
Online Geoprocessing using Multi-Dimensional Gridded Data

Amruth Kiran 1, Prasun Kumar Gupta 1, Ashutosh Kumar Jha 1, Sameer Saran 1

1 Geoinformatics Department, Indian Institute of Remote Sensing, Dehradun, India - amruthkiran94@gmail.com, (prasun, akjha,

sameer)@iirs.gov.in

Commission V, WG V/4

KEY WORDS: Data Cube, Geoprocessing, Python, LISS III Data, NDVI, Online Spatial Analysis.

ABSTRACT:

Traditional geoprocessing techniques often rely on the use of multiple softwares for data handling and management which

consumes almost 80% of the time and requires the user to be well versed with all the intricacies of pre-processing. Therefore, there is

a need to reverse the trend on analysis and data management, so as to enable scientists and researchers to focus on the science rather

than data handling and pre-processing. The concept of a Data Cube which is a massive multi-dimensional array of raster or gridded

data, ‘stacks’ satellite images and addresses the problems faced by traditional remote sensing practices and provides an interactive

environment where datasets can be analysed with relative ease as compared to its traditional counterparts. This framework allows

multi-format and multi-projection datasets spanning decades to be used in various geoprocessing techniques from simple GIS tasks

such as data conversion, time series generation, and to do more complex tasks such as change detection, NDVI generation,

unsupervised classification and modelling. LISS III data for the state of Uttarakhand, India was used on an interactive interface

called the Jupyter Notebook where scripts written in Python allowed data to be ingested, analysed and visualised. The Data Cube

framework hence proved to be a flexible and extensive development environment which can be extended to meet more complex

modelling requirements.

1. INTRODUCTION

Native and offline geoprocessing is hindered by few guiding

principles that govern the functionality of large scale and

complex datasets that requires to be processed and analysed

before being accessed by users (Hofer, 2015). Traditionally,

remote sensing products goes through many step-by-step

procedures before being shipped out to a client, this often takes

upto 80% of the total process, with less than 20% actually

utilised for analysis and development (Oliver & Woodcock,

2015). Along with data interoperability and exchange, data size

limitations and processing capabilities often pose a challenge to

researchers bounded by using a more traditional or Desktop-

approach to geoprocessing which is limited by not only

hardware but also various complexities the user must attend to

facilitate the data, its management and utilization in various

softwares. Considering the vast amounts of Earth Observational

(EO) data generated per day, there exists a large potential for

data to be unstructured and more importantly not conforming to

international standards (Lewis et al., 2017). To overcome such

issues and vastly improve the user accessibility and scalability

of EO data, a more robust and powerful framework that adheres

to various standards of interoperability and allows on-the-fly

geoprocessing of large amounts of EO data is required. The

Data Cube, is one such framework which works on the principle

of “stacking” satellite imagery in a multi-dimensional array of

gridded data which overcomes such challenges. A study by

Mueller et al., (2016) consisting of over 100,000 satellite

images and metadata were ortho-rectified, corrected to

measurements of surface reflectance and analysed for

observations of water at a resolution of 25m. A project of this

scale would not be possible if traditional methods of remote

sensing were applied. This framework can be extended to fit

various use-cases ranging from continental-scale analysis of

vegetation change, species distribution modelling and

understanding climatic change over long periods of time.

2. RELATED STUDIES

2.1 Online Geoprocessing technology and its attempts

worldwide

One of the most profound examples of online, scalable and

interoperable geoprocessing platforms belongs to that of

Google. The Google Earth Engine (GEE) is a cloud-based

platform for planetary scale analysis and is built upon its

powerful supercomputational capabilities of petabyte scale

analysis of EO data (Gorelick et al., 2017). Housing massive

data catalogues which are indexed by high-performance parallel

computers, GEE allows users to quickly access and analyse data

from a web-browser. This technology allows a researcher to

skip various hurdles of handling EO data, such as file formats,

managing databases and using geospatial data processing

techniques. File-based data handling mechanisms such as

Hadoop Distributed File System (HDFS) and GeoTrellis works

on the principle of processing large spatial queries using

distributed memory abstraction techniques which enables the

collection of elements in parallel (Appel, Lahn, Buytaert, &

Pebesma, 2018). An alternative method is to represent EO data

as multidimensional arrays and utilise such databases for not

only storage but also analyses. The EarthServer project utilises

such technology for use in domain of image and sensor

statistics, neuro science, OLAP and high-level computing. The

RasDaMan Engine is efficient in managing potentially

unlimited data volumes and adheres to OGC data and service

standards for interoperability. This ensures that big EO data can

be handled and analysed in a cost-efficient and scalable manner

(Baumann, 1999; “EarthServer.eu,” 2018).

This paper is based on the work carried out by the Australian

Geoscience Data Cube (AGDC) project from which the multi-

dimensional framework is adapted. AGDC has addressed

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-29-2018 | © Authors 2018. CC BY 4.0 License.

29

various challenges faced by using large EO data, in particular

focusing on the V’s of Big Data. (Lewis et al., 2017) Volume,

Veracity, Velocity and Variety has been successfully addressed

using the Data Cube framework upon which multiple studies

have been carried out. Projects such as the Water Observation

from Space (WOfS) (Mueller et al., 2016), Fractional Cover

(Scarth, P., Röder, A., Schmidt, 2010), Normalised Difference

Vegetation Index (NDVI) , Intertidal Extents Model (ITEM)

(Sagar, Roberts, Bala, & Lymburner, 2017) and Surface

Reflectance (SR) were carried out using the Landsat archive of

Australia. The Data Cube framework was built, coupled with

the computing facility of the National Computational

Infrastructure (NCI) where petabyte-scale level EO data was

orthocorrected, atmospherically corrected and analysed

successfully.

3. STUDY AREA

The area of study in this research is the State of Uttarakhand,

India which is located at the foothills of the Himalayas and

often referred to as “Devbhumi”- Land of the Gods. The state

is roughly 54,000 Km2 with an elevation range of 600 to 7800

meters. It is an agricultural and tourism dependent state where

the role geospatial data is crucial. The terrain and climate is

very diverse with regions near the Himalayas experiencing

heavy snowfall while the plains are dense with populated cities

often experiencing heavy rainfall. The study area is shown in

Figure 1.

Figure 1. Study Area

4. MATERIALS AND METHODS

4.1 Materials Required

4.1.1 Hardware Requirements: The Data Cube framework

was setup on a workstation PC with the latest Intel i7 6th

generation processor coupled with 16 Gigabytes of RAM

4.1.2 Software Requirements: The following are the software

requirements for the Data Cube framework -

 Python 3.5 and supported libraries: These are used to

build the model and run analysis on all datasets,

communicating with the Data Cube.

 PGadmin: Used to monitor and query data.

 Miniconda/Anaconda: Python environment to build

model and setup Data Cube.

 QGIS/ArcMap: Pre-process datasets for modelling.

 HTML, PHP, JavaScript: To build front-end interface.

 OS-Windows 10 Pro and Ubuntu 14.0 LS

4.1.3 Datasets used: The datasets (as shown in Table 1) used

to carry out this research was retrieved from the Indian Remote

Sensing satellite (IRS) series and the Resourcesat Series, aboard

which was the Linear Imaging Self Scanning (LISS) sensor. The

sensor operates at a resolution of 23.5 meters with a swath of

142 kilometres. The sensor was classified into 4 optical

multispectral bands covering green, red, near infrared and

shortwave infrared. Pre-monsoon months between January and

April were collected with almost 250 tiles covering the entire

study area.

Table 1 EO Satellite Datasets and Size

Sl.No
Satellite

Name
Product

Product

Type

Data

Size

1 IRS 1D LISS III
Optical

MSS

80

GB

2 IRS 1D LISS III
Optical

MSS

3
Resourcesat

1
LISS III

Optical

MSS

4
Resourcesat

2
LISS III

Optical

MSS

4.2 Data Cube Setup and Execution: The overall workflow

as shown in Figure 2, from the installation of the Data Cube to

execution of models is described in the following steps -

1. DC Package Installation

2. Database Initialization

3. Product Definition

4. Metadata Preparation

5. Data Indexing

6. Data Ingestion

7. Data Loading

Figure 2. Data Cube Setup

4.2.1 Data Cube Package Installation: The latest version of

the Data Cube package can be sourced from Git and installed

along with all its dependencies a few of which are listed below -

 GDAL

 Rasterio

 Numpy

 netCDF4

 scipy

 pandas

 Matplotlib

 lxml etc.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-29-2018 | © Authors 2018. CC BY 4.0 License.

30

 Installation of Data Cube and all its supporting dependencies

should be carried out on a virtual environment, so as to avoid

version and library conflicts with other packages within the test

system.

4.2.2 Database Initialization: A PostgreSQL database is

initialised with super user permission and a schema is generated

to hold all the table values. The agdc schema consists of 5

tables, namely -

 dataset

 dataset_location

 dataset_source

 dataset_type

 metadata_type, as well as a login table to maintain

user records.

4.2.3 Product Definition: The Data Cube can handle many

different types of data and for this very exact reason it is

essential that the Data Cube understands the differences and

nuances of each dataset and what to do with them. The product

definition describes numerous variables similar to the ingestion

configuration discussed before but is unique to each satellite

data product. A few of the variables are listed below -

 Name

 Description

 Metadata

o Platform

o Instrument

o Processing Level

o Product Type

o Format

 Measurements

o Datatype

o Nodata

o Spectral Response

4.2.4 Metadata Preparation: A prerequisite for data index

and ingestion is the meta-data preparation phase. A metadata

file usually in the format of a basic text file or XML file is often

accompanied with the satellite data, but this format is not

readable within the Data Cube. A specific format called a

Markup Language, more precisely a YAML formatted text file

needs to be generated from the data in order for the Data Cube

to index a dataset. The dataset meta-data generated consists of

the following description variables similar to the product

definition. A few of the variables are listed below -

 Unique ID

 Creation Date

 Product Type

 Platform

 Instrument

 Format

 Extent

o Coordinates

o From Date

o To Date

 Grid Spatial

o Geo Reference Points

o Spatial Reference

This configuration file is unique to each scene of the product as

the extents vary across multiple tiles. Thus there could be tens if

not hundreds of dataset documents required to map each scene

perfectly.

4.2.5 Database Indexing: Indexing of a dataset into a

database is the process of setting and recording an instance the

data and its corresponding metadata into a temporary storage in

the database. This method is carried out purely for the sake of

improving the speed of data access, especially when dealing

with large scale datasets of Gigabyte if not Petabyte scales. Also

to ensure that any changes during data manipulation and

analysis does not alter the original dataset stored in the system

(Lewis et al., 2017).

The Entity Relationship Diagram (ERD) for the database

indexing phase is described below in Figure 3.

Figure 3. Database Indexing

The class PostgresDB contains the Index class which stores the

reference to all users, datasets, metadata_types, products,

datasets and URI and is defined by functions to initialise the

database, to close the database connection as well as to enter

and exit the initialisation modules. Part of the PostgresDB class

is the Python specific SQLAlchemy, a database toolkit. This

module is an object based relational mapper with the benefits

and flexibility of SQL at complete high performance access

rates and data abstraction. SQLAlchemy is the crux of the

Engine class which establishes database connection as well as

enables the execution of various methods of the XArray Dataset

methods to carry out analysis. All changes in these database

objects are only reflected in the index class and not in the stored

data.

4.2.6 Data Ingestion: The process of inserting data into the

Data Cube by mapping the dataset from its original form to a

new storage schema is called as ingesting a dataset. The process

is governed by many variables which dictate the meta-data and

storage format before being written out to disk. The ingestion

configuration file describes the following variables written in

YAML formatted text.

 Location

 Storage driver

 CRS

 Tile_size

 Resolution

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-29-2018 | © Authors 2018. CC BY 4.0 License.

31

 Chunking

 Measurements

The initial step consists of ensuring the file names to be

ingested matches the files described in the ingestion

configuration file. The configuration files are verified after

supplying root access, after which the indexed data is verified

for each scene and product indexed into the Data Cube. The

next step involves the testing of the grids, spatial reference and

if it matches to the reference set by the ingestion configuration.

By default, the Data Cube API transforms all datasets to a

standard spatial reference set in the initialization phase, this

ensures that none of the datasets will be mismatched and

spatially unrecognized. Compliance Phase comes to an end

where the default storage unit is set and a NetCDF check is

accompanied for each file to maintain the common data format

standard followed by the Data Cube API. NetCDF files are

interoperable over the internet along with ability to store almost

limitless number of dimensions and groups. Zlib data

compression standard allows such complex data to be shared

across the internet at a low-cost disk/bandwidth space

(“netCDF4 API documentation,” 2018). Figure 4 describes the

ingestion process in detail.

Figure 4. Data Ingestion

The ingestion phase begins with the reading of the

configuration file, each attribute is read and verified to exist in

the index before continuing. Now the NetCDF file metadata is

cross-checked with the attributes found in the configuration file

and against the original metadata (satellite order). When all the

attributes, filenames and meta-data are found to be correct, the

Data Cube API sets the input types, extents, time slices and

dimensions along with the spatial reference onto the example

NetCDF file (which is also indexed).

The final stage of ingestion is the Reprojection of each

scene/tile into scaled down pixel values using the Data Cube

API. This step concludes the ingestion of a scene, which is

repeated for all scenes and products indexed in the Data Cube.

The ingestion process ends when all the scenes have been

reprojected as per configuration and each NetCDF file is written

onto the disks.

4.2.7 Data Load: Loading of data once ingestion is complete

is the process of query the database for the required dataset and

its matching product for the indexed XArray Dataset storage

format. The flowchart depicted in Figure 5 describes the process

of data loading depending on the query supplied by the user.

Figure 5. Data Load

Once a query is read and the polygon is calculated, all the

datasets within the time-frame supplied is grouped. An output

array for all of the bands is created at every time-stamp. The

same process is repeated at each dataset encounter, after which

the data portion is loaded from file and fused into array. Fuse

operation is carried out when over-lapping regions exist in the

polygons. Once all the datasets have been queried,read and

fused, an output array is created to store all the datasets grouped

by time and is returned as a XArray Dataset to the user.This can

now be analysed and visualised using supported libraries such

as Pandas and Matplotlib for various use-cases and algorithms.

5. RESULTS

This chapter describes the various results obtained after the

implementation of the Data Cube and running various analysis

on the environment. These operations were carried out on an

interactive platform called the Jupyter Notebook which is a

browser based interpreter and visualizer of live codes, equations

and visualizations. The Data Cube can be remotely accessed via

a web browser (Jupyter Notebook) and algorithms can be

developed across multiple datasets without facing any

complications related to data interoperability or compatibility.

The results achieved during the course of this project have been

described below depicting the following:

 Satellite Data Ingestion

 Accessing the Data Cube

 Viewing products and measurements

 Retrieving Data

 Plotting Data

 Masking

 NDVI

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-29-2018 | © Authors 2018. CC BY 4.0 License.

32

 Band Statistics

 Reprojection

 Change Detection

 Unsupervised classification

5.1 Ingestion of Satellite Data

As described in section 4.2.7, various scripts were written to

customise different satellite data along with user requirements

and definitions. Data from the Linear Imaging Self Scanner

(LISS) III satellite data was acquired for the study area from

2000 to 2015, consuming over 120 gigabytes and generating

over 8,000 NetCDF files used by the Data Cube index

operations. The scenes were indexed and ingested successfully

on the hardware as described in section 4.1.1.

5.2 Accessing the Data Cube

A database configuration file holds the key information required

to connect to the Data Cube such as the database name,

hostname or IP address of database, username and password

authentic to each user. This ensures that only users with the

right credentials who are authorised to access the Data Cube are

allowed to query results out of it. A code snippet below shows

how the datacube library is imported and the configuration file

is accessed via Jupyter Notebook.

import datacube

dc=datacube.Datacube(config=’path_to_file')

5.3 Viewing Products and Measurements

Each satellite data comes with a descriptive metadata

information consisting of the imagery extents, format, platform,

instrument etc. which can be viewed by the user with Jupyter

Notebook. This is accessed by the Data Cube API which reads

the metadata of each tile/scene and summarises band

measurements and product descriptions.

import datacube

dc.list_measurements()

dc.list_products()

5.4 Retrieving Data

The Data Cube API called to load specific product types

ingested along with the area of interest described by its extents.

Along with the AOI, the resolution of the required tiles can also

be specified, if resampling to a lower resolution is required the

sampling algorithm along with its resolution in meters can be

denoted within the code itself.

Syntax

Variable=dc.load(product=’product_name’,

resolution=(-x,y),x=(x1,x2),y=(y1,y2))

Code

WC=dc.load(product=LISSIII_Ingest,resolutio

n=(-

24,24),x=(77.500,81.083),y=(28.666,31.499))

5.5 Plotting Data

Figure 6 and 7 represents the single plots of the LISS III band 3

and band 4 imagery retrieved from the Data Cube. All the

scenes pertaining to the study area was mosaicked using Python

and its dependencies without relying on consumer grade

softwares.

Figure 6. LISS III band 3

Figure 7. LISS III band 4

5.6 Masking NO_DATA

NO_DATA/Nan values in rasters often occur due to many

reasons such as incomplete data retrieval and scene boundaries,

these are often filled with a special value and can be filtered out

using the Data Cube API, where the XArray data structure reads

the typical value of -9999 as a floating type value which enables

plotting to be easily visualised. Shown in Figure 8 are a few

tiles of LISS III imagery from 2015 which have been masked

and NO_DATA has been removed from scene boundaries.

Figure 8. NO_DATA Masking

Syntax

Variable1=DataArray.Band.where

(DataArray.Band!=

DataArray.Band.atrs[‘nodata’])

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-29-2018 | © Authors 2018. CC BY 4.0 License.

33

DataArray.Band.plot(col=’time’,col_wrap=x)

Code

L3_ND_B2 = L3_2005_B2.where(L3_2005_B2 !=

L3_2005_B2.attrs['nodata'])

L3_ND_B2.plot(col='time', col_wrap=3)

5.7 NDVI Generation

The Normalised Difference Vegetation Index was calculated

using the Red and NIR bands of LISS III imagery, the Data

Cube API was used to call the product and the corresponding

tiles within the AOI. After NO_DATA was masked, NDVI was

calculated for each tile. After NDVI was calculated, the tiles

were mosaicked with the mean NDVI taken into consideration.

Figure 9. NDVI of year 2010

Figure 9 describes the NDVI generated for the year 2010 on the

Data Cube framework. The NDVI tiles were mosaicked by

considering the mean NDVI of all the tiles pertaining to the

study area. This operation was carried out in under 3 minutes,

operating at 70% CPU and 65% Memory utilization rates. Such

tasks are hardware dependent, therefore the better the hardware

configuration, faster the processing. Similarly Figure 10 depicts

the reclassified NDVI values to fall into 4 distinct classes,

where -1 to 0 for class 1, 0 to 0.1 for class 2, 0.1 to 0.25 for

class 3 and above 0.25 for class 4 this is done to better visualize

the areas of low and high/dense vegetation.

Figure 10. Reclassified NDVI of 2010

5.8 Band Statistics

Various operations such as False Colour Composite (FCC)

generation, Mean, Median and histogram generation was carried

out to test the efficacy of the Data Cube framework to handle

the most common GIS tasks often carried out on traditional

softwares. Once data was ingested into the Data Cube, the user

need to worry about facing issues related to projection mis-

matches and the various technicality required to operate a

software. The Jupyter Notebook interface allows a user to

implement customised codes and algorithms to work based on

the requirements of the user. This allows a use to implement the

same logic on all types of datasets ingested into the Data Cube.

Therefore, enabling create once, use many policy of operations.

This not only saves the effort required in repeating tasks on

multiple datasets but also allows the use to concentrate on the

analysis and improving the algorithm without worrying about

handling large datasets. Shown in Figure 11 is the FCC

generated using the Raster Stack operation.

Syntax

Variable2=np.array([mosaic_band1,mosaic_ban

d2,mosaic_band3],dtype=np.datatype)

Plt.imshow(np.dstack(variable1)

Code

all_bands= np.array([all_b4,all_b3,all_b2],

dtype=np.int64)

plt.imshow(np.dstack(all_bands))

Figure 11. FCC generation of Uttarakhand

Syntax

Variable2=np.nanmedian(DataArray_Band,axis=

x)

Plt.imshow(Variable2,extent=(x1,x2,y1,y2)

Code

import numpy as np

import matplotlib.pyplot as plt

all_b4_10=np.nanmedian(L3_ND_B4_10,axis=0)

plt.imshow(all_b4_10,extent=(77.53,81.05,28

.65,31.49))

plt.colorbar()

plt.savefig(‘path_to_disk/name.png',dpi=300

)

Mean and Median operations can also be carried out on the

datasets ingested into the Data Cube. These allow multiple tiles

of imagery within the extent to be mosaicked.

The Data Cube API along with the use of the Python Numpy

library allows very quick and efficient raster band operations to

be carried out on the multi-dimensional database. These are can

now be save to disk directly. Shown in Figures 12 and 13 are

the mosaicked median and mean outputs of the study area.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-29-2018 | © Authors 2018. CC BY 4.0 License.

34

Figure 12. Median operation on mosaicked image

Figure 13. Mean operation on Mosaicked image

Syntax

Variable3=DataArray_Band.loc[‘year 1’:’year

2’]

Code

L31_2005_B4 = L31.B4.loc['2005':'2015']

L31_2005_B4.plot()

Figure 14. Histogram Generation (Band)

Histograms can also be generated as shown in Figures 14 and

15 depicting the pixel counts of band 4 and NDVI values

respectively. These operations use the matplotlib library to read

and plot the datasets operations.

Figure 15. Histogram Generation (NDVI-2010)

5.9 Reprojection

Since the Data Cube relies heavily on the GDAL environment,

all geoprocessing tasks including Reprojection, reading and

writing raster as well as vector data, map algebra and

classification can be carried out on the Data Cube. Shown

below is an example code snippet to reproject raster data.

Syntax

Variable4= dc.load(product=’product_name’,

resolution=(-x,y),x=(x1,x2),y=(y1,y2),

output_crs=’EPSG CODE')

Code

Albers_new=dc.load(product='cartoDEM',

x=(77.500,81.083),y=(28.666,31.499),output_

crs='EPSG:3577',resolution=(-25,25))

albers_grid.elevation.shape

5.10 Change Detection

Using the generated NDVI values of the years 2005, 2010 and

2015 change detection was carried out to identify the migration

of classes from highly vegetative regions to low and vice-versa

as depicted in Figures 16 and 17.

Figure 16. 2010-2005 Change Detection

from matplotlib import ticker

plt.contour(ndvi_diff,linestyles="solid",or

igin='upper')

plt.contourf(ndvi_diff,origin='upper')

cbar=plt.colorbar()

tick_locator = ticker.MaxNLocator(nbins=3)

cbar.locator = tick_locator

cbar.update_ticks()

cbar.ax.set_yticklabels(['Negative

Change','No Change','Positive Change'])

plt.rc('font', size=8)

plt.draw()

plt.show()

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-29-2018 | © Authors 2018. CC BY 4.0 License.

35

Figure 17. 2015-2005 Change Detection

5.11 Unsupervised Classification

More complex algorithms such as classification techniques can

also be carried out on the Data Cube. Unsupervised

classification of raster datasets was carried on the LISS III

imagery with a cluster size of 5 using the MiniBatchKMeans

algorithm specified by sklearn cluster library as shown in

Figure 18.

lf_class2=sklearn.cluster.MiniBatchKMeans(i

nit='k-means++',n_clusters=5,batch_size=10,

n_init=10,max_no_improvement=10, verbose=0,

random_state=0)

Figure 18. MiniBatchKMeans unsupervised classification

6. CONCLUSION

This study has shown that having a scalable and robust

framework that can be adapted to multiple datasets without

having to deal with data dependency issues, file format and

projection issues. This framework paves the way to a more

efficient use of large remotely sensed data which is growing

immensely. Technology today has advanced to such a stage that

data generation from EO satellites far outgrow the data

utilization rate. As new frontiers in Machine Learning, Deep

Learning, Computer Vision and Human Computer Interaction

are crossed, there is a need for data to be ‘Analysis Ready’. This

is imperative as data from the Sentinel and GiSAT series would

further push our data handling and processing capabilities,

which if not addressed properly would affect the quality of

research and more importantly its impact on society. Addressing

issues related to not only usability and efficiency, but also the

challenges faced by Big Data is where a multi-dimensional

framework of gridded data can overcome when compared to the

slow and tiresome process that traditional remote sensing has

been following for decades.

REFERENCES

Appel, M., Lahn, F., Buytaert, W., & Pebesma, E. (2018). Open

and scalable analytics of large Earth observation datasets:

From scenes to multidimensional arrays using SciDB and

GDAL. ISPRS Journal of Photogrammetry and Remote

Sensing, 138, 47–56.

https://doi.org/10.1016/j.isprsjprs.2018.01.014

Baumann, P. (1999). A Database Array Algebra for Spatio-

Temporal Data and Beyond. In NGIT ’99 Proceedings of

the 4th International Workshop on Next Generation

Information Technologies and Systems (pp. 76–93).

Berlin: Springer-Verlag Berlin, Heidelberg.

https://doi.org/10.1007/3-540-48521-X_7

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau,

D., & Moore, R. (2017). Google Earth Engine: Planetary-

scale geospatial analysis for everyone. Remote Sensing of

Environment, 202, 18–27.

https://doi.org/10.1016/j.rse.2017.06.031

Hofer, B. (2015). Uses of online geoprocessing technology in

analyses and case studies: a systematic analysis of

literature. International Journal of Digital Earth, 8(11),

901–917.

https://doi.org/10.1080/17538947.2014.962632

Home | EarthServer.eu. (2018). Retrieved March 21, 2018, from

http://www.earthserver.eu/

Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L.,

Mueller, N., … Wang, L.-W. (2017). The Australian

Geoscience Data Cube — Foundations and lessons

learned. Remote Sensing of Environment, 202, 276–292.

https://doi.org/10.1016/j.rse.2017.03.015

Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R.,

Sixsmith, J., … Ip, A. (2016). Water observations from

space: Mapping surface water from 25years of Landsat

imagery across Australia. Remote Sensing of

Environment, 174, 341–352.

https://doi.org/10.1016/j.rse.2015.11.003

netCDF4 API documentation. (2018). Retrieved May 10, 2018,

from http://unidata.github.io/netcdf4-python/

Oliver, S., & Woodcock, R. (2015). Australian Geoscience

Data Cube Agency Report. Melbourne. Retrieved from

http://ceos.org/meetings/wgiss-40/

Sagar, S., Roberts, D., Bala, B., & Lymburner, L. (2017).

Extracting the intertidal extent and topography of the

Australian coastline from a 28 year time series of Landsat

observations. Remote Sensing of Environment, 195, 153–

169. https://doi.org/10.1016/j.rse.2017.04.009

Scarth, P., Röder, A., Schmidt, M. (2010). Tracking grazing

pressure and climate interaction - the role of Landsat

fractional cover in time series analysis. In 15th

Australasian Remote Sensing and Photogrammetry

Conference (ARSPC) (pp. 13–17), Australia

https://doi.org/https://doi.org/10.6084/m9.figshare.94250

.v1

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-29-2018 | © Authors 2018. CC BY 4.0 License.

36

