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ABSTRACT: 

ETL (Extraction-Transform-Load) tools, traditionally developed to operate offline on historical data for feeding Data-warehouses 

need to be enhanced to deal with continuously increased streaming data and be executed at network level during data streams 

acquisition. In this paper, a scalable and web-based ETL system called NMStream was presented. NMStream is based on 

event-driven architecture and designed for integrating distributed and heterogeneous streaming data by integrating the Apache Flume 

and Cassandra DB system, and the ETL processes were conducted through the Flume agent object. NMStream can be used for 

feeding traditional/real-time data-warehouses or data analytic tools in a stable and effective manner.  

* Corresponding author

1. INTRODUCTION

The advancements of sensing technologies have dramatically 

improved the accuracy and spatiotemporal scope of the record. 

To better understand, protect and improve our living 

environment, a variety of sensors have been developed and 

deployed in many geoscience projects including disaster 

monitoring and assessment, climate change, ecosystem 

dynamics, and atmospheric pollution monitoring, which 

produce massive volumes of geospatial data, or big geoscience 

data (Li et al., 2015). The Sensor Web refers to the realization 

and development of a continuous, distributed, and cooperative 

data service system that aims at integrating and coordinating the 

multiple heterogeneous monitoring platforms to achieve 

complex tasks (Chen et al., 2013). The advancements of sensing 

technologies dramatically increase people’s capabilities in 

acquiring geospatial data for building the Spatial Data 

Infrastructure (SDI) (Masser et al., 2005) and smart city (DE) 

(Craglia et al. 2012). Based on Yang et al. (2011), massive 

amounts of multi-dimensional data recording various physical 

phenomena are taken by the sensors across the globe, and these 

sensing data are collected rapidly with a daily increase rate of 

terabytes to petabytes. This increase is dramatically enhanced 

by novel crowd sourcing in situ ground-based sensor networks 

as well as the deployment of satellite systems which generates 

data with very high resolution (Zhao et al., 2012). 

Several challenges should be faced for handling sensors and 

their data especially in emergency situations. First, sensors 

(both physical and social) are located in different networks and 

made available by different institutes and agencies. In this 

context, network configuration, sensor detection and discovery 

are difficult issues to be solved. Moreover, data produced by 

sensors are heterogeneous in structures (different types), in 

spatial and/or temporal granularities, in thematic. Therefore, 

there is the need of ETL jobs that can be applied on data 

streams for their reconciliation. There operations should be 

applied during data acquisition and bound with reactive 

capabilities in order to properly identify the relevant streams 

when abnormal events occur and undertake the proper actions. 

Finally, the specification and actuation of the ETL operations 

should be efficiently performed on-line and on fresh and timely 

data in order to properly handling big real-time data streams. 

All these technical requirements should be addressed in 

graphical, user-friendly environments supporting the user in the 

design and execution of the operations. 

This paper is organized as follows: Section 1 introduces the 

background and objectives of this study. Section 2 describes 

some related work for data streaming ETL operations. The 

architecture and components of NMStream are documented in 

section 3. Section 4 introduces the data model and section 5 

gives some demonstrations. The final conclusion ate given in 

section 6. 

2. RELATED WORK

Many systems have been proposed for configuring 

programmable networks. Ahmed rt al. (2004) proposed a 

multidimensional structures or hypercubes to store and 

organized the streaming data with the goal of optimizing query 

response time. Tatbul (2008) developed a distributed stream 

processing engine that extends the first generation of data 

stream processing systems with advanced capabilities such as 

distributed operation, scalability and dynamic data and query 

modifications. However, all of these researches only focused on 

the data collection or query efficacy, but the ETL processes 

before feeding the data into databases. Qu et al (2017) proposed 

Hbelt system which tightly integrates the wide-column NoSQL 

database with a clustered & pipelined ETL engine. Mesiti et al 

(2016) developed a web-based ETL system called 

StreamLoader to integrate heterogeneous sensor data. 

Furthermore, a lot of open-source projects for streaming data 

collection and processing has been released in recent years, 

such as Yahoo S4 (Chauhan et al., 2012), Apache Spark 

Streaming and Apache Storm (Lqbal et al., 2015). However, all 
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of them are quite complex to configure, seldom provide web 

GUIs for designing and monitoring dataflows and are not 

integrated in a single tool, which limits their use in the 

management of emergency situations.  

 

In this paper, we proposed NMStream, a highly scalable web-

based ETL framework for heterogeneous streaming data 

collection and ETL operations during data stream acquisition 

stage on a programmable network. NMStream leverages 

different open-source software such as Quartz Scheduler for 

scheduling observation collection job, Apache Flume for 

transforming observing event, and Apache Cassandra for data 

storage and query. NMStream enables users to add new 

streaming data sources dynamically in the runtime environment 

without the need to stop or redeploy the whole system. 

Furthermore, NMStream provides a user-friend graphic 

interface for user to facilitate creating and editing ETL 

workflow in a drag-and-drop manner. In the remainder, we first 

briefly introduced the Apache Flume and Cassandra systems, 

and then we introduced the overall architecture of NMStream as 

well as its core components. At last, we illustrated the visual 

user interfaces as a demonstration and gave the conclusion and 

future work.  

 

3. SYSTEM INTRODUCTION 

NMStream leverages different open-source software such as 

Quartz Scheduler for scheduling observation collection job, 

Apache Flume for transforming observing event, and Apache 

Cassandra for data storage and query. The detailed introduction 

of these components were introduced below. 

 

3.1 Apache Flume 

Apache Flume was originally developed as a distributed and 

reliable service for productively gathering, aggregating, and 

moving various types of streaming data into the Hadoop 

Distributed File System (HDFS). It has a straightforward and 

adaptable engineering in light of streaming data streams; and is 

robust and fault tolerant with tunable dependability instruments 

for failover and recuperation. A Flume workflow can be 

constructed by linking one or more Agents, which is composed 

of Source, Sink, Channel and Interceptor. Figure 1 illustrates 

the structure of a Flume workflow consists of two agents. The 

messages flowing in Agent are called Event. Each Agent has 

one Source for receiving events and at least one Sink for 

processing events. Flume utilizes Channel based transactions to 

ensure reliable events delivery and Inceptors for filtering events. 

 

 
Figure 1. Structure of Flume workflow 

 

3.2 Apache Cassandra 

Cassandra is a fully distributed and highly scalable P2P-based 

NoSQL database developed within Facebook and open-sourced 

as Apache Incubator project on 2009. Cassandra DB is built on 

Amazon’s Dynamo and Google BigTable. Cassandra clusters 

can run on different commodity servers and even across 

multiple data centers. This properties gives it a linear horizontal 

scalability. In Cassandra, the nodes of the cluster are seen as 

parts of a ring where each node contains some chunks of data. 

The rows of data are partitioned based on their primary key. 

Cassandra uses a special primary key called a composite key to 

represent wide rows, also called partitions. The composite key 

is used to determine the nodes on which rows are stored and can 

itself consist of multiple columns. The clustering columns are 

used to control how data is sorted for storage within a partition. 

 

3.3 NMStream architecture 

Figure 2 shows the overall architecture of the NMStream system, 

which can be divided into three core components: Job Executor, 

Job Scheduler and Flume Server. 

 

 
Figure 2.NMStream architecture 

 

 Stream Job Handler and Job Executor 

The Job Executor is an independent server for collecting data 

from sensor web environment. The processing unit of Executor 

is call Job Handler, and job handler corresponds to one type of 

streaming data source. During data collection lifestyle, the job 

handler first transforms the observing data into Flume event 

object, which was then delivered to a registered Flume Agent 

for processing. Furthermore, the job handler was embedded an 

Avro client, which is responsible for sending the event object to 

remote Avro sources through the networks. The Job Executor 

provides the container for job handlers to execute and monitor 

the executing status of them.  

 

 Job Scheduler 

The responsibility of Job Scheduler is to control the execution 

of job handler. The Quartz scheduler toolkit, which is a job 

scheduling library that can be integrated into a wide variety of 

Java applications, was applied to schedule the execution of 

handlers. There were two components in the Job Scheduler: a 

scheduler and a graphical control panel. The scheduler is used 

to manage the execution of job handler based on the execution 

parameters configured by users. In order to start a new data 

collection job, the administrator need to set the name of job 

handler class, the required parameters and a Cron-Expression 

which is string that is actually consists of seven sub-expressions, 

that describe individual details of the schedule such as ‘every 5 

minutes between 9:00 am and 10:00 am on every Monday’. The 

graphical control panel provides a user-friend operation UI for 

users to configure and manage the job handlers as well as 

monitor the real-time execution status. 

 

 Flume Agent and Flume Server 
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The Flume agent is responsible for managing the ETL processes. 

Figure 3 illustrates the overall structure of a Flume agent used 

by NMStream. As shown in Figure 3, the Job Handler delivers 

the event object to Agent source (AvroSource) through an 

embedded RpcClient. As introduced in section 3.1, the Flume 

agent consists of four components: Source, Sink, Channel and 

Interceptors. Each agent can be bind with one or more 

interceptors which are used to transform or filter event, and 

these interceptors can be connected to form a data flow. Upon 

receipt of the event objects, the Avro Source first feeds them 

into channel and then these events will be filtered and 

transformed by the interceptor(s) and finally reach to the 

SDESink. The interceptors can chained together to form an data 

flow chain. The SDESink, which is used to write data into 

database through SDE (Spatial Data Engine). 

 

 
Figure 3.The structure of NMStream Agent 

 

What should be emphasized here is that all of the Agent 

components can be added, removed and configured dynamically 

without the need to stop or restart the NMStream system. This 

feature is very useful especially for an unstable and dynamic 

sensor web environment. For example, if the observation 

parameters of a sensor was changed, the administrator only need 

to adjust the corresponding ETL Agent in runtime without to 

affect the other ETL components. 

 

The whole system was highly distributed. All of these three 

components can be deployed on different machines and interact 

with each through message-based systems based on TCP/IP 

protocol. This mechanism has two advantages. First, it is fault-

tolerant because the communication between the components is 

asynchronized and each node’s failure won’t affect the others. 

Second, it is dynamically scalable. The system user can add, 

change or remove every service components based on their 

requirement without the need to stop the whole system. 

 

4. NMSTREAM STREAMING DATA MODEL 

Figure 4 illustrates the logic data model of NMStream for 

organizing and representing sensor web data. The streaming 

data sources are represented by Catalog object in NMStream. 

Each catalog owns a list of station objects, which represents a 

sensor equipment. The stations are uniquely identified by the 

‘stationid’ attribute. The observation was represented by the 

Event object, which is a time-series data updated with custom 

time interval. 

 
Figure 4: NMStream architecture 

 

Figure 5 illustrates the physical data model for storing 

streaming data in Cassandra database. As shown in Figure 5, 

there are two basic tables (catalog and station) and a series of 

event tables: the ‘catalog’ table contains records which 

represent one type of observing data, i.e. air quality, water 

quality, weather, while the ‘station’ table stores the detailed 

information of a sensor. As introduced in Figure 4, the catalog 

and station has a one-to-many relationship. The ‘event’ table in 

Figure is an abstract table which can be defined by user based 

on the catalog, each catalog item corresponds to one event table, 

and the items information of catalog table has the detailed 

information of event data columns. 

 

 
Figure 5: The physical data model for storing streaming data in 

Cassandra database. K means partition key, C↑ mean 

clustering column sorted in the ASC mode, IDX means 

secondary index. 

 

The query process of streaming data can be divided into three 

sub procedures, which were marked in Figure 5 as Q1-3. First, 

user should build the query Q1 to get the catalog information of 

required streaming data source. One Q1 example for querying 

the ‘airquality’ data source is shown below: 

 

SELECT * FROM catalog WHERE name=’airquality’ allow 

filtering; 

 

Once the user get the detailed information of a catalog, then Q2 

query can be built to retrieve all stations belong to this catalog 

through the ‘catalog_id’ column. If the user want to get stations 

in a defined boundary, the ‘geohash’ value should be set:   

 

   SELECT * FROM station where catalog_id=’…’ and 

geohash> and geohash< allow filtering. 

 

At last, user can build Q3 query using the ‘station_id’ and 

‘date’ parameters to get required observing data. The example 

illustrates how to get observation of station ‘001’ during the 

period of 2018-04-28 08:00:00 and 2018-04-28 12:00:00: 

 

SELECT * FROM even WHERE station_id=’001’ and 

epoch=’20180405’ and time>=’2018-04-28 08:00:00’ and 

time <=’ 2018-04-28 12:00:00’; 
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5. SYSTEM DEMONSTRATION 

By using a visual interface in Figure 6, users can drag-and-drop 

data sources and apply the proposed operations on streams, i.e. 

adding new job handler base on requirement in the Job 

Management panel and checking the job’s current status. As 

shown in figure 6(a), there are two job handlers with status 

running. Figure 6(b) illustrates the Agent editor panel, where 

system administrator can edit the ETL procedure on the fly in a 

drag-and drop manner. The ETL procedure in figure contains 

one Avro Source for data receipt, one Sink for writing data into 

database, and three chained interceptors for transforming and 

filtering event. 

 

 
(a) 

 
(b) 

Figure 6: User interface of NMSream 

 

The demonstration will thus prove the flexibility of the 

developed system in the specification of data flow to be 

executed at network level and actuated on the fly. All the ETL 

operations that have been considered can be applied on-line on 

fresh data arriving from sensors of different types. Different 

interceptors have been included in the dataflow in order to 

perform the ETL workflow. 

 

6. CONCLUSION 

In this paper, a scalable event-driven ETL system called 

NMStream was presented for integrating distributed and 

heterogeneous streaming data sources by leveraging the Apache 

Flume and Cassandra DB technologies. The NMStream consists 

of three main components: Job Scheduler, Job Executor and 

Flume Server. The Job Scheduler is developed based on Quartz 

scheduling toolkit and the Flume agent model was applied in 

this study for ETL operations. Furthermore, a scalable 

streaming data model was designed for effective management of 

distributed streaming data in NoSQL databases. Finally, a user-

friend visual interactive environment was designed to facilitate 

the interaction between system and administrator. NMStream 

can be used for feeding traditional/real-time data-warehouses or 

data analytic tools in a stable and effective manner. 
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