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ABSTRACT: 

 

Snow is an important feature on our planet, and measuring its extent has advantages in climate studies. Snow mapping through 

satellite remote sensing is often affected by cloud cover. This issue can be resolved by using short wave infrared (SWIR) sensors. In 

order to obtain an effective cloud mask, our study aims to use SWIR data of a ResourceSat-2 satellite. We employ Convolutional 

Neural Networks (CNN) to discriminate similar pixels of clouds and snow. The technique is expected to give a high accuracy 

compared to traditional methods such as thresholding. The cloud mask thus produced can also be used for creating the metadata for 

Indian Remote Sensing products. 
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1. INTRODUCTION 

1.1 Remote Sensing for Cryosphere Applications 

The cryosphere refers to the region of the world that exhibits 

temporarily or permanently frozen water and plays a pivotal role 

in the Earth system. Sea ice, permafrost, snow, and ice masses 

(continental ice sheets and mountain glaciers) are key elements 

of the cryosphere domain. As a result, the scientific study of 

these components helps to analyse the existing issues of global 

sea-level, climate and other associated ecological 

changes(Tedesco, 2015). 

 

Nowadays, optical images are often used to discriminate snow 

and cloud and subsequently produce snow cover maps. Snow is 

an important feature of our environment. It helps in balancing 

the heat flow between the Earth surface and atmosphere. Its 

presence in a basin also affects surface moisture, thereby 

contributing to water runoff (Maurer, Rhoads, Dubayah, & 

Lettenmaier, 2003).  Thus, analysing snow cover helps to 

understand climate change, while studying the snowmelt aids in 

assessing water requirements for agricultural and other societal 

needs (National Snow and Ice Data Center, 2017). Apart from 

hydrological aspects, detailed snow cover maps are also utilised 

in weather forecasting and military operations (Miller, Lee, & 

Fennimore, 2005). Thus, understanding the spatial extent of 

snow has a variety of applications in the cryosphere 

paradigm(Allen, Rastner, Arora, Huggel, & Stoffel, 2015; 

Birajdar, Venkataraman, & Samant, 2016; Man, Guo, Liu, & 

Dong, 2014; Mankin et al., 2015; Tedesco, 2015; Tekeli, 

Sönmez, & Erdi, 2016; Zhan et al., 2017).  

 

Such spatial understanding has historically been made through 

snow surveys, which are mainly just point measurements, and 

thus do not provide good estimates of the areal cover. 

Furthermore, as snow is present in a mountainous 

(rough/undulating) terrain, the measurement excursions can 

easily translate into becoming a hazardous, costly and labour 

intensive activity (World Meteorological Organization (WMO), 

2012).  With the advent of newly developed remote sensing 

techniques, a multitude of research works have been carried out 

to quantitatively assess and monitor the cryospheric elements. 

These include snow depth and snow water equivalent 

estimation, measuring snow cover extent, snow wetness, 

distinguishing cloud and snow and several other related studies 

(Birajdar et al., 2016; Crane & Anderson, 1984; Deems, 

Painter, & Finnegan, 2013; Gao, Han, Tsay, & Larsen, 1998; 

Kulkarni, Singh, Mathur, & Mishra, 2006; Li, Wang, He, & 

Man, 2017; Man et al., 2014; Mankin et al., 2015; Mateo-

García, Muñoz-Marí, & Gómez-Chova, 2017; Srinivasulu & 

Kulkarni, 2004; Tekeli et al., 2016; Thakur, Garg, Aggarwal, 

Garg, & Shi, 2013; Zhan et al., 2017).  

 

In order to carry out such remote sensing measurements, studies 

like Rango (1993) have summarised the sensor responses to 

snow properties. In order to capture the areal extent and albedo 

from snow, working in the Visible/Near-infrared region is quite 

helpful. However, this brings its own challenges. Clouds, in the 

visible part of the spectrum, also show high reflectance. 

Therefore clouds hovering over an expanse of snow, might 

imitate or sometimes cause a hindrance to the signals coming 

from the snow beneath (Meier, 1980). For distinguishing 

between these two similar features, a photo interpreter would 

have to be extremely experienced, and rely on characteristics 

like neighbourhood information (terrain surfaces), spatial 

variation of reflectance values, etc. 

 

Various studies like Crane & Anderson (1984), Dozier (1984, 

1989) & Miller et al. (2005), have noted that the shortwave 

infrared (SWIR) band (near 1.6 and 2.2 μm) can be used to 

discriminate between clouds and snow. These studies reason 

that in this spectral range, snow cover gives a lower reflectance 

compared to clouds, hence it appears darker and easier to 
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classify (Figure 1). As some sensors like Linear Imaging Self 

Scanner- IV(LISS-IV) & Landsat Multispectral Scanner 1-5 do 

not have a SWIR band, there exists a significant challenge to 

use their images for the aforementioned discrimination 

purposes.This study aims to provide a classification technique 

for snow and clouds on SWIR images, which can be further 

used for images without a SWIR band. 

 

 
 

Figure 1. Spectral reflectance of Water Cloud, Ice Cloud and 

Snow surface (Gao, Han, Tsay, & Larsen, 1998). The red box 

depicts the SWIR spectrum. 

 

1.2 Current Trends in Satellite Image Classification 

Classification of remotely sensed images involves grouping of 

homogeneous pixels based on predefined semantics. 

Essentially, classified maps are extensively used as end products 

for conducting various environmental surveys. In recent years, 

several techniques have emerged to improve the classification 

accuracy such as Support Vector Machine (SVM), Artificial 

Neural Network (ANN), Random Forest (RF) and many 

more(Bergado, Persello, & Stein, 2018; Ghasemian & 

Akhoondzadeh, 2018; Gómez-Chova, Mateo-García, Muñoz-

Marí, & Camps-Valls, 2017; Hazirbas, Ma, Domokos, & 

Cremers, 2017; Lu & Weng, 2007; Mateo-Garcia, Gomez-

Chova, & Camps-Valls, 2017; Persello & Stein, 2017). 

However, preparing thematic maps still remains a challenge 

owing to a number of constraints, such as landscape complexity, 

selected remotely sensed imagery, and the optimisation of 

tunable parameters that are involved in the image classification 

approaches. In this study, convolutional neural network (CNN) 

has been applied to classify clouds and snow. 

 

1.3 Convolutional Neural Networks for Cloud Filtering 

CNN is a variant of ANN connected in a sequential feed 

forward manner and involves both convolution and aggregation 

(pooling) operations. The convolution step significantly reduces 

the number of learnable parameters. The rationale behind such a 

task is to allow the network to use the same filter for detecting 

similar spatial patterns exhibited by different parts of an image. 

Also, pooling with downsampling introduces a degree of 

translational invariance in the network (Bergado et al., 2018). 

 

Cloud detection or cloud masking algorithms are generally 

developed by assuming that clouds tend to display certain 

useful characteristics for its identification. The simplest 

approach is a binary classification scheme wherein specific 

thresholds can be applied (e.g., over reflectance or temperature 

measurements) on individual pixels of the selected image 

pixels. However, such simplistic techniques provide poor 

results in case of thin clouds which are semi-transparent to solar 

radiation. Moreover, bright pixels attributing to the high albedo 

of ice and snow on the surface can be misclassified as clouds. 

Also, land covers displaying high brightness values tend to have 

similar reflectance behaviour as that of clouds and hence, 

thresholding on reflectance is practically an ineffective solution 

(Gómez-Chova et al., 2017). 

 

  

2. DATA AND STUDY AREA 

2.1 Data 

The dataset used is of the LISS-III sensor from the Indian 

ResourceSat-2 satellite. LISS-III has a spatial resolution of 

23.5m and carries 4 spectral bands, out of which only three will 

be used for our study. The image used for our study was 

captured on 6th February, 2015, and the scene has a central 

latitude of 30.983 and central longitude at 79.0466. Figure 2 

shows the captured scene. 

 

 
Figure 2. LISS-III image of ResourceSat-2. RGB distribution: 

1.55-1.7µm, 0.77-0.86µm, 0.62-0.68µm 

2.2 Study Area 

The study area belongs to the northern part of Uttarakhand, 

India. The area has some of the highest mountain peaks in the 

world. Since the Kedarnath flash floods of 2013, there have 

been extensive studies in this area to understand the role of 

snow and glaciers in causing the flash floods. 

 

 

3. METHODOLOGY 

Two subset tiles were selected from the captured image for 

training and testing. The tile for training had dimensions of 

395x393and the tile for testing had dimensions of 409x413. 

With the help of ENVI software, different regions were selected 

visually on the training and test image to classify as clouds and 

snow. The adopted image tiles are shown in Figure 3 
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(a)                                       (b) 

Figure 3. Tiles selected from the main image for (a) training and 

(b) testing 

 

The image tiles were processed using the MatConvNet library 

of MATLAB, to produce class maps. Figure 4 shows the basic 

work flow. 

 

 
 

Figure 4. Work flow to implement MatConvNet 

 

3.1 Network Structure 

For the neural net, an input patch size of 13 was selected and 

the network had alternating layers of Convolution, Rectified 

Linear Units and Max Pooling. The network structure is shown 

in Table 1. The Filter Bank has dimensions of H×W×D×K; 

where H×W corresponds to the height and width of a single two 

dimensional filter kernel, D corresponds to the number of image 

channels, and K corresponds to the number of Kernels in the 

bank. The last convolutional layer is followed by a dropout 

layer of rate 0.5, and then a softmax layer. The training was 

performed for 100 epochs. 

 

Layer Filter Bank Stride Padding 

conv1 9×9×3×16 1 5 

relu1 - - - 

maxpool1 2×2 2 1 

conv2 9×9×16×16 1 4 

relu2 - - - 

maxpool2 2×2 2 1 

conv3 4×4×16×2 1 0 

 

Table 1. Adopted CNN structure  

 

4. RESULTS AND DISCUSSION 

                    
(a)                         (b) 

Figure 5. (a) Confidence Map of test tile: yellow pixels have 

been classified with highest probability (1), and shades of blue 

have the lowest probability (0); (b) class map of test tile: blue 

represents snow and white represents clouds 

 

 

  Actual | Predicted Cloud Snow 

Cloud 11475 6810 

Snow 24308 13228 

 

Table 2. Confusion matrix of the test tile 

 

 Training Test 

Overall Accuracy 73.99 44.25 

Table 3. Accuracy of the CNN 

 

The accuracy of the CNN on test tile was found to be 44.25% 

(Table 3). Simultaneously, an SVM was performed on the same 

training & test image, which produced an overall accuracy of 

87.45%. Thus, there lies a scope to test the CNN classifier 

further with varying amounts of patch size, and convolutional 

layers, so as to achieve a higher overall accuracy. 

 

The confusion matrix of Table2 portrays that clouds show lower 

commission error as compared to snow, and snow has been 

highly misclassified. 

 

 
                (a)                     (b)                           (c) 

Figure 6. (a) Original test tile, (b) Class map during initial 

stages of testing and (c) Class map during later stages of testing; 

blue represents snow while white represents clouds 

 

Figure 6 shows the advantage of Machine learning. As we can 

see, classification becomes more accurate and realistic as we 

move from Figure 6 (b) to (c). The mountain ridges and cloud 

distribution is better depicted in Figure 6 (c). 

 

 

5. CONCLUSION 

While this paper has focused on distinguishing just two classes 

– snow and clouds, more realistic results can be found if we 

incorporate background vegetation as a class, or different types 

of clouds as separate classes. Our study shows the advantages of 

training via machine learning. With repetitive iterations, the 
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class maps become more accurate, but at the cost of higher 

processing time. 

 

The study also showcases the scope of training/tuning the 

hyper-parameters further in order to obtain more accurate 

classification results. Moreover, techniques can be explored in 

which the results from this work can be used to classify VNIR 

images, where snow and clouds show similar reflectance values. 
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