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ABSTRACT: 

Traditional geoprocessing techniques often rely on the use of multiple softwares for data handling and management which 

consumes almost 80% of the time and requires the user to be well versed with all the intricacies of pre-processing. Therefore, there is 

a need to reverse the trend on analysis and data management, so as to enable scientists and researchers to focus on the science rather 

than data handling and pre-processing. The concept of a Data Cube which is a massive multi-dimensional array of raster or gridded 

data, ‘stacks’ satellite images and addresses the problems faced by traditional remote sensing practices and provides an interactive 

environment where datasets can be analysed with relative ease as compared to its traditional counterparts. This framework allows 

multi-format and multi-projection datasets spanning decades to be used in various geoprocessing techniques from simple GIS tasks 

such as data conversion, time series generation, and to do more complex tasks such as change detection, NDVI generation, 

unsupervised classification and modelling. LISS III data for the state of Uttarakhand, India was used on an interactive interface 

called the Jupyter Notebook where scripts written in Python allowed data to be ingested, analysed and visualised. The Data Cube 

framework hence proved to be a flexible and extensive development environment which can be extended to meet more complex 

modelling requirements. 

 

 

1. INTRODUCTION 

Native and offline geoprocessing is hindered by few guiding 

principles that govern the functionality of large scale and 

complex datasets that requires to be processed and analysed 

before being accessed by users (Hofer, 2015). Traditionally, 

remote sensing products goes through many step-by-step 

procedures before being shipped out to a client, this often takes 

upto 80% of the total process, with less than 20% actually 

utilised for analysis and development (Oliver & Woodcock, 

2015). Along with data interoperability and exchange, data size 

limitations and processing capabilities often pose a challenge to 

researchers bounded by using a more traditional or Desktop-

approach to geoprocessing which is limited by not only 

hardware but also various complexities the user must attend to 

facilitate the data, its management and utilization in various 

softwares. Considering the vast amounts of Earth Observational 

(EO) data generated per day, there exists a large potential for 

data to be unstructured and more importantly not conforming to 

international standards (Lewis et al., 2017). To overcome such 

issues and vastly improve the user accessibility and scalability 

of EO data, a more robust and powerful framework that adheres 

to various standards of interoperability and allows on-the-fly 

geoprocessing of large amounts of EO data is required. The 

Data Cube, is one such framework which works on the principle 

of “stacking” satellite imagery in a multi-dimensional array of 

gridded data which overcomes such challenges. A study by 

Mueller et al., (2016) consisting of over 100,000 satellite 

images and metadata were ortho-rectified, corrected to 

measurements of surface reflectance and analysed for 

observations of water at a resolution of 25m. A project of this 

scale would not be possible if traditional methods of remote 

sensing were applied. This framework can be extended to fit 

various use-cases ranging from continental-scale analysis of 

vegetation change, species distribution modelling and 

understanding climatic change over long periods of time.  

 

2. RELATED STUDIES 

2.1 Online Geoprocessing technology and its attempts 

worldwide 

One of the most profound examples of online, scalable and 

interoperable geoprocessing platforms belongs to that of 

Google. The Google Earth Engine (GEE) is a cloud-based 

platform for planetary scale analysis and is built upon its 

powerful supercomputational capabilities of petabyte scale 

analysis of EO data (Gorelick et al., 2017). Housing massive 

data catalogues which are indexed by high-performance parallel 

computers, GEE allows users to quickly access and analyse data 

from a web-browser. This technology allows a researcher to 

skip various hurdles of handling EO data, such as file formats, 

managing databases and using geospatial data processing 

techniques. File-based data handling mechanisms such as 

Hadoop Distributed File System (HDFS) and GeoTrellis works 

on the principle of processing large spatial queries using 

distributed memory abstraction techniques which enables the 

collection of elements in parallel (Appel, Lahn, Buytaert, & 

Pebesma, 2018). An alternative method is to represent EO data 

as multidimensional arrays and utilise such databases for not 

only storage but also analyses. The EarthServer project utilises 

such technology for use in domain of image and sensor 

statistics, neuro science, OLAP and high-level computing. The 

RasDaMan Engine is efficient in managing potentially 

unlimited data volumes and adheres to OGC data and service 

standards for interoperability. This ensures that big EO data can 

be handled and analysed in a cost-efficient and scalable manner 

(Baumann, 1999; “EarthServer.eu,” 2018).  

 

This paper is based on the work carried out by the Australian 

Geoscience Data Cube (AGDC) project from which the multi-

dimensional framework is adapted. AGDC has addressed 
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various challenges faced by using large EO data, in particular 

focusing on the V’s of Big Data. (Lewis et al., 2017) Volume, 

Veracity, Velocity and Variety has been successfully addressed 

using the Data Cube framework upon which multiple studies 

have been carried out. Projects such as the Water Observation 

from Space (WOfS) (Mueller et al., 2016), Fractional Cover 

(Scarth, P., Röder, A., Schmidt, 2010), Normalised Difference 

Vegetation Index (NDVI) , Intertidal Extents Model (ITEM) 

(Sagar, Roberts, Bala, & Lymburner, 2017) and Surface 

Reflectance (SR) were carried out using the Landsat archive of 

Australia. The Data Cube framework was built, coupled with 

the computing facility of the National Computational 

Infrastructure (NCI) where petabyte-scale level EO data was 

orthocorrected, atmospherically corrected and analysed 

successfully.  

3. STUDY AREA 

The area of study in this research is the State of Uttarakhand, 

India which is located at the foothills of the Himalayas and 

often referred to as “Devbhumi”- Land of the Gods.  The state 

is roughly 54,000 Km2 with an elevation range of 600 to 7800 

meters. It is an agricultural and tourism dependent state where 

the role geospatial data is crucial. The terrain and climate is 

very diverse with regions near the Himalayas experiencing 

heavy snowfall while the plains are dense with populated cities 

often experiencing heavy rainfall. The study area is shown in 

Figure 1. 

 

Figure 1. Study Area 

 

4. MATERIALS AND METHODS 

4.1 Materials Required 

4.1.1 Hardware Requirements: The Data Cube framework 

was setup on a workstation PC with the latest Intel i7 6th 

generation processor coupled with 16 Gigabytes of RAM 

 

4.1.2 Software Requirements: The following are the software 

requirements for the Data Cube framework - 

 Python 3.5 and supported libraries: These are used to 

build the model and run analysis on all datasets, 

communicating with the Data Cube. 

 PGadmin: Used to monitor and query data. 

 Miniconda/Anaconda: Python environment to build 

model and setup Data Cube. 

 QGIS/ArcMap: Pre-process datasets for modelling. 

 HTML, PHP, JavaScript: To build front-end interface. 

 OS-Windows 10 Pro and Ubuntu 14.0 LS 

4.1.3 Datasets used: The datasets ( as shown in Table 1) used 

to carry out this research was retrieved from the Indian Remote 

Sensing satellite (IRS) series and the Resourcesat Series, aboard 

which was the Linear Imaging Self Scanning (LISS) sensor. The 

sensor operates at a resolution of 23.5 meters with a swath of 

142 kilometres. The sensor was classified into 4 optical 

multispectral bands covering green, red, near infrared and 

shortwave infrared. Pre-monsoon months between January and 

April were collected with almost 250 tiles covering the entire 

study area. 

 

Table 1 EO Satellite Datasets and Size 

Sl.No 
Satellite 

Name 
Product 

Product 

Type 

Data 

Size 

1 IRS 1D LISS III 
Optical 

MSS 

80 

GB 

2 IRS 1D LISS III 
Optical 

MSS 

3 
Resourcesat 

1 
LISS III 

Optical 

MSS 

4 
Resourcesat 

2 
LISS III 

Optical 

MSS 

 

 

4.2 Data Cube Setup and Execution: The overall workflow 

as shown in Figure 2, from the installation of the Data Cube to 

execution of models is described in the following steps - 

1. DC Package Installation 

2. Database Initialization  

3. Product Definition 

4. Metadata Preparation 

5. Data Indexing 

6. Data Ingestion 

7. Data Loading 

 

 

Figure 2. Data Cube Setup 
 

4.2.1 Data Cube Package Installation: The latest version of 

the Data Cube package can be sourced from Git and installed 

along with all its dependencies a few of which are listed below -  

 GDAL 

 Rasterio 

 Numpy 

 netCDF4 

 scipy 

 pandas 

 Matplotlib 

 lxml etc. 
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 Installation of Data Cube and all its supporting dependencies 

should be carried out on a virtual environment, so as to avoid 

version and library conflicts with other packages within the test 

system.  

 

4.2.2 Database Initialization: A PostgreSQL database is 

initialised with super user permission and a schema is generated 

to hold all the table values. The agdc schema consists of 5 

tables, namely -  

 dataset 

 dataset_location 

 dataset_source 

 dataset_type 

 metadata_type, as well as a login table to maintain 

user records. 

 

4.2.3 Product Definition: The Data Cube can handle many 

different types of data and for this very exact reason it is 

essential that the Data Cube understands the differences and 

nuances of each dataset and what to do with them. The product 

definition describes numerous variables similar to the ingestion 

configuration discussed before but is unique to each satellite 

data product. A few of the variables are listed below - 

 Name 

 Description 

 Metadata 

o Platform 

o Instrument 

o Processing Level 

o Product Type 

o Format 

 Measurements 

o Datatype 

o Nodata 

o Spectral Response 

 

4.2.4 Metadata Preparation: A prerequisite for data index 

and ingestion is the meta-data preparation phase. A metadata 

file usually in the format of a basic text file or XML file is often 

accompanied with the satellite data, but this format is not 

readable within the Data Cube. A specific format called a 

Markup Language, more precisely a YAML formatted text file 

needs to be generated from the data in order for the Data Cube 

to index a dataset. The dataset meta-data generated consists of 

the following description variables similar to the product 

definition. A few of the variables are listed below - 

 Unique ID 

 Creation Date 

 Product Type 

 Platform 

 Instrument 

 Format 

 Extent 

o Coordinates 

o From Date 

o To Date 

 Grid Spatial 

o Geo Reference Points 

o Spatial Reference 

 

This configuration file is unique to each scene of the product as 

the extents vary across multiple tiles. Thus there could be tens if 

not hundreds of dataset documents required to map each scene 

perfectly. 

 

4.2.5 Database Indexing: Indexing of a dataset into a 

database is the process of setting and recording an instance the 

data and its corresponding metadata into a temporary storage in 

the database. This method is carried out purely for the sake of 

improving the speed of data access, especially when dealing 

with large scale datasets of Gigabyte if not Petabyte scales. Also 

to ensure that any changes during data manipulation and 

analysis does not alter the original dataset stored in the system 

(Lewis et al., 2017). 

 

The Entity Relationship Diagram (ERD) for the database 

indexing phase is described below in Figure 3. 

 

 
Figure 3. Database Indexing 

 

The class PostgresDB contains the Index class which stores the 

reference to all users, datasets, metadata_types, products, 

datasets and URI and is defined by functions to initialise the 

database, to close the database connection as well as to enter 

and exit the initialisation modules. Part of the PostgresDB class 

is the Python specific SQLAlchemy, a database toolkit. This 

module is an object based relational mapper with the benefits 

and flexibility of SQL at complete high performance access 

rates and data abstraction. SQLAlchemy is the crux of the 

Engine class which establishes database connection as well as 

enables the execution of various methods of the XArray Dataset 

methods to carry out analysis. All changes in these database 

objects are only reflected in the index class and not in the stored 

data. 

 

4.2.6 Data Ingestion: The process of inserting data into the 

Data Cube by mapping the dataset from its original form to a 

new storage schema is called as ingesting a dataset. The process 

is governed by many variables which dictate the meta-data and 

storage format before being written out to disk. The ingestion 

configuration file describes the following variables written in 

YAML formatted text. 

 Location 

 Storage driver 

 CRS 

 Tile_size 

 Resolution 
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 Chunking 

 Measurements 

The initial step consists of ensuring the file names to be 

ingested matches the files described in the ingestion 

configuration file. The configuration files are verified after 

supplying root access, after which the indexed data is verified 

for each scene and product indexed into the Data Cube. The 

next step involves the testing of the grids, spatial reference and 

if it matches to the reference set by the ingestion configuration. 

By default, the Data Cube API transforms all datasets to a 

standard spatial reference set in the initialization phase, this 

ensures that none of the datasets will be mismatched and 

spatially unrecognized. Compliance Phase comes to an end 

where the default storage unit is set and a NetCDF check is 

accompanied for each file to maintain the common data format 

standard followed by the Data Cube API. NetCDF files are 

interoperable over the internet along with ability to store almost 

limitless number of dimensions and groups. Zlib data 

compression standard allows such complex data to be shared 

across the internet at a low-cost disk/bandwidth space 

(“netCDF4 API documentation,” 2018). Figure 4 describes the 

ingestion process in detail. 

 

 
 

Figure 4. Data Ingestion 

 

The ingestion phase begins with the reading of the 

configuration file, each attribute is read and verified to exist in 

the index before continuing. Now the NetCDF file metadata is 

cross-checked with the attributes found in the configuration file 

and against the original metadata (satellite order). When all the 

attributes, filenames and meta-data are found to be correct, the 

Data Cube API sets the input types, extents, time slices and 

dimensions along with the spatial reference onto the example 

NetCDF file (which is also indexed). 

 

The final stage of ingestion is the Reprojection of each 

scene/tile into scaled down pixel values using the Data Cube 

API. This step concludes the ingestion of a scene, which is 

repeated for all scenes and products indexed in the Data Cube. 

The ingestion process ends when all the scenes have been 

reprojected as per configuration and each NetCDF file is written 

onto the disks. 

4.2.7 Data Load: Loading of data once ingestion is complete 

is the process of query the database for the required dataset and 

its matching product for the indexed XArray Dataset storage 

format. The flowchart depicted in Figure 5 describes the process 

of data loading depending on the query supplied by the user. 

 
 

Figure 5. Data Load 

 

Once a query is read and the polygon is calculated, all the 

datasets within the time-frame supplied is grouped. An output 

array for all of the bands is created at every time-stamp. The 

same process is repeated at each dataset encounter, after which 

the data portion is loaded from file and fused into array. Fuse 

operation is carried out when over-lapping regions exist in the 

polygons. Once all the datasets have been queried,read and 

fused, an output array is created to store all the datasets grouped 

by time and is returned as a XArray Dataset to the user.This can 

now be analysed and visualised using supported libraries such 

as Pandas and Matplotlib for various use-cases and algorithms. 

 

5. RESULTS 

This chapter describes the various results obtained after the 

implementation of the Data Cube and running various analysis 

on the environment. These operations were carried out on an 

interactive platform called the Jupyter Notebook which is a 

browser based interpreter and visualizer of live codes, equations 

and visualizations. The Data Cube can be remotely accessed via 

a web browser (Jupyter Notebook) and algorithms can be 

developed across multiple datasets without facing any 

complications related to data interoperability or compatibility. 

The results achieved during the course of this project have been 

described below depicting the following: 

 

 Satellite Data Ingestion 

 Accessing the Data Cube 

 Viewing products and measurements 

 Retrieving Data 

 Plotting Data 

 Masking  

 NDVI 
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 Band Statistics 

 Reprojection 

 Change Detection 

 Unsupervised classification 

 

5.1 Ingestion of Satellite Data  

As described in section 4.2.7, various scripts were written to 

customise different satellite data along with user requirements 

and definitions. Data from the  Linear Imaging Self Scanner 

(LISS) III satellite data was acquired for the study area from 

2000 to 2015, consuming over 120 gigabytes and generating 

over 8,000 NetCDF files used by the Data Cube index 

operations. The scenes were indexed and ingested successfully 

on the hardware as described in section 4.1.1.  

5.2 Accessing the Data Cube 

A database configuration file holds the key information required 

to connect to the Data Cube such as the database name, 

hostname or IP address of database, username and password 

authentic to each user. This ensures that only users with the 

right credentials who are authorised to access the Data Cube are 

allowed to query results out of it. A code snippet below shows 

how the datacube library is imported and the configuration file 

is accessed via Jupyter Notebook. 

 

import datacube 

dc=datacube.Datacube(config=’path_to_file')  

 
 

5.3 Viewing Products and Measurements 

Each satellite data comes with a descriptive metadata 

information consisting of the imagery extents, format, platform, 

instrument etc. which can be viewed by the user with Jupyter 

Notebook. This is accessed by the Data Cube API which reads 

the metadata of each tile/scene and summarises band 

measurements and product descriptions.  

 

import datacube 

dc.list_measurements() 

dc.list_products() 

 

5.4 Retrieving Data 

The Data Cube API called to load specific product types 

ingested along with the area of interest described by its extents. 

Along with the AOI, the resolution of the required tiles can also 

be specified, if resampling to a lower resolution is required the 

sampling algorithm along with its resolution in meters can be 

denoted within the code itself. 

 

Syntax 

Variable=dc.load(product=’product_name’, 

resolution=(-x,y),x=(x1,x2),y=(y1,y2)) 

 

Code 

WC=dc.load(product=LISSIII_Ingest,resolutio

n=(-

24,24),x=(77.500,81.083),y=(28.666,31.499)) 

 

5.5 Plotting Data 

Figure 6 and 7 represents the single plots of the LISS III band 3 

and band 4 imagery retrieved from the Data Cube. All the 

scenes pertaining to the study area was mosaicked using Python 

and its dependencies without relying on consumer grade 

softwares.  

 
Figure 6. LISS III band 3 

 
Figure 7. LISS III band 4 

 

5.6 Masking NO_DATA 

NO_DATA/Nan values in rasters often occur due to many 

reasons such as incomplete data retrieval and scene boundaries, 

these are often filled with a special value and can be filtered out 

using the Data Cube API, where the XArray data structure reads 

the typical value of -9999 as a floating type value which enables 

plotting to be easily visualised. Shown in Figure 8 are a few 

tiles of LISS III imagery from 2015 which have been masked 

and NO_DATA has been removed from scene boundaries. 

 

 
Figure 8. NO_DATA Masking  

 

Syntax 

Variable1=DataArray.Band.where 

(DataArray.Band!= 

DataArray.Band.atrs[‘nodata’]) 
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DataArray.Band.plot(col=’time’,col_wrap=x) 

 

Code 

L3_ND_B2 = L3_2005_B2.where(L3_2005_B2 != 

L3_2005_B2.attrs['nodata']) 

L3_ND_B2.plot(col='time', col_wrap=3) 

5.7 NDVI Generation 

The Normalised Difference Vegetation Index was calculated 

using the Red and NIR bands of LISS III imagery, the Data 

Cube API was used to call the product and the corresponding 

tiles within the AOI. After NO_DATA was masked, NDVI was 

calculated for each tile. After NDVI was calculated, the tiles 

were mosaicked with the mean NDVI taken into consideration. 

 
Figure 9. NDVI of year 2010 

 

Figure 9 describes the NDVI generated for the year 2010 on the 

Data Cube framework. The NDVI tiles were mosaicked by 

considering the mean NDVI of all the tiles pertaining to the 

study area. This operation was carried out in under 3 minutes, 

operating at 70% CPU and 65% Memory utilization rates. Such 

tasks are hardware dependent, therefore the better the hardware 

configuration, faster the processing. Similarly Figure 10 depicts 

the reclassified NDVI values to fall into 4 distinct classes, 

where -1 to 0 for class 1, 0 to 0.1 for class 2, 0.1 to 0.25 for 

class 3 and above 0.25 for class 4 this is done to better visualize 

the areas of low and high/dense vegetation. 

 
Figure 10. Reclassified NDVI of 2010 

 

5.8 Band Statistics 

Various operations such as False Colour Composite (FCC) 

generation, Mean, Median and histogram generation was carried 

out to test the efficacy of the Data Cube framework to handle 

the most common GIS tasks often carried out on traditional 

softwares. Once data was ingested into the Data Cube, the user 

need to worry about facing issues related to projection mis-

matches and the various technicality required to operate a 

software. The Jupyter Notebook interface allows a user to 

implement customised codes and algorithms to work based on 

the requirements of the user. This allows a use to implement the 

same logic on all types of datasets ingested into the Data Cube. 

Therefore, enabling create once, use many policy of operations. 

This not only saves the effort required in repeating tasks on 

multiple datasets but also allows the use to concentrate on the 

analysis and improving the algorithm without worrying about 

handling large datasets. Shown in Figure 11 is the FCC 

generated using the Raster Stack operation. 

 

Syntax 

Variable2=np.array([mosaic_band1,mosaic_ban

d2,mosaic_band3],dtype=np.datatype) 

Plt.imshow(np.dstack(variable1) 

 

Code 

all_bands= np.array([all_b4,all_b3,all_b2], 

dtype=np.int64) 

plt.imshow(np.dstack(all_bands)) 

 

 
Figure 11. FCC generation of Uttarakhand 

 

Syntax 

Variable2=np.nanmedian(DataArray_Band,axis=

x) 

Plt.imshow(Variable2,extent=(x1,x2,y1,y2) 

 

Code 

import numpy as np 

import matplotlib.pyplot as plt 

all_b4_10=np.nanmedian(L3_ND_B4_10,axis=0) 

plt.imshow(all_b4_10,extent=(77.53,81.05,28

.65,31.49)) 

plt.colorbar() 

plt.savefig(‘path_to_disk/name.png',dpi=300

) 

 

Mean and Median operations can also be carried out on the 

datasets ingested into the Data Cube. These allow multiple tiles 

of imagery within the extent to be mosaicked.  

 

The Data Cube API along with the use of the Python Numpy 

library allows very quick and efficient raster band operations to 

be carried out on the multi-dimensional database. These are can 

now be save to disk directly. Shown in Figures 12 and 13 are 

the mosaicked median and mean outputs of the study area.  
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Figure 12. Median operation on mosaicked image 

 

 
Figure 13. Mean operation on Mosaicked image 

 

Syntax 

Variable3=DataArray_Band.loc[‘year 1’:’year 

2’] 

 

Code 

L31_2005_B4 = L31.B4.loc['2005':'2015'] 

L31_2005_B4.plot() 

 

 
Figure 14. Histogram Generation (Band) 

 

Histograms can also be generated as shown in Figures 14 and 

15 depicting the pixel counts of band 4 and NDVI values 

respectively. These operations use the matplotlib library to read 

and plot the datasets operations. 

 

 
Figure 15. Histogram Generation (NDVI-2010) 

 

5.9 Reprojection 

Since the Data Cube relies heavily on the GDAL environment, 

all geoprocessing tasks including Reprojection, reading and 

writing raster as well as vector data, map algebra and 

classification can be carried out on the Data Cube. Shown 

below is an example code snippet to reproject raster data.  

Syntax 

Variable4= dc.load(product=’product_name’, 

resolution=(-x,y),x=(x1,x2),y=(y1,y2), 

output_crs=’EPSG CODE') 

 
Code 

Albers_new=dc.load(product='cartoDEM', 

x=(77.500,81.083),y=(28.666,31.499),output_

crs='EPSG:3577',resolution=(-25,25)) 

albers_grid.elevation.shape 

 

5.10 Change Detection 

Using the generated NDVI values of the years 2005, 2010 and 

2015 change detection was carried out to identify the migration 

of classes from highly vegetative regions to low and vice-versa 

as depicted in Figures 16 and 17.  

 
Figure 16. 2010-2005 Change Detection 

 

from matplotlib import ticker 

plt.contour(ndvi_diff,linestyles="solid",or

igin='upper') 

plt.contourf(ndvi_diff,origin='upper') 

cbar=plt.colorbar() 

tick_locator = ticker.MaxNLocator(nbins=3) 

cbar.locator = tick_locator 

cbar.update_ticks() 

cbar.ax.set_yticklabels(['Negative 

Change','No Change','Positive Change']) 

plt.rc('font', size=8) 

plt.draw() 

plt.show() 
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Figure 17. 2015-2005 Change Detection 

 

5.11 Unsupervised Classification   

More complex algorithms such as classification techniques can 

also be carried out on the Data Cube. Unsupervised 

classification of raster datasets was carried on the LISS III 

imagery with a cluster size of 5 using the MiniBatchKMeans 

algorithm specified by sklearn cluster library as shown in 

Figure 18.  

lf_class2=sklearn.cluster.MiniBatchKMeans(i

nit='k-means++',n_clusters=5,batch_size=10, 

n_init=10,max_no_improvement=10, verbose=0, 

random_state=0) 

 

 
Figure 18. MiniBatchKMeans unsupervised classification 

 
 

6. CONCLUSION 

This study has shown that having a scalable and robust 

framework that can be adapted to multiple datasets without 

having to deal with data dependency issues, file format and 

projection issues. This framework paves the way to a more 

efficient use of large remotely sensed data which is growing 

immensely. Technology today has advanced to such a stage that 

data generation from EO satellites far outgrow the data 

utilization rate. As new frontiers in Machine Learning, Deep 

Learning, Computer Vision and Human Computer Interaction 

are crossed, there is a need for data to be ‘Analysis Ready’. This 

is imperative as data from the Sentinel and GiSAT series would 

further push our data handling and processing capabilities, 

which if not addressed properly would affect the quality of 

research and more importantly its impact on society. Addressing 

issues related to not only usability and efficiency, but also the 

challenges faced by Big Data is where a multi-dimensional 

framework of gridded data can overcome when compared to the 

slow and tiresome process that traditional remote sensing has 

been following for decades.   
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