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ABSTRACT:  
 
High quality digital elevation model (DEM) is obtained from mobile LiDAR data and it is used in various applications like road 
widening, slope measurement of road side surfaces, and inundation of the roadway evaluation. Two steps algorithm is proposed 
to filter ground points using mobile LiDAR data. Initially unstructured input data is organized then standard deviation and 
flatness based approach is used to filter ground points. Proposed algorithm is tested on point cloud of test site located along 800 
m of roadway. Type I, Type II and total error are 2.11%, 2.21% and 2.15%, respectively with kappa is equal to 96.61% are 
computed using ground filtered points and reference data points. 

 

1. INTRODUCTION 
 
Integrated LiDAR system deployed on different platforms, 
i.e. airborne, terrestrial or mobile has been used for 
acquiring detailed and accurate geometric (XYZ) and 
radiometric (intensity) information of earth objects since 
last few decades. It becomes most efficient surveying 
technique in recent years in terms of its speed of data 
acquisition, easy to operate and minimal manual 
intervention. Size of acquired data is large due to high point 
density, which is highest in case of terrestrial laser 
scanning. Mobile LiDAR system (MLS) operates in shorter 
range compare to airborne LiDAR system, so it maps 
roadway objects, i.e., trees, building, roadway ground 
surface, pole-like objects, cars, pedestrians, and power line 
corridors more accurately. MLS collects data at road speeds 
and it eliminates traditional surveyor safety issues, keeps 
roads/lanes open, and minimize impact to traffic (Yadav et 
al., 2014). Analysis of road infrastructure, bridge structure 
and overhead clearances, road surface conditions 
assessment, roadway asset management, finding location of 
encroaching overhead wires, and detection of pole-shaped 
objects are important applications of MLS.  MLS data is 
volumetric in size and requires automatic algorithms for 
segmenting and extracting various objects of interest 
present in data. But automation is big challenge due to 
volumetric data size, variable point densities, complicated 
scene structures and occlusion of features by moving 
objects. MLS data can be generally classified into ground 
and non-ground points. Ground filtering of MLS data 
reduces data volume and allows further processing of 
ground and non-ground features easy and straightforward. 

High quality digital elevation model (DEM) is generated 
along roadway using MLS data and it is used during road 
widening, slope measurement of road side surfaces, and 
inundation of the roadway evaluation. 
 
Existing studies on ground filtering using MLS data are 
divided into two categories, one focuses solely on 
extraction of ground points and other focuses on classifying 
other objects but first step is ground points filtering. 
Lalonde et al. (2006) filtered ground points from non-
ground points. Daniel et al. (2010) identified ground points 
for operating unmanned ground vehicles. two dimensional 
(2D) regular grids were generated and lowest height point 
in each grid was retained. Pu et al. (2011) separated ground 
points by assuming that ground points lie below the 
trajectory of laser scanner. Filtered ground points were 
further segmented into on ground and off ground. They 
used trajectory information and performed 2D 
segmentation to filter the ground points. Liu et al. (2013) 
and Tian et al. (2014) proposed similar three step model for 
ground extraction. Three dimensional grids were generated 
using vehicle trajectory, point density and slope. Instead of 
choosing lowest height point in a grid, collinear condition 
in horizontal points by assuming that the ground is less 
steep than a predefined slope. Konolige et al. (2009) used 
RANSAC algorithm to separate plane was used for seed 
point estimation. Then a multi-scale neighborhood analysis 
was performed followed by slope analysis to filter final 
ground points.  
 
The current researches on mobile or terrestrial point cloud 
data focus on independent object extraction (Liu et al., 
2013; Tian et al., 2014). Yu et al. (2014) used block based 
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elevation method for ground filtering. Ground points were 
filtered for detecting trees. Zhou et al. (2014) proposed 
scan line based method for ground filtering using slope and 
elevation information. 
 
Two steps algorithm is proposed to filter ground points. 
Initially unstructured input data is organized then standard 
deviation and flatness based approach is used to filter 
ground points. Proposed method works directly on 
unstructured MLS data available in XYZ format, so it is 
independent on scanning geometry. No any additional 
information, i.e., trajectory information and training data 
are required unlike many methods of literature. Proposed 
algorithm is simple and it is tested efficiently on point 
cloud of test site located along 800 m of roadway. These 
exclusive features of proposed algorithm prove its 
efficiency and uniqueness for ground filtering using mobile 
LiDAR data. 

2. METHODOLOGY 

2.1 Data points organization  
 
MTLS data points, 1,2,3,4........iP i r in XYZI format are 

used, where i and r represent arbitrary data point and total 
number of data points sequentially. Data points are further 
arranged in a specific pattern to reduce computation time of 
proposed algorithm for ground filtering. Three sequential 
steps are applied for organizing the data points: (1) 
projecting data points on 2D plane, i.e. XY plane; (2) 
projected data points division into square grids; and (3) 
vertical segmentation of data points of each grids and 
separate tagging of each segment data points as blocks. 
Each step is discussed in detail in the following sections.  
 
 

 
 Figure 1. Minimum bounding rectangle of input MLS data 

2.1.1 Data points projection 

MTLS data points are projected on XY plane and new set of 
projected data points, 2D

iP  in XY format only is generated. 
Minimum bounding rectangle (MBR), say abcd (see Figure 
1) is generated using data points of set 2D

iP . It is 
characterized by the 2D coordinates of four vertices, i.e., a, 
b, c, and d.   Initially maximum and minimum values of 
abscissa (X) and ordinate (Y) from set 2D

iP are determined. 

The point p has its abscissa minimum minX  and 

similarly point r has maximum ( maxX ) among points of set 
2D

iP (see Figure 1). Ordinate of point s is minimum ( minY ) 

and similarly for point q is maximum ( maxY ) among points 

of set 2D
iP  (see Figure 1). Using these minimum and 

maximum values of abscissa and ordinate, the vertices a, b, 
c and d are determined. The points a( minX , minY ), b( minX ,

maxY ), c( maxX , maxY ) and d( maxX , minY ) are four vertices 

of MBR, say abcd.  
 
2.1.2 Square gridding 

Set of 2D MTLS data points, 2D
iP  which defines MBR, say 

abcd are divided into N ( X YN N ) regular square grids of 

size m m  (see Figure 2). XN  and YN  are calculated  

using Equation 1. 
 

, 1 if ,  is non-integer
, if ,  is integerX

d a d m d a d m
N

d a d m d a d m
(1) 

 

Where ,d a d  is Euclidean distance between points a  

and d.  is symbol for greatest integer function. Similarly 

YN  is determined using ,d a b . 

The following points e, f, g, and h are four vertices of 
square grid, ,l kN . 

I. e min min1  ,  1X l m Y k m  

II.  f
min min1  ,  X l m Y k m    

III.  g
min min ,  X l m Y k m  

IV.  h min min ,  1X l m Y k m   

,l kN  is an arbitrary square grid and four vertices of all the 

N grids are computed by using different combinations of 

1 to Xl N  and 1 to Yk N . A new set of points ,l k
iP  is 
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generated, which lies inside the square grid
,l kN . Grids take 

shape of connected pillars in 3D. 

  

Figure 2. 2D gridding of input MLS data 

2.1.3 Vertical segmentation  

In this step, MTLS data points , ,1, 2, 3, 4........l k l k
iP i r  

of arbitrary grid ,l kN ,  say efgh  are selected (see Figure 

2). Further ,l k
iP is arranged row-wise in the fashion of 

increasing of Z values and new set  ,l k
iP  is generated. 

Minimum  Z ( minZ ) and maximum Z ( maxZ ) are 

computed by taking average of minn  and maxn number of 

data points from starting and end of data set ,
,
l k

i zP . It is done 

to avoid the effect of outlier.   
 

 
Figure 3. Vertical segmentation of 2D grid 

Data set, ,
,
l k

i zP  is divided into different segment based on 

the grouping of data points lies in the definite range of Z 

values. It is assumed that data points lies within minZ  and 

min groundZ h   contain all the ground points and grouped 

together as set segment-0 (see Figure 3). The groundh  is 

range of Z values of ground points. Similarly segment-ns is 
computed by grouping the data points lies within Zlower (ns) 
and Zupper (ns) (Equation 2 & 3).   
 

             lower s min ground s( ) ( 1)Z n Z h n h                (2)   

                 upper s min ground s( )Z n Z h n h                      (3) 

 
Where, h is the fixed range of Z values for segment-ns. The 
ns vary from 1 to Ns and Ns is total number of segment 
calculated by Equation 4. 
 

             

s
1 if  is non-integer

if  is integer
M M

N
M M

            

(4)  

Where max min groundM Z Z h h .  

Vertical segmentation is only performed on different 
combinations of grid 

,l kN  by considering different values 

of l and k for which the total number of points ,l kr  is 
greater than a user defined threshold value, ,l k

thr .    

2.2 Ground points filtering 
 
Rough ground classification is performed by filtering data 
points of segment-0 of each vertical pillar, which lies 
within minimum Z and minimum Z+ hground (see Figure 3). 
These filtered points are from first segment of vertical 
pillar having height hground, and vertical objects such as 
tress, road signs, light poles, buildings along the route 
corridor are removed, so it is called ground segment also. 
But points from base of vertical objects and low vegetation 
are still present in the filtered data. Each point of ground 
segment is selected as seed point and its neighbouring 
points within radius R are computed using 2D k-d tree 
neighborhood search technique (Yadav et al., 2015). 
Standard deviation ( stdZ ) of Z values and flatness (see 

Equation 5) of set of neighbouring points of each seed point 
are computed.  
 
                       Flatness: (F) = ߙଵ ଵߙ) + ଶߙ + ⁄(ଷߙ             (5) 
 
Where α for i=1, 2, and 3 are three Eigen values and ߙଵ is 
minimum Eigen value of points lie within cylinder.                             

If stdZ is less then user defined threshold ground
stdZ and 

flatness is also less than flatness threshold ( thF ), then seed 
point is classified as ground point otherwise non-ground 
point. The above process is iterated for all the points of 
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ground segment by assuming them as seed point. Finally 
ground segment is further classified into ground point and 
non-ground points.  

3. Experiment 

3.1 Mapping and Reference Data 
 
Test site (see Figure 4) used for testing proposed method is 
located along two lane road of 800 m. Road environment of 
this site is quite complex, having road-side irregularly 
spaced trees, bushes, low vegetation, tilted and vertical 
utility poles, buildings, boundary walls, tall telephone 
tower, overhead water tank, and vertical pillars supporting 
rooftop of a fuel filling station, overhead power lines and 
high mast signage pole installed at  fuel filling station (see 
Figure 5(b)).  Terrain of the site is not flat as the maximum 
height difference on the ground surface was 10 m. The 
46,192,791 points are acquired by StreetMapper 360 MLS 
from the test site at 2D point density of 450 points/m2. 
Reference ground points are generated by visual inspection 
of colored point cloud data of test site and manual filtering 
of ground point using editing tool of TerraScan module of 
Terrasolid software. Manually filtered ground points are 
used for validating ground filtering result. 28,649,142 
ground points are manually filtered and used as reference.  
 
3.2 Result 
 
Proposed algorithm is tested on point cloud of test site (see 
Figure 4) located along 800 m of roadway using thresholds; 

m m = 3 m 3 m, hground = 1 m, R =20 cm, ground
stdZ  = 5 

cm, and thF = 0.15. Ground points (28,455,343) are 
efficiently filtered out (see Figure 5 (a) & Table 1).  
 
3.3 Discussion 
 
The result obtained (see Table 1) shows a very satisfactory 
performance of the proposed algorithm, i.e., Type I (see 
Equation 6), Type II (see Equation 7) and total error (see 
Equation 8) are 2.11%, 2.21% and 2.15%, respectively with 
kappa (see Equation 9) is equal to 96.61%. Type I and 
Type II errors are ground and non-ground points omission 
error, respectively. The proposed algorithm uses only XYZ 
coordinates of mobile LiDAR point cloud. It is also 
independent on the scanning geometry and neighborhood 
structure in the mobile LiDAR data file. Proposed method 
does not use training data.  
 

 Filtered 
Ground points Non-ground 

points 

R
ef

er
en

ce
  

Ground points a b 
28, 045,218 603,924 

Non-ground 
points 

c d 

410,125 18,147,573 
Table 1. Ground filtering performance of proposed 
algorithm on chosen test site. 

 
                  Type I error (%)=(ܾ (ܽ + ܾ)) × 100⁄              (6) 
 
                 Type II error (%)=(ܿ (ܿ + ݀)) × 100⁄              (7) 
 
            Total error (%)=((b+c)/(a+b+c+d))×100            (8) 
 
    Kappa (%)=((݁ × (ܽ + ݀) − ( (݁ଶ − (( × 100⁄       (9) 
 
Where ݁ = ܽ + ܾ + ܿ + ݀ and  = ൫(ܽ + ܾ) × (ܽ + ܿ)൯ +((ܿ + ݀) × (ܾ + ݀))  
 
 

 
 

Figure 4. 3D perceptive point cloud view test site 
 

 
Figure 5. 3D perceptive point cloud view of (a) ground 
points (b) non-ground points, of test site 

4. Conclusions and Future Works 

In this study, an automatic algorithm is proposed for 
ground point filtering from MLS data. Initially, input MLS 
data are divided into connected pillars followed by filtering 
of ground segment. Ground points are extracted from 
ground segment based on the criteria on threshold of 
standard deviation and flatness computed on neighbors 
around seed points. Proposed algorithm is tested on MLS 
data of test site located along 800 m of roadway.  Type I, 
Type II and total error are 2.11%, 2.21% and 2.15%, 
respectively with kappa is equal to 96.61% are computed 
using ground filtered points and reference data points. 
 
Using the results obtained in the test site, it can be 
concluded that the proposed method is more general and it 
performs efficiently: (i) even in case of complex roadway 
scene (ii) requiring no training data and additional 
information, i.e., trajectory data, respectively, (iii) no initial 
assumptions about the relative location of roadway objects 
(iv) being independent of the scanning geometry 
information and only need mobile LiDAR points in XYZ 
format.  
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Future works are: (i) to improve the accuracy of ground 
filtering (ii) modifying proposed algorithm to make it fully 
automatic and parameter free.  
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