell stay time can be used to judge the level of

the road traffic congestion and the traffic flow state in local area.

We use the statistics of cell stay time form Monday to Thursday
to compute the traffic performance index (TPI), which
comprehensively reflects the conceptual value of the smooth or
congested road network. TPI means “smooth” between 0 and 2
(can run according to the speed limit of the road), “basic
smooth” between 2 and 4 (takes 0.2 to 0.5 times more than
smooth), between 4 and 6 as “mild congestion” (takes 0.5 to 0.8
times more than smooth), “moderate congestion” between 6 and
8 (takes 0.8 to 1.1 times more than smooth), and “serious
congestion” between 8 and 10 (takes more than 1.1 times).
Figure 11 and Figure 12 shows TPI within Beijing's Fifth Ring
Road at 10 a.m. and 16 p.m., respectively.
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Figure 11. TPI at 10 a.m. from Monday to Thursday
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Figure 12. TPI at 16 p.m. from Monday to Thursday

To express the traffic state in the local area, we compute the
average speed in fourteenth level cells, as shown in Figure 13
and Figure 14. The average speed of most areas within Beijing's
Fifth Ring Road is about 40-60 km/h at 10 a.m. and 20-40 km/h
at 16 p.m. from Monday to Thursday. It is basically consistent
with the actual traffic situation in that week.
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Figure 13. Average speed in 14" level at 10 a.m. from Monday
to Thursday
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Figure 14. Average speed in 14" level at 16 p.m. from Monday
to Thursday

In order to verify the accuracy of estimating the travel time of
road segments based on cells, we randomly query the travel
time within 610 taxis from 9 a.m. to 17 p.m. on Friday. We
compare the overall travel time estimation results with their
original values as a ground truth to calculate MAE and MRE.
For example the travel time estimation of the taxi (ID 1277)
from 9 a.m. to 14 p.m. is shown in Figure 15. The deviation is
within the range 1.45 min~17.38 min. During rush hours, such
as 9 am. and 13 p.m., there is a large deviation in rush hours.
The deviation is larger than 15 minutes. In the non-traffic peak
periods, the deviation of traffic time is less than 2 minutes.
Similarly, the travel time estimation of the taxi (ID 8662) also
has large deviation in rush hours (11 a.m. to 13 p.m. at noon and
17 p.m. in the afternoon), shown in Figure 16. The main reason
for the larger deviation is that the variance of traffic jam time is
larger in rush hours than at other times. The variance of traffic
congestion leads to the uncertainty of travel time in the cells.
And the sparsity of trajectory can also cause larger estimated
deviations.

——True
B =@ Estimation

Travel Time Cmin)

9 AN 10 AN 11 AN 12 P.M. 13PN 14 PN
Time

Figure 15. Travel time estimation of taxi ID 1277 on Friday
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Figure 16. Travel time estimation of taxi ID 8662 on Friday

We chose 5, 10, 15, 20 and 25 paths at different time slots on
Friday respectively, and analyze the deviation between the
estimated time and the real value. As shown in Figure 17 and
Figure 18, the MAE is in the range of 8.54min~10.43min and
MRE is around 0.2. When the number of path increases, the
MAE drops from 10.43 minutes to 8.54 minutes, the change
MAE is not obvious, which means that our method has good
overall accuracy, especially for large scale estimations, and the
MRE floats up and down around 20%, while the estimation
accuracy is relatively stable, although having more taxis
increases the variability in the historical travel time of a path.
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Figure 17. MAE with a varying quantity of paths
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Figure 18. MRE with a varying quantity of paths

We also test the estimation accuracy of our model at different
time slots on Friday. Figure 19 shows a larger volatility on
travel time estimation in rush hours (9 a.m. in the morning, 13
p.m. at noon and 17 p.m. in the afternoon) and at other time
slots(15 p.m, which is the time the students from school).
Because in rush hours, greater uncertainty is introduced by the
traffic congestion, which further leads to a large variance in cell
stay time statistics, and finally produces a large deviation in the
estimation of the travel time. For example at 13 p.m., the MAE
has reached 15.41 minutes and the MRE is about 0.47 at 17
p.m.. But on the average, the MAE is only 8.50 minutes and the
MRE is 0.23, which also means that the estimation model
proposed in this paper is effective.
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Figure 19. MAE and MRE at different time on Friday
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7. CONCLUSION

The real-time GPS trajectories of taxis are very import for
intelligent traffic management in modern cities. A practical
solution for trajectory-based travel time estimation needs to be
suitable for sparse trajectories. In this paper, we propose a
framework to estimate the travel time of a path in current time
slot based on cells by using spatio-temporal index. We define a
cell-based estimation model to describe the travel time in cells,
and give out the implementation of the framework. In the
preprocessing stage, the outliers and stay points detection,
filtering and map-matching have been used to process the
trajectories and generate two data sources based on Cassandra:
reconstructed road network data (cell-based route patterns) and
map-matched trajectories. Based on Google S2 index, we
proposed a spatio-temporal index strategy for range queries and
KNN queries, which are used in the travel time estimation stage.
The estimation algorithm utilize the cell stay time in current slot
and history observations, the route patterns in cells and road
network properties to predict the travel time. We experiment on
T-Drive data set and demonstrate the good accuracy and the
robustness for both historical trajectories and real-time
trajectories. As shown in the experiments, the framework
presented in this paper is a practical solution for travel time
estimation based on sparse trajectories.

In the future, we plan to analyze the spatial and temporal
distribution characteristics of trajectories based on the index,
and study the impact of other factors, such as points of interest
(POI), divisions of urban functional regions and weather
conditions with the estimated travel time.
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