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ABSTRACT: 
 
Polarimetric parameters have been extensively used for target parameters retrieval than backscattering coefficients. In previous 

studies, volume component generated from polarimetric SAR data has been considered as the return signal component from 

vegetation and intern used this for biophysical parameters retrieval. Un-polarized component of the return signal has been considered 

as volume component. The present study is mainly focused to analyze the volume component generated from C-band RISAT-1 

hybrid polarimetric SAR data from wheat crop. Three temporal datasets acquired at ~31° central incidence angle between Jan and 

Mar 2016 over parts of Bharatpur and Mathura districts located in Rajasthan and Uttar Pradesh (India) have been used in this study. 

Water Cloud Model with Gaps has been considered for modeling the first Stokes parameter (g0), which represents total intensity of 

return signal, from wheat crop using LAI and Interaction factor as vegetation descriptors. The vegetation component derived using 

calibrated Water Cloud Model with Gaps has been analyzed with volume component derived from RISAT-1 hybrid polarimetric 

SAR data. The analyses observed that a significant difference during lower LAI values and shown comparably during higher LAI 

values. The higher values of volume component derived from RISAT-1 SAR data than modeled vegetation component indicates that 

the volume component can also be generated by underneath soil. It is also observed the difference in derived un-polarized 

component and modeled vegetation component has shown higher correlation with underneath soil moisture than directly correlating 

with derived un-polarized component. This study indicates that the volume component derived from hybrid polarimetric SAR data 

has return signals from vegetation as well as underneath soil. 

 
1. INTRODUCTION 

 
Crop biophysical parameters such are leaf area index (LAI), 

biomass, plant water content (PWC) and plant height, dynamics 

over a period during crop growing season is a vital input 

parameter for several yield estimation models (Bassoet al., 

2013; Doraiswamy et al., 2003). Since these parameters are 

highly variable spatially as well as temporally, conventional in-

situ measurements become laborious and time consuming. In 

contrast to ground based instrument measurements, remote 

sensing data has gained considerable importance for agricultural 

applications by providing various spatial and temporal 

resolution images at scales ranging from local to global. The 

advancement of Synthtetic Aperture Radar (SAR) can provide 

un-interrupted high resolution earth observation data even 

during cloudy, smoke and smog situations due to the sensor 

operation at microwave frequencies (Sivasankar et al., 2018). 

Radar remote sensing data can provide better crop cover 

information by interacting with entire plant volume than optical 

remote sensing. The return signal from agricultural fields is a 

complex function of sensor parameters such as frequency, 

incidence angle and polarization along with crop cover 

characteristics and underneath soil characteristics (Srivastava et 

al., 2009; Srivastava, 2007; Sivasankar et al., 2018). Therefore, 

retrieving a specific crop biophysical parameter from the radar 

return signal has become a challenging task still yet.* 

 

The sensitivity of backscattering coefficients (σ°) generated 

from SAR data towards crop biophysical parameters have been 

                                                           
* Corresponding author 

extensively analyzed in previous studies. It is observed that the 

P- & L-band is useful for broad leaf crops and C- & X-bands for 

narrow leaf crops (Macelloni et al., 2001; Fontanelli et al., 

2013; Paloscia, 1998). Patel et al., 2006 identified that the cross 

polarized SAR backscatter is more sensitive towards plant 

density than co-polarization. Decomposition parameters i.e., 

volume component, even bounce and odd bounce derived from 

polarimetric SAR data provides better target information than 

backscattering coefficients. In particularly, volume component, 

which is proportional to un-polarized component of the return 

signal, is identified as highly sensitive towards vegetation 

biophysical parameters due to the dielectric discontinuity. 

Poolla (2013) had used L-band full polarimetric ALOS 

PALSAR data to retrieve forest biomass volume over Dudhwa 

national park, India. The volume component generated using 

Yamaguchi et al. (2006) has considered as backscatter signal 

component from vegetation in Water Cloud Model based semi-

empirical model. Banerjee (2012) had estimated tea bush 

biomass using L-band full polarimetric ALOS PALSAR data 

over Sarusarai tea estate, Assam, India. Volume component 

generated using Freeman II decomposition technique has been 

used in Water Cloud Model based semi-empirical model. 

Although previous studies have observed significant 

improvements in the biophysical parameters estimation 

accuracy by using volume component over backscattering 

coefficients, but it was not analyzed the actual component of the 

return signal from vegetation in volume component derived 

from decomposition technique. 

 

Although previous studies have observed significant 
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improvements in the biophysical parameters estimation 

accuracy by using volume component over backscattering 

coefficients, but it was not analyzed the actual component of the 

return signal from vegetation in volume component derived 

from decomposition technique. In this study, Water Cloud 

Model with Gaps has been considered for modeling the first 

Stokes parameter (g0), which represents total intensity of return 

signal, from wheat crop. Furthermore, the un-polarized 

component derived from RISAT-1 hybrid polarimetric SAR 

data has been analyzed with the backscatter component from 

vegetation as measured from calibrated Water Cloud Model 

with gaps using in-situ crop biophysical parameters and 

underneath soil moisture. 

 

2. MATERIALS AND METHODS 

 

2.1 Study area and datasets 

 

Since high incidence angle SAR data is more sensitive to the 

agricultural crop characteristics, three RISAT-1 hybrid 

polarimetric SAR datasets were acquired at ~31° incidence 

angle over parts of Bharatpur and Mathura districts located in 

Rajasthan and Uttar Pradesh states respectively in India during 

Jan – Mar 2016. The study area is usually dominated with 

wheat and mustard crops during rabi season. The Yamuna canal 

passing through the Mathura district enables the irrigation water 

for crops in this area. The location of study area is given in the 

Fig 1.The procured RISAT-1 hybrid polarimetric SAR data 

details along with their orbital parameters, are shown in Table 

1.Since the sensor parameters are same during the both 

campaigns, the changes in the sensitivity of parameters 

generated from RISAT-1 hybrid polarimetric SAR data towards 

LAI of paddy crop were considered it as caused by the crop 

growth. 

 

 
 

Figure 1. The location of study area 

 

 

 

 

Table 1. Specifications of SAR data and sensor parameters used 

in this study 

DATE OF PASS 
25 January 

2016 

19 Febrauary 

2016 

15 March 

2016 

SATELLITE RISAT-1 RISAT-1 RISAT-1 

PLATFORM Space Space borne Space borne 

borne 

MODE FRS-1 FRS-1 FRS-1 

BAND/SENSOR C/SAR C/SAR C/SAR 

POLARIZATION RH/RV RH/RV RH/RV 

CENTRAL 

INCIDENCE 

ANGLE 

~31˚ ~31˚ ~31˚ 

AZIMUTH 

RESOLUTION 
3 3 3 

RANGE 

RESOLUTION 
2 2 2 

 

2.2 Hybrid polarimetric parameters 

 

The RISAT-1 hybrid polarimetric SAR datasets were 

radiometrically calibrated using the following equation as given 

by Mishra et al., (2015). 

 

𝜎(𝑑𝐵)
𝑜 = 10 × log10 (

𝐷𝑁𝑖
2

𝐶𝑖𝑖
) + 10 × log10 (

sin(𝜃𝑖)

sin(𝜃𝑐𝑒𝑛𝑡𝑒𝑟)
)         (1) 

 

Where, Cii is calibration constant, θi represents incidence angle 

of ith pixel and θcenter is central incidence angle. 

 

Stokes (1852) defined a set of four parameters based on two 

linear orthogonal polarization signals (horizontal and vertical) to 

describe the polarization state of the electromagnetic signal. 

These parameters were used to analyze the return signal from 

the agricultural target by illuminating right circular polarized 

signal. The Stokes parameters were generated using following 

equation. 

 

𝑔 = [

𝑔0
𝑔1
𝑔2

𝑔3

] =

[
 
 
 
〈|𝐸𝑅𝐻|2 + |𝐸𝑅𝑉|2〉

〈|𝐸𝑅𝐻|2 − |𝐸𝑅𝑉|2〉

2 × 𝑅𝑒〈𝐸𝑅𝐻𝐸𝐸𝑉
∗ 〉

−2 × 𝐼𝑚〈𝐸𝑅𝐻𝐸𝐸𝑉
∗ 〉]

 
 
 

                                           (2) 

Here, E is the complex backscattered electric field, |…| denotes 

absolute value, 〈...〉 represents average, * indicates complex 

conjugate and Re & Im denotes the real and imaginary parts of 

the complex respectively. 

 

Several hybrid polarimetric decomposition techniques have 

been proposed by previous studies including m- δ by Raney 

(2007); m- χ by Raney et al., (2012); m- α by cloude et al., 

(2012). Almost in all space decomposition techniques, volume 

component has been considered as the square root of un-

polarized component in return signal. The mathematical 

expression for volume component is given in Equation (3). 

 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =  √(1 − 𝑚) × 𝑔0                             (3) 

Where, ‘m’ represents the degree of polarization derived from 

Stokes parameters as follows: 

𝑚 =
√𝑔1

2+𝑔2
2+𝑔3

2

𝑔0
                                                                       (4) 

2.3 Ground truth data collection 

The farmers’ fields of minimum size, 22 × 22 m2 were 

considered as suggested by Patel & Srivastava (2013) for 

RISAT-1 FRS-1 mode by accounting the characteristic-fading 
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phenomenon of SAR signal. Ground-truth campaigns in 

synchronous with RISAT-1 passes were conducted to collect 

information about crop and soil samples. The AccuPAR model 

LP-80 was used to measure in-situ LAI in sequence of two 

above and five below canopy samples with 5 replications at 

each field.  Crop and soil samples were collected during 

campaigns and measured biomass, plant water content and 

volume for crop as well as soil moisture, roughness, texture and 

type of soil. The field photos taken during ground-truth 

campaigns are given in Fig. 2 to illustrate the change in crop 

structure due to the crop growth. 

 

 
Figure 2. Ground-based photographs of a wheat field taken on 

(a) 25-Jan-2016 (b) 19-Feb-2016 and (c) 15-Mar-2016 

 

 

 

2.4 Water Cloud Model: 

 

Attema and Ulaby (1978) developed the Water Cloud Model to 

describe the relationship between the backscatter coefficient 

with the vegetation biophysical and soil moisture parameters. 

Because of the relative dielectric constant of air and dry 

vegetation are 1.0 and approximately 1.5 in comparison to 

water with approximately 80 at microwave frequencies 

(Srivastava et al., 2006). In this model, it was assumed that 

canopy as identical water droplets with uniformly distributed 

according to a Poisson process over a horizontal plane surface 

which is represented as ground. Attema and Ulaby (1978) 

calibrated the model for backscattering coefficients of HH and 

VV polarizations in the 8-18 GHz frequency range supported by 

ground truth data of alfalfa, corn, milo and wheat. It was 

observed correlation coefficients in the range of 0.7 to 0.99 

depending on frequency, polarization and crop type. Although 

the model was initially developed in context to understand the 

backscatter from agricultural crops, later the same has been also 

used for forest applications (Fransson, 1999; Kumar, 2009; 

Peregon and Yamagata, 2013). The modeled total backscatter 

from a crop canopy at a given incidence angle is given as an 

incoherent sum of the contribution of backscatter from a 

vegetation canopy and that from soil, attenuated twice by the 

vegetation layer: 

 

𝜎𝑡𝑜𝑡𝑎𝑙
𝑜 = 𝜎𝑣𝑒𝑔

𝑜 + 𝐿2. 𝜎𝑠𝑜𝑖𝑙
𝑜      (5) 

 

With, 𝜎𝑣𝑒𝑔
𝑜 = 𝐴. 𝑉1. cos 𝜃 (1 − 𝐿2)    (6) 

 

𝐿2 = exp (−2.𝐵. 𝑉2. sec 𝜃)      (7) 

 

𝜎𝑠𝑜𝑖𝑙
𝑜 = 𝐶 + 𝐷.𝑀𝑣     (8) 

 

Where, V1 and V2 are the vegetation descriptors; A and B are 

vegetation specific coefficients while C and D are the soil 

specific coefficients at a given frequency, polarization and 

incidence angle; and Mv is the volumetric soil moisture. 

 

In most studies, the vegetation descriptors V1 and V2 were 

considered in a combination of vegetation water content (Sikdar 

and Cumming, 2004; Paloscia et al., 2013), leaf area index 

(Champion and Guyot, 1991; Prevot et al., 1993) and NDVI (El 

Hajj et al., 2016). Sugandh et al., (2017) analyzed the hybrid 

polarized backscatter (RH and RV) based on Water Cloud 

Model using various combinations of vegetation descriptors as 

used in Ulaby et al., 1984; Prevot et al., 1993; Dabrowska-

Zielinska et al., 2007. In addition to these parameterizations, it 

was also attempted with V1 and V2 as LAI and Interaction 

Factor (IF) respectively and observed significant improvement 

for both RH and RV backscatter simulation than the previous 

approaches. IF was first coined by Patel et al., (2006), which 

represents the planar distribution of water droplets within the 

plant volume by excluding the air gaps, as given in Equation (9) 

to estimate wheat yield (number of grains) using cross-polarized 

Enivsat-1 ASAR data. 

 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐼𝐹) =
(𝑃𝑙𝑎𝑛𝑡 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒×𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡×𝑝𝑎𝑙𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

𝑃𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡
     (9) 

 

Numerous researchers have analyzed Water Cloud Model and 

suggested various improvements for better backscatter 

simulation from vegetation. One such the most popular 

Modified Water Cloud Model is Water Cloud Model with gaps 

developed by Askne et al., 1995. The model is given as: 

 

𝜎𝑡𝑜𝑡𝑎𝑙
𝑜 = (1 − 𝜂)𝜎𝑠𝑜𝑖𝑙

𝑜 + 𝜂[𝜎𝑠𝑜𝑖𝑙
𝑜 . 𝐿2 + 𝜎𝑣𝑒𝑔

𝑜 (1 − 𝐿2)] (10) 

 

Where, η represents area-fill factor, which is proportional to 

LAI. 

 

In this modified model, three basic scattering mechanisms of 

microwave signal with vegetation have been considered, such 

are (1) direct scattering made by the ground through the gaps in 

the canopy; (2) direct scattering from the ground attenuated by 

the canopy and (3) direct scattering from the vegetation layer 

without attenuation. This study has considered the Water Cloud 

Model with gaps for calibrating the Stokes first parameter (g0), 

which represents the total intensity of the return signal, by 

considering the vegetation descriptors V1 and V2 as LAI and IF. 

 

 

 

 

3. RESULTS AND DISCUSSION 

 

The relationship between ‘g0’ and soil moisture (gravimetric soil 

moisture) from bare fields has been analyzed using regression 
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approach as given in Equation 8. The analysis observed that the 

soil specific coefficients as C = 0.0991 and D = 0.0103.  The 

first Stokes parameter ‘g0’ has been simulated based on water 

cloud model with gaps as given in Equation 10 using in-situ 

crop biophysical parameters and underneath soil moisture. The 

vegetation descriptors such are V1 and V2were considered as 

LAI and IF respectively. From this analysis, the vegetation 

coefficients A and B were identified as 318.85 and 2.3E-05 

respectively. The estimated g0 using calibrated water cloud 

model with gaps and g0 derived from RISAT-1 SAR data have 

shown correlation coefficient and root mean square error (rmse) 

of 0.9 and 0.0378 respectively. The scatter plot of estimated g0 

and observed g0 is given in Fig. 3. The calibrated model has 

shown good agreement of g0 with 1-1 line in the range between 

0.1 and 0.4 whereas it was underestimated for greater than 0.4 

values. 

 

 
Figure 3. Scatterplot of estimated and observed g0 

 

 
Figure 4. Plot of g0_veg (modeled) and (1-m)g0 observed in corresponding with in-situ LAI 

 

The calibrated water cloud model with gaps has been used to 

estimate the return signal component from vegetation (g0_veg) 

using in-situ crop biophysical parameters and underneath soil 

moisture. To understand the influence of crop biophysical 

parameters on the un-polarized component of return signal, the 

modeled return signal from vegetation and un-polarized 

component , (1-m)g0, as observed from RISAT-1 hybrid 

polarimetric SAR data has been analyzed in corresponding with 

in-situ LAI (given in Fig. 4). It is observed that the difference 

between modeled return signal from vegetation and un-

polarized component observed are gradually decreased with 

increase in LAI. This clearly indicates that the illuminated 

signal interacting with underneath soil through the gaps has 

significant impact on un-polarized component of the return 

signal. Since the vegetation covers less are with lower LAI 

values during the stem elongation and ripening stages, the 

difference is higher where as the difference is significantly 

decreased with the increase in LAI during milking stage of crop 

growth. Therefore, the volume component generated from 

polarimetric SAR data may leads to significant errors during 

lesser LAI values. 

The illuminated fully polarized signal becomes un-polarized 

when the signal passes through dielectric discontinuity medium. 

Since the vegetation components such are leaves, stem and 

seeds have different dielectric properties, as the signal passes 

through these vegetation components with air gaps between 

them leads the return signal from vegetation as un-polarized. 

However, the water content present in the soil also acts as the 

dielectric discontinuity medium with water droplets, soil 

particles and air gaps. Sharma et al., (2016) observed that the 

volume component derived from polarimetric SAR data 

(acquired at low incidence angle) is highly sensitive towards the 

underneath soil moisture over wheat crop covered agricultural 

fields. In particularly, the difference between modeled return 

signal from vegetation and un-polarized component is combined 

effect of underneath soil moisture and the soil exposure, (1-

LAI). The scatter plot of differences in observed un-polarized 

component and modeled vegetation return signal with product 

of soil exposure and underneath soil moisture as given in Fig. 5 

supports the above statement. 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018 
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-5-209-2018 | © Authors 2018. CC BY 4.0 License.

 
212



 
Figure 5. The scatter plot of differences in observed un-

polarized component and modeled vegetation return signal with 

product of soil exposure and underneath soil moisture 

 

4. CONCLUSION 

 

This study has made an attempt to study the insights into the 

volume component generated from RISAT-1hybrid polarimetric 

SAR data for crop biophysical parameters. The total intensity of 

return signal (g0) from wheat crop has been calibrated using 

water cloud model with gaps with in-situ crop biophysical 

parameters and underneath soil moisture. It is observed that the 

difference between observed un-polarized signal intensity and 

modeled return signal from vegetation is significant and also 

decreased with increase in LAI values. It is also observed that 

this difference is highly correlated with product of soil exposed 

and underneath soil moisture. This indicates that the volume 

component derived from hybrid polarimetric SAR data has 

information of crop cover as well as underneath soil moisture. 
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