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ABSTRACT: 

 

Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource 

management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in 

the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the 

literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data 

available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, 

the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the 

multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the 

popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature 

space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the 

NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow 

wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface 

snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between 

the proposed estimates of snow wetness and in-situ measurements. 

 

1. INTRODUCTION 

Snow cover characterization and estimation of snow geophysical 

parameters are significant for understanding the hydrological 

budget of the glacial rivers and for studying the snow surface 

melt processes. Alpine snow and glaciers constitute a significant 

part of the cryosphere which yields through melt runoff one of 

the major usable water resources. Particularly, for countries like 

India which rely significantly on glacier and snowmelt runoffs 

for water resource, the understanding of snowmelt processes is 

significant. Forecasting of snowmelt runoff requires timely 

information on the spatial-temporal distribution of the 

geophysical parameters of snow such as the liquid water content 

(LWC), density of snow, and the depth of the snowpack (Shi and 

Dozier, 1995). The continuous monitoring of snowpack variables 

is also significant in avalanche forecasting. In the Himalayas, due 

to higher elevation and difficult terrains, often several areas 

remain inaccessible, especially during the winter season, 

imposing several constraints on the possibility of field campaigns 

for in-situ measurements of snow geophysical parameters.  

 

With the advances in the remote sensing technology, monitoring 

of snowpack state variables (snow geophysical parameters) such 

as the extent of snow commonly known as the snow cover area 

(SCA) maps, density, depth etc. has been possible. These 

variables are widely used in the snowmelt runoff model (SRM) 

for seasonal forecasts on runoff (Rango and Martinec, 1979). 

Active microwave remote sensing data based on fully 

polarimetric synthetic aperture radar (SAR) systems have been 

significantly incorporated into physical scattering models for 

estimating snow wetness at C-band (Shi and Dozier, 1995; 

Surendar et al., 2015). Singh and Venkataraman (2009) used the 

dual-polarimetric ASAR C-band SAR data for the determination 

of snow dielectric constant using a SAR based inversion model 

and estimated the snow density using the Looyenga’s formula 

(Looyenga, 1965). Polarimetric decomposition techniques have 

also been efficiently utilized for estimation of snow wetness 
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using fully polarimetric Radarsat-2 SAR data by Surendar et al., 

(Surendar et al., 2015).   

 

With optical remote sensing, quantitative studies on snow 

geophysical parameters have been limited due to the constraints 

posed by the optical characteristics of snow and from those 

inherent to the sensors (Hall et al., 2006). Snow exhibits unique 

properties in the visible, infrared and thermal spectrum. The 

metamorphic state, age and level of contamination largely 

determine the spectral response of snow. Freshly deposited snow 

exists in a dry powdered form with a very small grain size <1mm 

and very low LWC <<1% by volume. Dry snow exhibits very 

high reflectance in the visible and near infrared (NIR) spectrum. 

The reflectance reduces as the snow ages and crystallizes after 

constant processes of melt and refreeze which results in an 

increase in snow grain size and compactness of the snowpack. In 

the NIR spectrum, snow grain size with respect to reflectance 

shows a higher sensitivity. This sensitivity is also attributed to 

the LWC in snow (Dozier et al., 2009). A relation between the 

spectral reflectance of Landsat Thematic Mapper and the snow 

grain size was defined by Dozier (1989). The snowpack is wet 

when LWC increases (LWC>1%) and becomes slushy when the 

LWC is much higher (LWC>10%) for the snow remains in 

crystallized form.  

 

The near surface moisture index (NSMI) was proposed by 

Lampkin and Yool (2004) for the qualitative assessment of snow 

surface wetness. NSMI incorporates the normalized differenced 

snow index (NDSI) and thermal brightness temperature and was 

represented as a function of snow grain size based on the 

Moderate Resolution Imaging Spectroradiometer (MODIS). 

Previously, a similar concept was used in the assessment of soil 

moisture based on the triangle method, where a triangular feature 

space was developed using land surface temperature and the 

normalized differenced vegetation index (Nemani et al., 1993). 

However, the application of these approaches is dependent upon 

the availability of the thermal channel in the multispectral data. 
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These approaches based on the thermal channel are also 

dependent upon the atmospheric composition. The NIR 

reflectance has been effectively used by Gupta et al. (2005), for 

mapping wet snow using the Indian Remote Sensing Satellite 

(IRS-1C/1-D) with Linear Self-scanning Sensor (LISS-III). The 

hard threshold defined for dry snow was found greater than or 

equal to 0.5 of the NIR reflectance, attributed to the lower 

dynamic range of the LISS III sensor. However, quantitative 

assessment of surface snow wetness using optical data remains 

limited.  

 

In this paper, we elaborate on the methodology presented by 

Varade and Dikshit (2017), for the estimation of snow wetness 

using a generalized linear physical model which relates the snow 

wetness and the NIR reflectance. We present a triangular feature 

space generated by incorporating NDSI and NIR reflectance. The 

longer edges of the triangular feature space represent the dry and 

wet edges corresponding to the upper and lower edges of the 

space, respectively. In the proposed methodology these edges are 

identified based on visual perception. These edges are used to 

develop an empirical model for the estimation of snow wetness.  

 

2. METHODOLOGY 

2.1 Selection of suitable band for the proposed feature 

space. 

The significant variation in the spectral response of snow in the 

visible and shortwave infrared (SWIR) spectrum is utilized in the 

NDSI for the discrimination of snow. Higher NDSI corresponds 

to pure snow pixels with finer grain size and vice versa. However, 

NDSI is a qualitative measure, which depends upon several 

factors such as the illumination angle, existence of soot etc. 

especially in case of mixed pixels which are often plenty in 

medium resolution spaceborne multispectral data. The spectral 

reflectance of snow in the visible spectrum is high and nearly 

uniform for both wet and dry snow. However, in the NIR 

spectrum dry snow has high reflectance and wet snow has lower 

reflectance depending upon the LWC of snow surface (Lavan 

Kumar et al., 2017). Thus, the proposed methodology is based on 

utilizing the NIR reflectance instead of the brightness 

temperature as proposed by Lampkin and Yool (2004).     

 

Although a similar observation is seen in the spectral response of 

snow in the SWIR spectrum, the range of reflectance for each 

class corresponding to dry snow, wet snow and snow-free areas 

is rather compressed. It is evident that for selection of the specific 

band for the proposed triangular feature space, we must confirm 

its capability in discrimination of different land cover classes 

especially the subclasses of snow i.e. dry and wet snow, which is 

essential for the determination of snow LWC. Figure 1 delineates 

the spectral response of different classes of pixels observed in the 

study area including dry and wet snow. The pixels marked ‘D0’ 

and ‘W0’, correspond to the verified pixel with in-situ 

measurement. The other pixels were selected based on visual 

interpretation and other auxiliary data. Figure 1 illustrates that the 

spectral response of dry snow is the highest amongst all the 

classes, while that of wet snow varies. The reflectance for 

different classes is separable in bands B8 and B8A corresponding 

to 842 nm and 865 nm channels of Sentinel-2. At the SWIR 

bands, the reflectance significantly reduces, where the wet snow 

exhibits very low reflectance due to higher absorption in SWIR 

spectra (Hall et al., 1995; Nolin and Liang, 2000).  

 

 

Figure 2. Statistical parameters for the different bands. 

Due to overlapping response, another assessment for suitability 

of bands is carried out using statistical measures such as variance, 

skewness, kurtosis as shown in Figure 2. In Figure 2, SSp denotes 

the root mean squared sum of the parameters skewness, kurtosis 

and variance, and NSSp denotes the normalized values of SSp. 

Based on the values of NSSp B8A is apparently a better choice 

for selection. Although the SWIR bands B11 and B12 show 

values capable of discriminating dry and wet snow based on 

NSSp, their range is very low as observed in Figure 3 which 

depicts the spectral response of bands B8A, B11 and B12 for 

different classes. The difference in the spectral response of dry 

and wet snow in the band B8A is evident from Figure 3 and 

follows the response observed in wet snow. It is worth 

mentioning that the classes considered in Figure 3 correspond to 

pure classes without considering mixed pixels which are also 

Figure 1. Spectral response of dry and wet snow corresponding to different bands of Sentinel-2. 
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significant in developing an inference towards assessment of 

snow wetness.  

 

 

Figure 3. Spectral response of different classes in bands B8A 

and B11 and B12 with respect to NDSI 

 

2.2 NIR-NDSI feature space 

From Figure 3 it is evident that dry snow exhibits higher NDSI 

values and vice versa for wet snow. There are two major issues 

that need to be dealt with while defining a model for the 

estimation of snow wetness. Firstly segregation of snow pixels 

with pixels in the snow-free area and secondly segregation of dry 

and wet pixels in the snow cover area where NDSI represents 

mixed values. In general, for snow covered area NDSI exhibits 

values greater than 0.4. However, depending upon numerous 

factors such as the illumination angle, level of contamination etc. 

the threshold may change. A simple method to decide the 

threshold value for snow is to identify patches of snow and snow-

free areas and analyze their histograms. NDSI greater than 0.7 

represents snow with finer grain sizes which are often the case 

with dry snow (fresh powdered or crystallized refrozen).  

 

The analysis in the previous section can be summarized into the 

statement that spectral response in the visible and infrared 

regions may be used for modeling surface snow wetness (LWC). 

To facilitate this, we propose the development of a feature space 

based on the observations of NDSI and NIR reflectance, which 

we refer to as the “NIR-NDSI feature space”. A generalized 

layout of the NIR-NDSI feature space is shown in Figure 4. For 

this feature space, we utilize the B8A band at 865 nm wavelength 

of Sentinel-2 which was observed to be a better choice as 

observed from the analysis in the previous section. The feature 

space is developed using a scatter distribution of NDSI and B8A 

reflectance on the horizontal and vertical axes, respectively.  

 

For modeling the snow wetness, we utilize a similar approach as 

proposed by Sadeghi et al., (2017). The significant components 

of the NIR-NDSI feature space are the dry and the wet edges. In 

case of this feature space, the edges are in the reverse order as 

compared to the conventional feature space used in the estimation 

of soil moisture (Nemani et al., 1993; Tang et al., 2010; Sadeghi 

et al., 2017). The cluster of pixels corresponding to snow-free, 

dry snow and wet snow are also shown in Figure 4. The pure 

pixels are identified at the rightmost part of the feature space. In 

this case, the pure snow pixels are characterized as dry and wet 

snow pixels existing at the top and bottom, respectively, of the 

rightmost part of the feature space. This follows from the fact 

that, although pure snow pixels have higher NDSI value, the wet 

snow pixels exhibit lower NIR reflectance than dry snow pixels. 

In the case of mixed pixels, the NIR reflectance is reduced due to 

contributions from other adjacent classes such as trees and 

vegetation or due to contamination in the snow. As a result, not 

only the NIR reflectance is reduced, but melting is also enhanced, 

leading to an increase in the LWC of the snow. These mixed 

pixels are defined by mid-range NDSI with relatively lower NIR 

reflectance. The snow-free areas are characterized by lower NIR 

reflectance and lower NDSI values and appear at the leftmost end 

of the NIR-NDSI feature space.  

 

 

Figure 4. The generalized layout of dry and wet snow pixels in 

the NIR-NDSI feature space.  

 

2.3 Selection of the edges  

Due to the topography in alpine terrain such as in the Himalayas, 

shadows often exist. In this case, shadowed pixels largely affect 

the scatter distribution between the NIR reflectance and NDSI. 

The distortion that may arise due to the existence of shadows is 

also attributed to the presence of clouds. These pixels contribute 

to enlarged wet pixel zones where the NIR reflectance would be 

lower and the NDSI would still show these pixels within the snow 

cover area. A solution to this would be to mask these pixels.  

 

In a similar manner, standing water in the study area would not 

ideally absorb the incident radiation in the NIR spectrum 

completely. This results in corresponding pixels in the wet zone 

with very low NIR reflectance, leading to an oversaturated wet 

edge. Due to the existence of oversaturated wet zones, automatic 

edge detection techniques (Tang et al., 2010) techniques are not 

applicable for the proposed feature space, which also implies that 

the proposed feature space is sensitive to oversaturated pixels. 

The preferred method, in this case, is the manual selection of wet 

and dry edges. A study suggested that visual inspection of pixel 

distributions provides the optimum edges (Toby N. Carlson, 

2013).  

 

2.4 Snow wetness modeling 

The surface snow wetness can be modeled from the dry and wet 

edge values of NIR reflectance as shown in equation 1.  
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where w is the snow wetness or the LWC in the top layer of the 

snowpack, θd is the local minimum LWC, θw is the local 

maximum LWC and θ is the local LWC in the top layer of the 

snowpack. The snow wetness can be related by the NIR 

reflectance as shown in equation 1, where RNIR, represents the 

local reflectance in the NIR spectrum. NIR

dR and NIR

wR represent the 

corresponding NIR reflectance at the dry and wet edge 

respectively in the NIR-NDSI feature space. This relation 
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between snow wetness and NIR reflectance is based on the 

assumption that the sensitivity of NIR reflectance is a linear 

function of the snow wetness.  

 

The parameters in equation 1, can be obtained based on the dry 

and wet edges of the feature using their corresponding slope and 

intercept. The wet and dry edges can be represented by the 

following equations of straight lines.  

 

 
w w wR i s NDSI   (2) 

 
d d dR i s NDSI   (3) 

 

where Rw
 

and Rd represent the reflectance at θw
 

and θd, 

respectively.  The parameters id and iw indicate the intercepts of 

the dry and wet edges respectively, and the parameters sd, and sw 

indicate the slopes of the dry and wet edges, respectively. The 

snow wetness can be estimated by combining equations 1, 2 and 

3 as follows.  

 

 

 
( ) ( )

d d

d w d w

i s NDSI R
w

i i s s NDSI

 


  
 (4) 

 

In contrast to NSMI (Lampkin and Yool, 2004), the proposed 

model in equation 4, characterizes a much stable model for 

ascertaining the LWC in the top layer of the snowpack and is 

expected to remain nearly time and atmosphere invariant, since, 

the reflectance is a property of the incident surface. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Study area and data description  

A study area from Dhundi to Palchan was selected along the Beas 

river in Himachal Pradesh, India, geographically centered at a 

latitude and longitude of 31° 59' 32" N and 76° 44' 49" E, 

respectively. A corresponding Sentinel-2 imagery was available 

through the Copernicus program of the European Space Agency 

(ESA), with the date of acquisition on 9th February 2017, as 

shown in Figure 5. The band digital numbers of the Sentinel-2 

imagery were converted to bottom of atmosphere reflectance 

using atmospheric correction based on the Sen2cor L2A 

processor (Louis et al., 2016). The multispectral bands were 

resampled to a common spatial resolution of 20 m. A field 

campaign was conducted in the study area during 11th -12th 

February, 2017, where in-situ measurements using SnowFork 

(Techel and Pielmeier, 2011) were obtained at different locations. 

The geographical location of in-situ measurement points is 

shown in Figure 6 with pins, where green and red pins correspond 

to dry and wet snow observations, respectively. The average 

values for the various in-situ measurements are shown in Table 

1. To maintain consistency in the observations redundancy was 

maintained by collecting simultaneous 5-7 observations at each 

point.   

Parameter Wet snow Dry snow 

Snow Grain Size (mm) 1-2.5 0.1-0.5 

Temperature (°C) -1.7 -1.7 

Wetness (%) 4.5 0.61 

Density (gm/cm3) 1.7 0.28 

Table 1. Average values of in-situ observables 

 

 

Figure 5. Study area and test dataset 

 

Figure 6. Location of in-situ measurements.  

3.2 NIR-NDSI feature space  

The feature space generated using the band B8A and NDSI from 

the test data is shown in Figure 7. As discussed previously the 

feature space contains oversaturated pixels which result in an 

overall distortion of the shape of the space. The distortion is less 

significant in case of manual selection of the dry and wet edges 
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which was the method used in this study. The slope and intercept 

of the dry edges were selected to be 0.08 and 0.7444, 

respectively. The slope and intercept of the wet edge were 

selected to be 0.08 and 0.06, respectively. The corresponding 

points for determining the extended edges were identified to 

begin near the vertex where the two edges meet and on the right 

side by manually inspecting the density of the points. From 

experiments, it was identified that extended edges tend to 

introduce less ambiguity in the estimation of snow wetness.  

 

 

 

Figure 7. NIR-NDSI feature space using B8A reflectance in the 

NIR spectrum.  

3.3 Qualitative assessment of wet and dry snow wetness  

As discussed earlier due to the topography in mountainous 

regions, many shadowed areas are observed as shown in Figure 

8 (red ellipses). The shadowed areas exhibit very high LWC in 

the generated snow wetness map from the proposed 

methodology. Due to the similarity in reflectance between 

shadowed areas and the lower valley areas where snow is soiled 

or contaminated, masking of shadows was not possible. 

However, in the snow wetness map, they can be easily removed 

as observed from Figure 8. In practice, we can simply ignore the 

shadowed areas as identified in Figure 8, since the observed 

wetness is understood to be erratic within these areas. However, 

for some regions, the partially shadowed areas show a similar 

magnitude of LWC as some of the wet areas (4-6%, as observed 

from in-situ observations). The snow wetness map for the 

proposed feature space shows good compatibility with the field 

conditions, indicating a good contrast in wetness for dry and wet 

snow regions, with relatively higher values for wet snow and 

lower wetness values for dry snow. This is evident from Figure 

8, where within the valley areas the wetness observed is higher 

and much lower for the snow deposits on the mountain slopes.  

 

 

 

Figure 8. Shadowed areas overlaid on the false color composite 

of the test data and on the snow wetness map generated from the 

proposed methodology.  

3.4 Validation of estimated snow wetness 

A comparison of the estimated snow wetness was carried out with 

respect to the in-situ measurements collected during the field 

campaign. Figure 9 shows the correlation plot for the estimated 

and the observed snow wetness. A well-clustered distribution of 

points is observed in the correlation plot shown in Figure 9. The 

dry snow pixels are clustered around the lower left corner of the 

plot, while the wet snow pixels are clustered around the upper 

right corner of the plot indicating a good agreement with LWC 

aspects of snow. The linear fit between the estimated and 

observed values of snow wetness is modeled as follows.  

 

  1.213  1.08o ew w   (5) 

where wo and we represent the observed and estimated values of 

snow wetness. The linear fit also confirms the assumption that 

NIR reflectance varies linearly with respect to the LWC in the 

snow. A coefficient of determination (R2) of 0.94 was observed 

with a root mean square error (RMSE) of 0.535 between the 

estimated and observed snow wetness at the in-situ sampling 

sites. Although a good correlation is evident from the segregation 

of the clusters, the intrinsic correlation between the points within 

the cluster also shows a good agreement with R2 0.732 for the 

rightmost cluster and 0.432 for the leftmost cluster, representing 

wet and dry/refrost snow respectively. Due to the unavailability 

of the NIR bands in the 980 nm – 1030 nm range, the 

discrimination between wet and refrost snow is not possible with 

multispectral sensors (Dozier et al., 2009). The refrost snow 

should contribute to the cluster with lower wetness (leftmost 

cluster) and may have caused a reduction in the observed 

correlation for the dry snow measurements.  

 

 

Figure 9. Correlation between estimated snow wetness from the 

proposed methodology and observed snow wetness.  

 

In this study, although limited in-situ observations were possible 

for the study area, the estimated snow wetness was observed to 

comply with the expected field conditions around Dhundi and 

Solang, in Himachal Pradesh, India for the month of February. 

During the collection of possible in-situ measurements, snow 

wetness around 3%vol was not observed. Thus, Figure 9 

comprises a gap in points around 3% vol wetness. A reduction in 

the observed correlation is certainly possible, given a larger 

number of in-situ measurements. However, since the results 

comply with the overall field conditions, we believe the proposed 

approach has potential in delivering significant results. We must 

also mention that in-situ collection of data depends upon 

numerous factors including availability of funds, manpower, the 

complexity of the terrain, accessibility and the immediate 

weather conditions.  
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4. CONCLUSION 

In this study, we present a linear physical model based on a 

feature space derived from the observations of NIR reflectance 

and NDSI. The proposed approach utilizes the linear variation of 

spectral reflectance in the NIR spectrum with respect to snow 

wetness. The proposed method is invariant to atmospheric factors 

since it utilizes the NIR reflectance instead of other variables 

such as the land surface temperature which is significantly 

affected by atmospheric composition. The proposed 

methodology was evaluated with Sentinel-2 multispectral data. 

However, the proposed model can be easily extended to several 

other multispectral sensors including unmanned aerial systems 

(UAS), which may play a key role in monitoring snowpack 

conditions for avalanche forecasting. The experiments based on 

the proposed approach indicated sensitivity towards natural 

obstruction as observed from the effect of shadows in the results. 

However, in the case of UAS surveys, the approach may find its 

true potential since UAS based collection of data is expected to 

be relatively less obstructed by the presence of clouds and 

shadows. Overall in the unobstructed area, the results from the 

proposed approach showed good agreement with the expected 

field conditions. A good correlation determined by R2 of 0.94 and 

RMSE of 0.535 was observed between the in-situ measurements 

of snow wetness and the estimated snow wetness.  
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