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ABSTRACT:

Indoor models are highly relevant for indoor navigation. However, they are hard to achieve if high-resolution data is not available.
Many researchers used expensive 3D laser scanning techniques to derive indoor models. Few papers describe the derivation of indoor
models based on sparse data such as footprints. They assume that floorplans and rooms are rather rectangular and that information on
functional use is given. This paper addresses the automatic learning of a classifier which predicts the functional use of housing rooms.
The classification is based on features which are widely available such as room areas and orientation. These features are extracted from
an extensive database of annotated rooms. A Bayesian classifier is applied which delivers probabilities of competing class hypotheses.
In a second step, functional uses are used to predict the shape of the rooms in a further classification.

1 MOTIVATION AND CONTEXT

Beyond the visualization tasks, 3D city models are nowadays a
prerequisite for a wide range of other applications. Building mod-
els, in particular, are employed for the automatic estimation of en-
ergy demand, solar irradiation or the improvement of positioning
in urban environments. This significant progress is attributed to
the technological advances in wide-range mapping, for instance
using mobile platforms, and the automatic reconstruction and in-
terpretation of the acquired data. Biljecki et al. (2015) give an
overview on the applications of 3D city models.

Likewise, the last decade is characterised by an increasing de-
mand of 3D indoor models. The latter are mainly used for indoor
navigation, facility management and monitoring of indoor envi-
ronments (Zlatanova and Isikdag, 2015). The automatic deriva-
tion of indoor models is, however, still a challenging task. In
contrast to the exterior of buildings, researchers are facing many
difficulties, e.g. weak GPS signal and occlusions caused by furni-
tures, in order to enable an automatic acquisition of useful indoor
data. For this reason, few approaches tried to generate indoor
models with as few observations as possible in order to overcome
the mentioned data capturing problems (Loch-Dehbi et al., 2017;
Rosser et al., 2017; Dehbi et al., 2017).

The methods demonstrated by Dehbi et al. (2017) and Loch-Dehbi
et al. (2017) deliver statistically qualified floorplan hypotheses
based on few observations. These observations consist of infor-
mation such as room areas, functional use, window locations and,
possibly, room numbers for office rooms. The room numbers are
exploited for deriving knowledge about room adjacencies of of-
fice rooms. These observations together with background knowl-
edge consisting of probability density functions of shape and lo-
cation parameters of rooms are mostly sufficient for the predic-
tion and derivation of indoor footprint layouts.

As yet, the layout predictions assumed rectangular rooms and
relied on numbered rooms. Numbering, however, is missing in
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Figure 1. Functional use and orientation of housing rooms in
Germany – People prefer to spend dinner in a sunny living room.

housing rooms which increases the degree of complexity of the
performed stochastic and geometric reasoning. Furthermore, hous-
ing rooms are characterised by a high shape variety. In this pa-
per, we demonstrate that classification methods are appropriate to
derive the knowledge about functional use as well as shape cate-
gories of rooms. We hypothesize that the results of our classifica-
tion are highly relevant for the extension of the indoor reasoning
approaches based on sparse observations and, hence, improve the
prediction quality of the derived housing indoor models. This
represents a contribution to establish the missing link between
CityGML (Gröger and Plümer, 2012) and BIM models.

In this paper, we demonstrate that we are able to predict the func-
tional use and shape of rooms without the need of additional
measurements. The predictions are qualified with probabilities
enabling the assessment and comparison of alternative models.
The incorporation of statistical knowledge, inferred from learn-
ing examples, gives insight into layout preferences characterising
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the design of building rooms. For instance, the information about
sun side turns out to be a good feature for the identification of
the functional use of rooms. Figure 1 visualises the room orienta-
tion preferences of German people and architects with regard to
the functional use of each room. Especially living rooms in Ger-
many are directed in such a way that the sun from the south can
be exploited. This aspect, however, depends on the geographic
region taken into consideration. In this context, our data analy-
sis reveals other layout preferences in Morocco with regard to the
sun side. In this sense, the sun side feature is playing a significant
role not only for the functional use identification but also for the
positioning of a room within the housing footprint.

The approach of Loch-Dehbi et al. (2017) is able to deal with
non-rectangular footprints; it assumes, however, rooms to be rect-
angular. Since we used a probabilistic classifier, Naive-Bayes,
which outputs qualified class predictions, we performed a second
classification based on the predicted functional use. This step
consists in predicting the shape of rooms in order to extend the
layout derivation by dealing with non-rectangular rooms.

All in all, both classification results can be used to support pre-
dictions in reasoning approaches based on sparse observations.
Following the same paradigm, we designed features based on in-
formation which can be easily extracted from facility manage-
ment service data or observed from the outside of the considered
house. The combinatorial part for predicting housing rooms can
be augmented by probabilistic background knowledge, in partic-
ular if the underlying architectural constraints are weak. This is
for example the case for exterior walls with few windows.

The remainder of this paper is structured as follows. The next
section discusses related work. Section 3 gives insight into the
classification tasks that are the subject of this paper and their re-
sults. Especially section 3.1 deals with the prediction of func-
tional use based on weak observations, whereas 3.2 explains how
the shape category of rooms can be inferred based on the pre-
dicted functional use. Both subsections discuss the experimental
results. The paper is summarized and concluded in Section 4.

2 RELATED WORK AND CONTRIBUTION

Indoor models are nowadays gaining more and more attention.
They are of high relevance for various applications such as guide
for the blind, rescue management and evacuation planning. In the
context of BIM, they are used during the planning and construc-
tion stage and for facility management later on. Wenming et al.
(2018) proposed an approach for the layout design for building
interiors based on mixed integer quadratic programming. This
approach is however rather suitable for the generation of indoor
models for buildings in planning and does not address as-built
models. The derivation of as-built indoor models from surveying
is however a still challenging task. In this context, Turner and Za-
khor (2014) triangulated a 2D sampling of wall positions in order
to generate building floorplans from laser range data.

Peter (2017) presented a modelling method of indoor environ-
ments for the support of reconstruction tasks using Lindenmayer
systems. In the same context, formal grammars have been em-
ployed by Becker et al. (2015) for the reconstruction of 3D indoor
models from 3D point clouds. In another grammar-based ap-
proach, Yue et al. (2012) determined the interior layout of build-
ings based on a shape grammar which describes different build-
ing styles. Following the same spirit, shape grammars have been
used by Khoshelham and Dı́az-Vilariño (2014) for 3D indoor
modelling using an iterative placing, connecting and merging of

1

2

Figure 2. Two examples of openly accessible floorplans used as
training data in our experiments. Different geographic regions
(1:Morocco, 2: Germany/ Switzerland), different floorplans and
room shapes (e.g. L and I) are considered.

cuboid shapes. All these grammar-based approaches require a
pre-design of an according set of grammar rules.

For scene reconstruction, Ochmann et al. (2016) segmented a
point cloud into rooms and outside area using an energy mini-
mization in a labelling problem. Mura et al. (2014) presented
an approach for reconstructing the main architectural structure of
complex indoor environments given a set of cluttered 3D input
range scans. All mentioned approaches require dense observa-
tions such as 3D point clouds from laserscans or range cameras
using mobile mapping systems that are both cost and time expen-
sive.

Several approaches tried to avoid the measurement overhead, and
hence overcome the costly data capture by using low cost sensors.
To this aim, Rosser et al. (2015) constructed as-built plans of res-
idential building interiors. In this constraint-based approach, mo-
bile phone sensor data is used for the prediction of interior mod-
els. Mobile devices have been employed by Pintore et al. (2016)
to capture images for the generation of 2.5D indoor maps. Di-
akité and Zlatanova (2016) used the low cost Android tablet from
Google’s Tango project for the acquisition of indoor building en-
vironments.
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Figure 3. Housing areas which have been considered in our ex-
periments.

While most approaches require measurements of high density
such as 3D point clouds or images, Loch-Dehbi et al. (2017)
proposed an approach which gets along with few observations
in order to predict floorplans of high accuracy. They estimated
floorplan parameters and performed a model selection for prob-
abilistically qualified floorplan hypotheses. The sparse observa-
tions like the area of rooms and footprints are used together with
strong model assumptions supported by a profound background
knowledge leading in a two-staged, combinatorial and stochastic,
reasoning process. In the same context, based on limited prior
knowledge, Rosser et al. (2017) presented a semi automatic data-
driven estimation of 2D building interior floorplans. Following
the same spirit, we propose an approach which does not rely on
dense observations for supporting the prediction of indoor models
based on sparse observations. Our aim is to provide key informa-
tion such as the functional use and the shape of housing rooms
without the need of exhaustive measurements. We demonstrate
that classification techniques are suitable to acquire such infor-
mation for supporting, for instance, the combinatorial part in the
method of Loch-Dehbi et al. (2017).

3 PREDICTION OF FUNCTIONAL USE AND SHAPE
OF ROOMS

The reasoning approach described by Loch-Dehbi et al. (2017)
consisted of two components: a combinatorial component and a
stochastic component. The approach makes some architectural
assumptions and uses thresholds derived from probability den-
sity functions (pdfs) of each model parameter. We believe that an
extension of the former approach with different room types and
housing rooms without room numbers for the explicit addressing
of uncertainty may be beneficial. Our goal is to demonstrate that
classification methods are suitable to gain knowledge about func-
tional use as well as shape categories of rooms. In this context,
the information derived by the classifier is valuable and of great
interest.

In this paper, our aim is to learn prediction models for both func-
tional uses and shapes of rooms. The learning process is per-
formed in a supervised way. Thus, we prepared learning exam-
ples beforehand. In this context, we used about 1800 labelled
rooms annotated within a spatial relational database with several
room types. The database is designed in such a way that rele-
vant features are a-priori modelled in order to capture their values
stemming from an annotation process. In this context, we col-
lected openly accessible floorplans from different platforms. Fig-
ure 2 shows some examples of floorplans which have been used
to build labelled training data for our classification. Herewith, we
took floorplans from different geographic areas (1: Morocco and

2: Germany/ Switzerland) into consideration. The chosen floor-
plans are also characterised by different room shapes, e.g. I or L.
Likewise, the housing rooms themselves are characterised by a
shape and type variety. We selected scaled floorplans in order to
perform geometric measurements and extract geometric features
accordingly. The directional information with regard to the sun
side is mostly available (cf. Figure 2), otherwise we make use of
GoogleEarth 1 or OpenStreetMap (OSM) 2 in order to enrich
our rooms with the missing sun side information. Figure 4 il-
lustrates the schema of our spatial relational database. The eight
possible cardinal directions are encoded and stored in the table
direction. This table is in turn referencing the table window

capturing the directional information of a corresponding room in
the table room.

We took a particular care to ensure a representative set of learning
data. In this context, we annotated floorplans with different range
of areas. Figure 3 gives insight into the distribution of the areas of
the considered housing floorplans. It can be stated that flats with
areas between 70 and 100 m2 are common. Beside taking dif-
ferent geographic areas (Morocco, Germany/ Switzerland) into
account, the buildings and housing rooms in a specific area, espe-
cially those from Germany/ Switzerland, stemmed from different
construction eras and have different building styles and types.

This section presents two classification approaches in order to
predict the functional use of rooms and their shapes based on
weak observations. In this context, subsection 3.1 is dealing
with the classification of the functional uses, whereas subsection
3.2 gives insight into the classification approach of room shapes
based on the a-priori known functional use acquired from the pre-
vious classification task.

3.1 Classification of room functional uses

The functional use of rooms in buildings and housing rooms in
particular is playing a prominent role for the design and the layout
of the according floorplan. Lacking of such information makes it
difficult to decide about the arrangement of rooms within a floor-
plan. This section demonstrates that the prediction of the func-
tional use of rooms within a housing floorplan is possible without
the need of exhaustive measurements. A set of relevant features
for a particular functional use is designed, analysed and used to
train a classifier based on a-priori labelled examples. Figure 5
illustrates the considered functional uses of rooms. Especially,
sleeping rooms, living rooms, bath rooms and kitchens are con-
sidered. In particular, we are discriminating between ordinary
living rooms and those combined with a kitchen. This type will
be denoted as living-kitchen in this paper. The types of func-
tional use are categorised in the table functionallUse accord-
ing to the database schema (cf. Figure 4).

Man-made objects are for many reasons, such as economical or
aesthetic, often characterised by architectural regular patterns.
Hence, the identification of such regularities, and modelling them
via a sound feature set is a key step towards learning and predict-
ing a given class of interest. For example, the choice of the orien-
tation is a crucial step during the construction planning phase of
a building in order to exploit the sun in an optimal way. This
economises not only heating and electricity costs but also has
impact on the well-being in the housing rooms. A data analy-
sis based on the captured data is confirming these architectural
intentions in Germany as already shown in Figure 1. In this con-
text, sleeping rooms are mainly exposed to the east in order
to enjoy the morning sun. Since bath rooms are not relying on

1https://www.google./maps
2https://www.openstreetmap.org
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Figure 4. Excerpt from the spatial relational database schema. Features are extracted from this data base.
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Figure 5. A histogram of the different functional uses of rooms
taken into consideration in our experiments.

daylight, they are usually directed along the north. For kitchens,
there is no specific pattern to induce. Except for that we are ob-
serving a slight dominance of the west direction which is char-
acterised by an evening sun in all seasons. This statement is
changing, once the kitchen not only serves as cooking room but
also as living room simultaneously which characterises combined
living-kitchen rooms. In this case, the rooms are mostly di-
rected to the south side. Likewise, balconies and living rooms are
also exposed to the south sunlight. Obviously, the sun side factor
is depending on the considered geographic region. That is why
we analysed annotated data stemming from a different region,
namely from Morocco. This analysis revealed other preferences
of room placements with regard to the sun side as depicted in Fig-
ure 6. For sleeping rooms for example, there is a slightly domi-
nance of the south east direction compared to Germany where the
east direction is preferred.

The first step in our learning process consists in exploiting the
annotated floorplans and rooms. Hence, for each room type a
feature set is prepared and extracted from the underlying spa-
tial relational database. Following the spirit of Loch-Dehbi et al.
(2017), our aim is to infer and predict the functional use based on
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Figure 6. The distribution of functional uses with regard to sun
side in Morocco

as few and easily accessible sparse observations as possible. In
this sense, we are focusing on learning a prediction model based
on information which can be easily extracted from facility man-
agement service data or observed from the outside of the house
of interest. In this context, we designed a feature vector consist-
ing, among others, of information such as whether a room is a
corner room or not. As mentioned, the room direction informa-
tion seems to be a good feature which the functional use depends
on. This information is derived for each room having at least
one window from the table window (cf. Figure 4). Furthermore,
we investigated how important the proportional area of a given
room is with respect to the whole footprint area for the categori-
sation of the functional use. For training issue, this geometric
feature is derived from the table room. For a better discrimina-
tion, we discretize areas into ranges using a categorical feature
categorised area instead of real-valued areas.

In order to analyse the impact of the reduction of the feature vec-
tor dimension on the learning results, we performed a feature se-
lection. Table 1 shows an excerpt of the most important used
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features for the prediction of the class living-kitchen rooms.
The corresponding weight of each feature in Table 1 has been
automatically derived in the training phase using the Relieff al-
gorithm for feature weighting (Robnik-Šikonja and Kononenko,
2003). This weight reflects the importance of each feature with
regard to the given class. Relieff ranks individual features ac-
cording to their relevance in the context of others. In this sense,
features with low weights are neglected. Relieff estimates the
quality of neighboured features with regard to their contribution
to distinguish between instances of the same and different classes.
The feature relevance is measured by sampling instances of the
training data and comparing the value of the feature of interest
with the according value of the nearest example from the same
and a different class. We manually tested several values for the
amount of neighbours necessary to calculate the importance for
each feature, and report the results for kreliefF = 30. Built upon
the derived weights, we ordered and selected the top 90% features
with the highest weights. Please note that the weights in Table 1
represent ranked weights and are not probabilities which sum to
1. We normalized numerical features using a z-transformation to
zero mean and unit standard deviation to ensure an equal weight-
ing of each single feature.

top features for the class living-kitchen room weight

categorized area 1
proportional area 0.41
direction 0.23
is corner room 0.15
has balcony 0.1
number of windows 0.07
.... ...

Table 1. Excerpt of the most important features and their weights
for the classification of the functional use kitchen-living. The
weights are derived using the reliefF algorithm.

Generally, our task is to classify a vector of discrete-valued fea-
tures, x ∈ 1 . . . kD . Herewith, k denotes the number of values
for each feature, andD is the number of features. To this aim, we
used a generative approach which specifies the class conditional
distribution p(x|y = c).

p(x|y = c, θ) =

D∏
j=1

p(xj |y = c, θjc), (1)

where y is a label for a given class c.

This approach is assuming that the features are conditionally in-
dependent. Although this assumption does usually not hold, the
classification results, however, turn out to be good in practice
(Bishop, 2007). Depending on the feature property, the class-
conditional density can take the following forms:

• real-valued features: Gaussian distribution
p(x|y = c, θ) =

∏D
j=1N(xj |µjc, σ

2
jc).

• binary features, xj ∈ {0, 1}: Bernoulli distribution
p(x|y = c, θ) =

∏D
j=1Ber(xj |µjc), where µjc denotes

the probability that feature j belongs to the class c.

• categorical features, xj ∈ {1 . . . k}: Multinoulli distribu-
tion
p(x|y = c, θ) =

∏D
j=1 Cat(xj |µjc), where µjc denotes a

histogram over the k possible values for xj in the class c.

true
liv-kit

true non
liv-kit

precision (%)

pred. liv-kit 48 2 96
pred. non liv-kit 1 47 97.92
recall (%) 97.96 95.92

Table 2. Classification results of combined living-kitchen

(liv-kit) rooms; accuracies derived by 10-fold cross validation.

For unknown instances, the goal is to predict the belonging class
label y:

p(x|y = c, θ) =

D∏
j=1

p(xj |y = c, θjc), . (2)

For instance, the functional use types in Figure 4 derived from the
table functionlUse are used as class labels for the training data
in our experiment and have to be inferred for unseen instances
later on. For more details, the interested reader is referred to
Bishop (2007).

Since we are interested in a stochastic model delivering posterior
probabilities of the predicted class, we make use of a generative
model consisting in Naive-Bayes classifier (Murphy, 2012) as
described above. In order to avoid distribution assumptions, espe-
cially on real-valued features, we applied a kernel based Bayesian
network classification approach (John and Langley, 1995; Prez et
al., 2009). In this context, a non-parametric kernel density es-
timation is used to model the conditional density of continuous
variables (Scholkopf and Smola, 2001; Wand and Jones, 1994).
Beside omitting parametric assumptions, this has further the ad-
vantage that loss of information is prevented after a discretization
of continuous features such as the area of rooms.

Table 2 presents the result of the classification with an accuracy of
96.89% and a precision of 97.92% for combined living-kitchen
rooms derived by a 10-fold cross validation. Further, during the
learning of the model the problem of unbalanced class frequen-
cies has been taken into account. In practice, the number of pos-
itive examples is usually higher than the number of negative la-
belled samples. For this reason, we extracted equally sized sub-
sets of positive and negative examples from originally about 512
labelled samples of the category living-kitchen rooms. This
improved the class precision of this category from about 75% up
to 97%. The reported results are achieved using a Bayesian clas-
sification with a Gaussian kernel.

Figure 7 confirms the results of the feature selection and illus-
trates the importance of the feature proportional area for the
prediction of the class living-kitchen room. The room ar-
eas are categorised into five categories (A-E) in descending or-
der. Category A characterising rooms with an area from 20 m2

upwards turns to be a good prior to identify living-kitchen

rooms. According to our labelled examples, the average area of
such rooms is 38 m2.

Likewise, we designed and implemented a classifier for each room
functional type. For example, an accuracy of 88.22% with a pre-
cision of 88.43% has been achieved for sleeping rooms. For
balconies, the accuracy and the precision amount to 93% and
91.67% respectively. For the implementation of our predictive
models and experimental prototyping, we used RapidMiner 3 as
one of the well-known and widely used machine learning envi-
ronments.

3https://rapidminer.com/products/studio/
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Figure 7. The impact of the feature categorised area on the clas-
sification of living-kitchen rooms (true). A room in category
A is a living-kitchen room with a high probability.

3.2 Classification of room shapes

Like functional uses, room shapes in housings have also a mas-
sive impact on the layout design of floorplans. Hence, the acqui-
sition of the shape information leads to a significant restriction
of the search space of possible room arrangements within an un-
derlying footprint. To this aim, the results of the prediction of
functional use achieved in section 3.1 can be exploited as prior
knowledge in order to predict room shapes. In this sense, we as-
sumed that the functional use of a given room is known, and the
task now is to learn a classification model to predict its shape. In
this context, we are discriminating between four types of room
shapes as depicted in Figure 8. We can observe that I-shaped
rooms (rectangular rooms) are dominating the other shape cate-
gories. The second important class is the L-shaped rooms. The
two other classes, namely trapezoidal and Z are relatively sel-
dom. Since the number of trapezoidal and Z-shaped rooms is
not high enough for a good classification, we focused our experi-
ments on the discrimination between I- and L-shaped rooms.

In the same way as described in section 3.1, we applied super-
vised learning techniques for the prediction of room shapes. To
this aim, we make use of the labelled examples from our spa-
tial relational database. In order to avoid unbalanced class fre-
quencies, we prepared 600 learning examples (300 per class).
Hence, our task is to train a classifier which discriminates be-
tween L-shaped and I-shaped rooms. The label of each room
is extracted from the Table shape (cf. Figure 4). Figure 9 shows
the distribution of functional use with regard to room shapes.
This enables us to get an impression of the influence of the func-
tional use of a room on its shape. It can be stated that the class
living-kitchen rooms are mainly L-shaped. The I-shape is
dominating the remaining shapes, however, the proportion of L-
shaped bath rooms and corridors is non-negligible.

In the same manner as in section 3.1, we performed a feature se-
lection based on ReliefF algorithm. This step reveals that the
information about the functional use acquired from the previous
classification is an important feature for the classification of room
shapes. Table 3 shows the most relevant features for this classi-
fication. As before, area specific features (categorised and pro-
portional area) are also meaningful for the shape classification.
Further, the number of rooms as well as the direction are of great
relevance. Both features numberOfRooms and hasBalcony are
influencing the room shapes. The latter describes whether a room
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Figure 8. Underlying room shapes in our spatial database. I-, L-,
TR- (Trapezoidal) and Z-shaped rooms have been considered.

is connected to a balcony or not. This feature is extracted using
the tables neighbourrooms, room and fuctionalUse (cf. Fig-
ure 4). One further considered feature encodes the information
whether a room is a corner room or not. This turns to be a good
feature for the classification of the shape as well as previously for
the functional use of a room. The shape of the footprint is also
influencing the room shape accordingly. This feature is appearing
in the top 10 features with a weight of 0.15.

Beside the mentioned features, the feature vector is augmented by
an information about the rough position of an underlying room.
This is performed based on discretization of the given footprint.
A room position is then encoded depending on common sides
shared with the exterior walls. The position is varying depend-
ing on the shape of the belonging floorplan. Figure ?? shows the
possible positions for two different room shapes. The floorplan
(A) is I-shaped, and it is characterised by 9 possible room posi-
tions. Exterior walls are highlighted in grey coloured hose. The
room with the position 1 has two exterior walls, namely wall 1
and wall 2. The floorplan (B) has an L-shaped boundary. The
possible position encodings for such a layout are listed.

Table 4 depicts the classification results of the room shapes. An
accuracy of 80.17% has been achieved with a precision of 81.31%
for the I-shaped rooms. In comparison to this class, we achieved
a lower precision for L-shaped rooms. The classification has been
performed using a 10-fold cross validation based on a kernelized
Bayesian classifier. It should be noted that the floorplans have
been solely used to extract features to build our training exam-
ples during the learning phase. For the prediction of the class
label of new instances according to equation 2, only easy acces-
sible features such as areas and direction for a given floorplan
are needed. Such information can be acquired from facility man-
agement services or observed from the outside of the building of
interest.

The shown results in Table 4 build upon data from both Moroc-
can, German/ Swiss annotated examples. However, a classifica-
tion based on distinct samples depending on the geographic areas
improves the accuracy up to 88.01% and 87.43% for Moroccan
and German/ Swiss data respectively. The feature weighting is
varying accordingly. For the classification, an access to balcony
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Figure 9. The distribution of functional use with regard to room
shapes.

top features for room shape weight

functional use 1
categorized area 0.91
proportional area 0.81
position 0.52
number of rooms 0.48
is corner room 0.39
direction 0.33
has balcony 0.29
.... ...

Table 3. Excerpt of the most important features and their weights
for the classification of room shapes (L and I).

is, for instance, for German/ Swiss area more relevant than for
Moroccan housings. Hence, the variance of the induced weights
is reflecting the influences of regional construction culture. A
shape room classification based on examples from a specific func-
tional use such as sleeping rooms, leads to more accurate results.

The classification results from this section and the previous sec-
tion are of great interest in order to support and enrich the rea-
soning process for the derivation of indoor environments based
on weak observations. In this context, the derived functional use
can be applied to restrict the search space of housing room pa-
rameters. The search space can be narrowed based on statistical
knowledge about location and shape parameters of rooms given
their functional use. To this aim, the spatial relational database
can be used to infer probability density functions. The latter can
be approximated by Gaussian mixtures in order to enable proba-
bilistic reasoning based on classical statistical algorithms. Hence,
the combinatorial part consisting in, among others, finding cor-
responding windows to a-priori unknown rooms will take profit
from the room functional uses. The search space can be further
restricted based on the shape information of a given room. This
is in particular of high relevance, if the geometric constraints ob-
served from the outside are not strong enough to enforce some
architectural patterns such as walls alignments. A further step
worth of investigation is to perform a parametric learning of L-
shaped room layouts. In this manner, statistical hypothesis tests
can be performed in order to fit parametric probability density
functions. The parameters of a probability density function which
fits the shape parameters of specific room layouts well, can be
used to represent different L-shapes.

Alternatively, other classifiers could be used for both classifica-
tion tasks. Another possibility is to integrate the Bayesian classi-
fier in a bagging or boosting process. In this context, a bagging-

true
I-shaped

true
L-shaped

precision (%)

pred. I-shaped 235 54 81.31
pred. L-shaped 65 246 79.1
recall (%) 78.33 82

Table 4. Classification results of room shapes. Two classes (I and
L) are considered.
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Figure 10. Possible encoded positions of a room within a floor-
plan. Nine possible positions in I-shaped floorplans (A). 25 po-
sitions are possible in L-shaped floorplans (B). The position en-
coding is used as a feature for the classification.

based approach (Breiman, 1996) with the Bayesian classifier de-
livered comparable results.

4 CONCLUSION AND OUTLOOK

This paper presented an approach for the prediction of room shapes
and their functional uses. Based on sparse observations, we demon-
strated that classification methods are suitable for the derivation
of these two valuable findings. For the learning of a prediction
model, openly accessible data has been used as training samples.
Appropriate features have been extracted from an annotated spa-
tial relational database. We took particular care to ensure that our
features are easily to acquire from facility management services
or to observe from the outside of the building. Sparse observa-
tions such as room areas and the direction of rooms turn out to be
a good prior in order to infer room shapes as well as functional
use. For the classification itself, we used a generative kernel-
based Bayesian classifier which delivers probabilities of alterna-
tive class hypotheses. The classification results of the functional
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use of housing rooms are extremely good, however, the classifica-
tion of room shapes could be improved. To this aim, an analysis
of the false positive predictions is a work in progress.

Our aim is to derive indoor models with as few observations
as possible. This enables us to avoid costly capturing of high-
resolution data. This reasoning approach consists of a combina-
torial and a stochastic component. In contrast to office rooms,
we believe that an extension of this approach with different room
shapes and without room numbers is beneficial or even inevitable
for housing rooms. In particular, an explicit addressing of uncer-
tainty during the combinatorial part is of great interest. In this
context, the probabilistic information derived by the classifiers
are valuable. The incorporation of these results in the reasoning
algorithm which derives the topology of floorplans for housing
will be subject of an ongoing research.
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