
NMSTREAM: A SCALABLE EVENT-DRIVEN ETL FRAMEWORK FOR PROCESSING

HETEROGENEOUS STREAMING DATA

Fei Xiao 1, Chengming Li 1*, Zheng Wu 1, Yinghao Wu 1

1 Chinese Academy of Surveying & Mapping, Beijing, China - xiaof22a@gmail.com, cmli@casm.ac.cn,
wuzheng_gucas@163.com, wuyinghaohh@163.com

Commission IV, WG IV/6

KEY WORDS: Streaming data, Extract-Transform-Load, Apache Flume, Apache Cassandra

ABSTRACT:

ETL (Extraction-Transform-Load) tools, traditionally developed to operate offline on historical data for feeding Data-warehouses

need to be enhanced to deal with continuously increased streaming data and be executed at network level during data streams

acquisition. In this paper, a scalable and web-based ETL system called NMStream was presented. NMStream is based on

event-driven architecture and designed for integrating distributed and heterogeneous streaming data by integrating the Apache Flume

and Cassandra DB system, and the ETL processes were conducted through the Flume agent object. NMStream can be used for

feeding traditional/real-time data-warehouses or data analytic tools in a stable and effective manner.

* Corresponding author

1. INTRODUCTION

The advancements of sensing technologies have dramatically

improved the accuracy and spatiotemporal scope of the record.

To better understand, protect and improve our living

environment, a variety of sensors have been developed and

deployed in many geoscience projects including disaster

monitoring and assessment, climate change, ecosystem

dynamics, and atmospheric pollution monitoring, which

produce massive volumes of geospatial data, or big geoscience

data (Li et al., 2015). The Sensor Web refers to the realization

and development of a continuous, distributed, and cooperative

data service system that aims at integrating and coordinating the

multiple heterogeneous monitoring platforms to achieve

complex tasks (Chen et al., 2013). The advancements of sensing

technologies dramatically increase people’s capabilities in

acquiring geospatial data for building the Spatial Data

Infrastructure (SDI) (Masser et al., 2005) and smart city (DE)

(Craglia et al. 2012). Based on Yang et al. (2011), massive

amounts of multi-dimensional data recording various physical

phenomena are taken by the sensors across the globe, and these

sensing data are collected rapidly with a daily increase rate of

terabytes to petabytes. This increase is dramatically enhanced

by novel crowd sourcing in situ ground-based sensor networks

as well as the deployment of satellite systems which generates

data with very high resolution (Zhao et al., 2012).

Several challenges should be faced for handling sensors and

their data especially in emergency situations. First, sensors

(both physical and social) are located in different networks and

made available by different institutes and agencies. In this

context, network configuration, sensor detection and discovery

are difficult issues to be solved. Moreover, data produced by

sensors are heterogeneous in structures (different types), in

spatial and/or temporal granularities, in thematic. Therefore,

there is the need of ETL jobs that can be applied on data

streams for their reconciliation. There operations should be

applied during data acquisition and bound with reactive

capabilities in order to properly identify the relevant streams

when abnormal events occur and undertake the proper actions.

Finally, the specification and actuation of the ETL operations

should be efficiently performed on-line and on fresh and timely

data in order to properly handling big real-time data streams.

All these technical requirements should be addressed in

graphical, user-friendly environments supporting the user in the

design and execution of the operations.

This paper is organized as follows: Section 1 introduces the

background and objectives of this study. Section 2 describes

some related work for data streaming ETL operations. The

architecture and components of NMStream are documented in

section 3. Section 4 introduces the data model and section 5

gives some demonstrations. The final conclusion ate given in

section 6.

2. RELATED WORK

Many systems have been proposed for configuring

programmable networks. Ahmed rt al. (2004) proposed a

multidimensional structures or hypercubes to store and

organized the streaming data with the goal of optimizing query

response time. Tatbul (2008) developed a distributed stream

processing engine that extends the first generation of data

stream processing systems with advanced capabilities such as

distributed operation, scalability and dynamic data and query

modifications. However, all of these researches only focused on

the data collection or query efficacy, but the ETL processes

before feeding the data into databases. Qu et al (2017) proposed

Hbelt system which tightly integrates the wide-column NoSQL

database with a clustered & pipelined ETL engine. Mesiti et al

(2016) developed a web-based ETL system called

StreamLoader to integrate heterogeneous sensor data.

Furthermore, a lot of open-source projects for streaming data

collection and processing has been released in recent years,

such as Yahoo S4 (Chauhan et al., 2012), Apache Spark

Streaming and Apache Storm (Lqbal et al., 2015). However, all

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-243-2018 | © Authors 2018. CC BY 4.0 License.

243

of them are quite complex to configure, seldom provide web

GUIs for designing and monitoring dataflows and are not

integrated in a single tool, which limits their use in the

management of emergency situations.

In this paper, we proposed NMStream, a highly scalable web-

based ETL framework for heterogeneous streaming data

collection and ETL operations during data stream acquisition

stage on a programmable network. NMStream leverages

different open-source software such as Quartz Scheduler for

scheduling observation collection job, Apache Flume for

transforming observing event, and Apache Cassandra for data

storage and query. NMStream enables users to add new

streaming data sources dynamically in the runtime environment

without the need to stop or redeploy the whole system.

Furthermore, NMStream provides a user-friend graphic

interface for user to facilitate creating and editing ETL

workflow in a drag-and-drop manner. In the remainder, we first

briefly introduced the Apache Flume and Cassandra systems,

and then we introduced the overall architecture of NMStream as

well as its core components. At last, we illustrated the visual

user interfaces as a demonstration and gave the conclusion and

future work.

3. SYSTEM INTRODUCTION

NMStream leverages different open-source software such as

Quartz Scheduler for scheduling observation collection job,

Apache Flume for transforming observing event, and Apache

Cassandra for data storage and query. The detailed introduction

of these components were introduced below.

3.1 Apache Flume

Apache Flume was originally developed as a distributed and

reliable service for productively gathering, aggregating, and

moving various types of streaming data into the Hadoop

Distributed File System (HDFS). It has a straightforward and

adaptable engineering in light of streaming data streams; and is

robust and fault tolerant with tunable dependability instruments

for failover and recuperation. A Flume workflow can be

constructed by linking one or more Agents, which is composed

of Source, Sink, Channel and Interceptor. Figure 1 illustrates

the structure of a Flume workflow consists of two agents. The

messages flowing in Agent are called Event. Each Agent has

one Source for receiving events and at least one Sink for

processing events. Flume utilizes Channel based transactions to

ensure reliable events delivery and Inceptors for filtering events.

Figure 1. Structure of Flume workflow

3.2 Apache Cassandra

Cassandra is a fully distributed and highly scalable P2P-based

NoSQL database developed within Facebook and open-sourced

as Apache Incubator project on 2009. Cassandra DB is built on

Amazon’s Dynamo and Google BigTable. Cassandra clusters

can run on different commodity servers and even across

multiple data centers. This properties gives it a linear horizontal

scalability. In Cassandra, the nodes of the cluster are seen as

parts of a ring where each node contains some chunks of data.

The rows of data are partitioned based on their primary key.

Cassandra uses a special primary key called a composite key to

represent wide rows, also called partitions. The composite key

is used to determine the nodes on which rows are stored and can

itself consist of multiple columns. The clustering columns are

used to control how data is sorted for storage within a partition.

3.3 NMStream architecture

Figure 2 shows the overall architecture of the NMStream system,

which can be divided into three core components: Job Executor,

Job Scheduler and Flume Server.

Figure 2.NMStream architecture

 Stream Job Handler and Job Executor

The Job Executor is an independent server for collecting data

from sensor web environment. The processing unit of Executor

is call Job Handler, and job handler corresponds to one type of

streaming data source. During data collection lifestyle, the job

handler first transforms the observing data into Flume event

object, which was then delivered to a registered Flume Agent

for processing. Furthermore, the job handler was embedded an

Avro client, which is responsible for sending the event object to

remote Avro sources through the networks. The Job Executor

provides the container for job handlers to execute and monitor

the executing status of them.

 Job Scheduler

The responsibility of Job Scheduler is to control the execution

of job handler. The Quartz scheduler toolkit, which is a job

scheduling library that can be integrated into a wide variety of

Java applications, was applied to schedule the execution of

handlers. There were two components in the Job Scheduler: a

scheduler and a graphical control panel. The scheduler is used

to manage the execution of job handler based on the execution

parameters configured by users. In order to start a new data

collection job, the administrator need to set the name of job

handler class, the required parameters and a Cron-Expression

which is string that is actually consists of seven sub-expressions,

that describe individual details of the schedule such as ‘every 5

minutes between 9:00 am and 10:00 am on every Monday’. The

graphical control panel provides a user-friend operation UI for

users to configure and manage the job handlers as well as

monitor the real-time execution status.

 Flume Agent and Flume Server

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-243-2018 | © Authors 2018. CC BY 4.0 License.

244

The Flume agent is responsible for managing the ETL processes.

Figure 3 illustrates the overall structure of a Flume agent used

by NMStream. As shown in Figure 3, the Job Handler delivers

the event object to Agent source (AvroSource) through an

embedded RpcClient. As introduced in section 3.1, the Flume

agent consists of four components: Source, Sink, Channel and

Interceptors. Each agent can be bind with one or more

interceptors which are used to transform or filter event, and

these interceptors can be connected to form a data flow. Upon

receipt of the event objects, the Avro Source first feeds them

into channel and then these events will be filtered and

transformed by the interceptor(s) and finally reach to the

SDESink. The interceptors can chained together to form an data

flow chain. The SDESink, which is used to write data into

database through SDE (Spatial Data Engine).

Figure 3.The structure of NMStream Agent

What should be emphasized here is that all of the Agent

components can be added, removed and configured dynamically

without the need to stop or restart the NMStream system. This

feature is very useful especially for an unstable and dynamic

sensor web environment. For example, if the observation

parameters of a sensor was changed, the administrator only need

to adjust the corresponding ETL Agent in runtime without to

affect the other ETL components.

The whole system was highly distributed. All of these three

components can be deployed on different machines and interact

with each through message-based systems based on TCP/IP

protocol. This mechanism has two advantages. First, it is fault-

tolerant because the communication between the components is

asynchronized and each node’s failure won’t affect the others.

Second, it is dynamically scalable. The system user can add,

change or remove every service components based on their

requirement without the need to stop the whole system.

4. NMSTREAM STREAMING DATA MODEL

Figure 4 illustrates the logic data model of NMStream for

organizing and representing sensor web data. The streaming

data sources are represented by Catalog object in NMStream.

Each catalog owns a list of station objects, which represents a

sensor equipment. The stations are uniquely identified by the

‘stationid’ attribute. The observation was represented by the

Event object, which is a time-series data updated with custom

time interval.

Figure 4: NMStream architecture

Figure 5 illustrates the physical data model for storing

streaming data in Cassandra database. As shown in Figure 5,

there are two basic tables (catalog and station) and a series of

event tables: the ‘catalog’ table contains records which

represent one type of observing data, i.e. air quality, water

quality, weather, while the ‘station’ table stores the detailed

information of a sensor. As introduced in Figure 4, the catalog

and station has a one-to-many relationship. The ‘event’ table in

Figure is an abstract table which can be defined by user based

on the catalog, each catalog item corresponds to one event table,

and the items information of catalog table has the detailed

information of event data columns.

Figure 5: The physical data model for storing streaming data in

Cassandra database. K means partition key, C↑ mean

clustering column sorted in the ASC mode, IDX means

secondary index.

The query process of streaming data can be divided into three

sub procedures, which were marked in Figure 5 as Q1-3. First,

user should build the query Q1 to get the catalog information of

required streaming data source. One Q1 example for querying

the ‘airquality’ data source is shown below:

SELECT * FROM catalog WHERE name=’airquality’ allow

filtering;

Once the user get the detailed information of a catalog, then Q2

query can be built to retrieve all stations belong to this catalog

through the ‘catalog_id’ column. If the user want to get stations

in a defined boundary, the ‘geohash’ value should be set:

 SELECT * FROM station where catalog_id=’…’ and

geohash> and geohash< allow filtering.

At last, user can build Q3 query using the ‘station_id’ and

‘date’ parameters to get required observing data. The example

illustrates how to get observation of station ‘001’ during the

period of 2018-04-28 08:00:00 and 2018-04-28 12:00:00:

SELECT * FROM even WHERE station_id=’001’ and

epoch=’20180405’ and time>=’2018-04-28 08:00:00’ and

time <=’ 2018-04-28 12:00:00’;

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-243-2018 | © Authors 2018. CC BY 4.0 License.

245

5. SYSTEM DEMONSTRATION

By using a visual interface in Figure 6, users can drag-and-drop

data sources and apply the proposed operations on streams, i.e.

adding new job handler base on requirement in the Job

Management panel and checking the job’s current status. As

shown in figure 6(a), there are two job handlers with status

running. Figure 6(b) illustrates the Agent editor panel, where

system administrator can edit the ETL procedure on the fly in a

drag-and drop manner. The ETL procedure in figure contains

one Avro Source for data receipt, one Sink for writing data into

database, and three chained interceptors for transforming and

filtering event.

(a)

(b)

Figure 6: User interface of NMSream

The demonstration will thus prove the flexibility of the

developed system in the specification of data flow to be

executed at network level and actuated on the fly. All the ETL

operations that have been considered can be applied on-line on

fresh data arriving from sensors of different types. Different

interceptors have been included in the dataflow in order to

perform the ETL workflow.

6. CONCLUSION

In this paper, a scalable event-driven ETL system called

NMStream was presented for integrating distributed and

heterogeneous streaming data sources by leveraging the Apache

Flume and Cassandra DB technologies. The NMStream consists

of three main components: Job Scheduler, Job Executor and

Flume Server. The Job Scheduler is developed based on Quartz

scheduling toolkit and the Flume agent model was applied in

this study for ETL operations. Furthermore, a scalable

streaming data model was designed for effective management of

distributed streaming data in NoSQL databases. Finally, a user-

friend visual interactive environment was designed to facilitate

the interaction between system and administrator. NMStream

can be used for feeding traditional/real-time data-warehouses or

data analytic tools in a stable and effective manner.

ACKNOWLEDGEMENTS

This study was funded by the Basic Research Funding of

Chinese Academy of Surveying and Mapping (7771804).

REFERENCES

Dubayah, R.O., Swatantran, A., Huang, W., Duncanson, L.,

Tang, H.,Johnson, K.,Dunne, J.O., and Hurtt, G.C., 2017. CMS:

LiDAR-derived Biomass, Canopy Height and Cover, Sonoma

County, California, 2013. ORNL DAAC, Oak Ridge, Tennessee,

USA https://doi.org/10.3334/ORNLDAAC/1523.

Gago-Silva, A., 2016. GRASS GIS in Grid Environment.

Figshare https://doi.org/10.6084/m9.figshare.3188950.

GRASS Development Team, 2017. Geographic Resources

Analysis Support System (GRASS) Software, Open Source

Geospatial Foundation http://grass.osgeo.org (20 September

2017).

GRASS Development Team, 2015. Geographic Resources

Analysis Support System (GRASS) Software, Version 6.4. Open

Source Geospatial Foundation http://grass.osgeo.org (1 June

2017).

Lennert, M. and GRASS Development Team, 2017. Addon

i.segment.stats. Geographic Resources Analysis Support System

(GRASS) Software, Version 7.2, Open Source Geospatial

Foundation https://grass.osgeo.org/grass7/manuals/addons/i.seg

ment.stats.html (1 June 2017).

Maas, A., Rottensteiner, F., Heipke, C., 2017. Classification

under label noise using outdated maps. In: ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, Vol. IV-1/W1, pp. 215-222,

doi.org/10.5194/isprs-annals-IV-1-W1-215-2017.

Smith, J., 1987a. Close range photogrammetry for analyzing

distressed trees. Photogrammetria, 42(1), pp. 47-56.

Smith, J., 1987b. Economic printing of color orthophotos.

Report KRL-01234, Kennedy Research Laboratories, Arlington,

VA, USA.

Smith, J., 1989. Space Data from Earth Sciences. Elsevier,

Amsterdam, pp. 321-332.

Smith, J., 2000. Remote sensing to predict volcano outbursts. In:

The International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, Vol. XXVII-B1, pp.

456-469.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-243-2018 | © Authors 2018. CC BY 4.0 License.

246

