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ABSTRACT:

The accurate three-dimensional road surface information is highly useful for health assessment and maintenance of roads. It is 
basic information for further analysis in several applications including road surface settlement, pavement condition assessment 
and slope collapse. Mobile LiDAR system (MLS) is frequently used now a days to collect detail road surface and its surrounding 
information in terms three-dimensional (3D) point cloud. Extraction of road surface from volumetric point cloud data is still in 
infancy stage because of heavy data processing requirement and the complexity in the road environment. The extraction of roads 
especially rural road, where road-curb is not present is very tedious job especially in Indian roadway settings. Only a few studies 
are available, and none for Indian roads, in the literature for rural road detection. The limitations of existing studies are in terms 
of their lower accuracy, very slow speed of data processing and detection of other objects having similar characteristics as the 
road surface. A fast and accurate method is proposed for LiDAR data points of road surface detection, keeping in mind the 
essence of road surface extraction especially for Indian rural roads. The Mobile LiDAR data in XYZI format is used as input in 
the proposed method. First square gridding is performed and ground points are roughly extracted.  Then planar surface detection 
using mathematical framework of principal component analysis (PCA) is performed and further road surface points are detected 
using similarity in intensity and height difference of road surface pointe in their neighbourhood.
A case study was performed on the MLS data points captured along wide-street (two-lane road without curb) of 156 m length 
along rural roadway site in the outskirt of Bengaluru city (South-West of India). The proposed algorithm was implemented on the 
MLS data of test site and its performance was evaluated it terms of recall, precision and overall accuracy that were 95.27%,
98.85% and 94.23%, respectively. The algorithm was found computationally time efficient. A 7.6 million MLS data points of 
size 27.1MB from test site were processed in 24 minutes using the available computational resources. The proposed method is 
found to work even for worst case scenarios, i.e., complex road environments and rural roads, where road boundary is not clear 
and generally merged with road-side features.

1. INTRODUCTION

Roads are often the single largest publicly owned national 
asset. Road network reduces the distance between people, 
markets, services and knowledge, which facilitate transport, 
trade, social integration and economic development. Road
network is growing rapidly in order to accommodate the 
increasing traffic load. Therefore, effective management 
and planning of road network is essential. This requires 
comprehensive and accurate information (Kavzoglu et al., 
2009), i.e. geometric and radiometric details of road 
including conditions of road. Road surface three-
dimensional (3D) information collection is among the most 
important steps for pavement condition assessment. 
Information about the road and its surface is becoming 
important for the road maintenance (Mc Elhinney et al., 
2010; Yang et al., 2013). The assessment of road for 
maintenance and safety measures is highly essential on 
periodical basis. The in-situ measurements along with 
visual examination and interpretation are traditionally 
utilized by many for road surface evaluation (Schnebele et 
al., 2015). In developing nations like India the road 
environment is quite complex and heterogeneous in nature. 
Therefore, collection and accurate processing of roadway 

data along tens of thousands kilometre long roadway is a 
big challenge due to heterogeneous surrounding.
Therefore the researchers have been documenting the road 
information using different types of remote sensing data 
collected over the corridor since past few decades. Satellite 
images, aerial photographs and point cloud data are main 
data sources. Most of the proposed methods (Ferchichi and 
Wang, 2005; Wan et al., 2007; Mokhtarzade and Valadan 
Zoej, 2007; Mena and Malpica, 2005; Mohammadzadeh et 
al., 2006; Wang et al., 2005) using satellite images and 
aerial photographs only provide road pixels and its two-
dimensional (2D) location information. 
Accurate 3D road information is possible using point cloud 
data captured by airborne (Jiangui and Guang, 2011) and 
mobile LiDAR system (MLS). High-precision road terrain 
obtained in terms of point cloud data is the basic data for 
further analysis for applications such as road surface 
settlement, pavement, and slope collapse (Liu et al., 2013). 
MLS is  gaining  popularity  in  3D  LiDAR  mapping  
applications  along  various  corridors  because  of  the  
extreme  ease  in  capturing  comprehensive high resolution 
3D topographic data at highway speed (Yadav et al., 2014). 
A MLS observes roadway and nearby objects in the form of 
their dense coordinates at high speed (Yen et al., 2011) 
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which makes it possible to construct a detailed 3D model of 
the road environment (Lehtomäki et al., 2010). A MLS 
achieve the highest data quality and completeness among 
the traditional roadway data collection methods (Jalayer et 
al., 2014). MLS data are used for accurate road geometry 
computation over existing conventional methods due to
significant savings in time and human resources while 
yielding high accuracy. MLS has advantage over traditional 
roadway data collection methods (Puente et al., 2013) in 
terms of high speed data capture (time and cost reduction), 
high density of collected point cloud, comprehensive 
topographic survey and minimization of the erroneous/ 
questionable data, remote acquisition and measurement 
(increases survey efficiency and safety), and deliverable 
being coloured 3D point cloud that accurately represent 
roadway objects in the scene.
Only a few researchers have tried to extract the road 
surface using 3D point cloud data captured along the 
corridor using MLS. Available literature on road surface 
LiDAR points extraction are categorized into two parts: (I) 
road curb based road surface detection, (II) road surface 
detection using global property of roads (e.g., topology and 
smoothness) and uniform road LiDAR points intensity 
value. The methods proposed in the first category use curb 
information, where height jump is noticeable along the scan 
line. In (Ibrahim and Lichti, 2012) a method to extract the 
road surface LiDAR points using different density datasets 
having straight and curved curb is proposed. Point cloud 
segmentation into ground and non-ground is performed. 
Refinement of ground segment using morphological 
neighbourhood property is done followed by edge detection 
for curb and constructing closed polygon to extract the 
street floor. Topology and smoothness of road and the local 
shape features of point clouds are used in (Yang et al., 
2013) for detecting and tracking the curb. Point clouds are 
partitioned into road cross sections using GPS time of 
points and moving window operator is used for extracting 
candidate road areas. Curb points are detected by 
geometrically analysing local points. Angular distance to 
ground normal map is computed in (Hervieu and Soheilian, 
2013) using LiDAR data. It is used for generating feature 
map and distinguishing 3D curb patterns from other 
features, such as ground, facades or stairs of higher heights. 
Road edges are detected by applying prediction/estimation 
model on feature map. Two stages algorithm for extracting 
the road edge from LIDAR and navigation data is proposed 
in (Mc Elhinney et al., 2010). The first stage of this 
algorithm creates a set of road cross sections. In the second 
stage these cross sections are processed into 2D lines. 
These lines are then analysed based on the slope, returned 
intensity, returned pulse width and proximity to the vehicle 
to determine the road edges. In (Serna and Marcotegui, 
2014) a method for automatic analysis of curb accessibility 
from MLS data is proposed. First, input point cloud is 
mapped to range images. Second, the image is interpolated 
in order to avoid connectivity problems and the quasi–flat 
zones algorithm is used to segment the ground 
(road+sidewalk). Then, curb candidates are selected using 
height and elongation criteria, and close curbs are 
reconnected using Bézier curves. Three-dimensional virtual 
grid, multi-scale neighborhood iterative analysis and local 
slope filtering ideas are applied in (Liu et al., 2013). They 

have extracted expressway surface points from mobile laser 
scanning point clouds. In (Zhang, 2010) a method to 
identify road regions and road-edges using LiDAR range 
data is discussed. The road segment and road-edge points 
are first identified using the elevation information extracted 
from the range data. Input point cloud is first separated into 
sequences of points that represent scan lines in (Miyazaki 
et al., 2014). Further a line-based region growing method is 
applied in order to detect planar structures with precise 
boundary from point clouds with uneven distribution 
density of points. In category II, a rough classification of 
point cloud into ground and non-ground is executed (Lien 
et al., 2012). Cubic curve least squares fitting using lowest 
point, second lowest point away from it by road range and 
intermediate points is performed for selecting the road 
points.
Major limitation of existing methods is to extract rural road 
surface which are mostly without curb. It is difficult for the 
method proposed in (Yang et al., 2013) to deal with curbs 
with boundaries that are characterized as asphalt/soil, 
asphalt/vegetation, or asphalt/grassy bank. It is difficult to 
mark exact edge location, if point density is less and 
sufficient elevation jump is not present at boundary of 
carriageway (Mc Elhinney   et al., 2010). Method proposed 
in (Wu et al., 2013) is dependent on the road range, which 
cannot be calculated correctly if height difference between 
the road surface and the shoulder is not obvious. 
Computation time efficiency is not discussed in the existing 
methods for extracting the 3D road surface points. It is very 
important parameter and need to be addressed, because data 
sizes of gigabytes/km are generally available from these 
MLS surveys.  
The objective of this paper is to develop a computationally 
time efficient method for extracting road surface without 
curb. Further objective is to eliminate the limitations of 
existing methods as described in the previous paragraph. A 
test site from rural locality is selected for algorithm testing.

2. METHODOLOGY

In the proposed method first square gridding and rough 
ground classification are performed and then road surface 
points are detected. The first stage divides the input MLS 
data points into square grid of predefined size. Then planar 
ground points are extracted from each grid. These planar 
ground points also include road points. Finally road surface 
points are detected from the planar ground points using 
thresholding criteria on parameters computed by principal
component analysis (PCA), 2D point density, range of 
intensity values and intensity standard deviation. 

2.1 Square gridding

MLS data points ௜ܲ(݅ = 1, … … (ݎ in X-Y-Z-I format are 
used as input, where i and r represent an arbitrary data 
point and the total number of data points, respectively. XYZ 
is the coordinate of MLS data point and I represents the 
intensity value. The input data points are projected onto XY
plane. Rectangular minimum bounding box is generated for 
closing the 2D projected data points.  Bounding box is 
defined by its four vertices. Further, the data points within 
bounding box are divided into 2D regular square grids
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(Yadav et al., 2015). Square grid size (m×m) is defined by 
the user on the basis of the slope of the ground within the 
grid. Square gridding is performed on the projected MLS 
data points on the XY plane. X-axis and Y-axis serve as grid 
lines. 

Figure 1. Rough ground classification by clustering. Points 
lie within range of minimum Z to minZ h .

2.2 Rough ground classification  

Rough ground classification is performed on the basis of 
grouping of data points lying in the specific range of Z
values starting from minimum Z (ܼ୫୧୬). Initially MLS data 
points of each grid are rearranged in increasing order of 
their Z values. Points lying within ܼ୫୧୬ and ܼ୫୧୬ + ℎ are 
selected. These points are from the first slice of height h
(Figure 1). The first slice includes mostly the LiDAR points୥ܲ୰୳୬ୢ that belong to the ground surface and bottom of the 
other non-ground objects (Wu et al., 2013). Therefore,
MLS data points within the first slice contain road surface 
points.   
The effect of outliers is avoided by considering the average 
of 100 data points from top of rearranged data file as 
minimum Z. It is verified through several preliminary 
experiments 

2.3 Road surface points detection

Road surface is piecewise planar structure generally 
parallel to XY plane (see Figure 2). It is detected in this 
section. The proposed method uses ground points extracted 
in the previous section. First the 2D version (only X and Y 
values) of set is organized into partially overlapping circles 
having fixed radius R. 2D ground points within these 
partially overlapping circles take the shape of partially 
overlapping discs of different heights once their elevation 
values are considered (see Figure 3). Mathematical 
framework of PCA is applied in each disc to extract planar 
surfaces parallel to XY plane. Initially, 3D coordinates of 
MLS data points from each disc are selected and the 
variance-covariance matrix C is computed, that is further 
used to compute three Eigen values, that is, ,ଵߙ ଶߙ and ,ଷߙ
where ଵߙ ≥ ଶߙ ≥ ଷߙ (Yadav et al., 2016). The normalized 
Eigen values ߚଵ, ଶߚ and ଷߚ are also computed. The Eigen 
vectors ఈభܧ and ܧఈమ along maximum variance (ଵߙ) and 
second maximum variance (ଶߙ) are computed. The ߙଵ and ܧఈభ tell about the extent and direction of maximum spread 

of MLS data points. Similarly ଶߙ and ܧఈమ, ଷ andߙ ఈయܧ
indicate second maximum and minimum, respectively 
extent of points spread and their direction. In the 
normalized Eigen values, two of them are nearly equal(0.4 ≤ ଵߚ ≤ 0.6;  0.4 ≤ ଶߚ ≤ 0.6 ) and third one is very 
small (0 ≤ ଷߚ ≤ 0.1) for planar surfaces (see Figure 3).
The road surface is associated with the planar surfaces, 
which are nearly parallel to the XY plane. 

Figure 2. Point cloud spread and shapes of road surface and 
other dominant objects present in the MLS data.

Figure 3. Eigen values and Eigen vectors, which represent 
road surface MLS data geometrically.

Therefore, orientation of planar surface is also checked. 
The angles ఈభߠ between ܧఈభ and Z axis, and ߠఈమ between ܧఈమ and Z axis are calculated. The planar surfaces nearly 
parallel to XY plane are detected by applying thresholds 
conditions on the previously computed parameters using 
data set ୥ܲ୰୳୬ୢ. The same criteria is generalized and used 
for each disc data set ୥ܲ୰୭୳୬ୢ௡ౚ౟౩ౙ , where ݊ୢ୧ୱୡ represent 
arbitrary disc (see Equation 1). Total numbers of discs are 
represented by ୢܰ୧ୱୡ.
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Where ୲୦ߚ and ߠ୲୦ are threshold values. ୮ܲ୪ୟ୬ୟ୰ଡ଼ଢ଼ represents 
planar ground surfaces nearly parallel to XY plane and୮ܲ୪ୟ୬ୟ୰୒ includes non-planar ground surfaces and planar 
ground surfaces not nearly parallel to XY plane. ୮ܲ୪ୟ୬ୟ୰ଡ଼ଢ଼
contains the road surface data points, which are extracted in 
the following section.
Road surface extraction method proposed in this section is 
based on the geometrical property and radiometric response 
of road surface. Roads are manmade structures having 
ribbon like nearly flat pattern. MLS data points from road 
surface have quite less height variation in their 
neighborhood, that is, less height standard deviation (see 
figure 4(a)&(c)). Also, the road MLS data points have 
nearly similar intensities (I) within narrow range depending 
on the type of road materials and frequency of pulse energy 
used in MTLS. Intensity values of MTLS data points have 
good separability among various objects classes, if the 
wavelength of the pulse laser is suitable for ground 
materials. The relative separations between ground 
features, i.e. asphalt road, grass, building and tree have 
been compared using intensity data (Hu et al., 2004). It is 
found that the separability is very high for road vs. grass 
and road vs. tree (Song et al., 2002). 

Figure 4. (a) Perspective view of MTLS data cross section 
across the MTLS path (b) intensity variation of neighbors 
of road surface, (c) height variation of neighbors of road 
surface.

Figure 5. Showing (a) width of road surface; (b) ground 
point density decreases across the MLS path; (c) heights 
and intensity roughness parameters are uniform, 
respectively on the road surface.

The planar ground points ୮ܲ୪ୟ୬ୟ୰ଡ଼ଢ଼ extracted in the previous 
section contain road points from actual road surface and 
other non-road planar ground points. The 2D point density 
of planar ground points decreases away from MLS ground 
projected trajectory (see Figure 5). The road points have 
uniformity in intensity and height values in their 
surrounding (see Figure 4 (b) &(c)). These information are 
used here in designing of a method to extract road points 
from ௥ܲ. Again planar ground points ୮ܲ୪ୟ୬ୟ୰ଡ଼ଢ଼ are divided 
into partially overlapping circles of radius R which take 
shape of discs ୥ܲ୰୭୳୬ୢ௡ౚ౟౩ౙ once elevation/height values are 
considered. The 2D point density ( ୔ܲୈ), average ൫ܫୟ୴୥൯ and 
standard deviation (ܫୱ୲ୢ) of intensity values are computed 
in each disc.
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Road points set ୰ܲ is generated using Equation 2, where ୔ܲୈ୲୦ , and  ܫ୲୦ are thresholds for 2D point density and 
standard deviation of intensity, respectively.  ܫଵ and ܫଶ are 
the lower and upper thresholds of intensity values, which 
belongs to the road.
Above process is initially applied on the seed disc ୥ܲ୰୭୳୬ୢ௡ౚ౟౩ౙ
to check its candidature as part of road surface. Further, 
new seed point is generated by shifting 2D coordinate of 
the previous seed point along the X-direction by the same 
user defined radius R. Again the above whole process is 
repeated. MLS data points are covered by horizontal circle 
growing along the X and Y directions and road surface 
points are detected. 

3. EXPERIMENT

3.1 Test site and mapping data

The test site was located along rural roadway site in the 
outskirt of Bengaluru city (South-West of India). It was 
wide-street (two-lane road without curb) of 156 m length 
(see Figure 3(a)). Test site was surveyed using 
StreetMapper 360 (StreetMapper 360, 2014) MLS and 3D 
point cloud data of site was acquired. StreetMapper 360 is 
designed for the rapid mapping of highways, infrastructure 
and buildings (Yadav et al., 2017). It delivers proven 
accuracies in the most challenging environments. The 
typical positional accuracy is better than 2 cm (1×σ) and 
the point-to-point accuracy within the data is 1 cm (1×σ),
where σ represents standard deviation. 
A total of 7,600,988 (of size 27.1MB) data points were
acquired from the test site at 2D point density (Pts/mଶ) of 
708. Test site included road-side homogenous trees, bushes 
and shrubs, utility poles and single storey buildings (see 
Figure 6(a)). This site was specifically chosen to test the 
proposed method effectively because the road boundary 
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was not structured in the form of raised curbs (see Figure 
6(b)&(c)) and it was only delineated by non-uniformly 
distributed shrubs and asphalt/soil bank unlike datasets 
used in the literature. Even at many locations of road 
boundary the road and road-side surfaces were not 
geometrically differentiated (see Figure 6(c)) and acted like
levelled surfaces.

Figure 6. Perspective view of MLS data points: (a) along 
the roadway of 156 m of length (b) closure view showing 
the road coverage (c) photograph showing the 
characteristics of road surface at its boundary, that is, 
levelled surface.

3.2 Reference data   

Reference data for road surface points was collected by 
visual inspection of colored point cloud data (X-Y-Z-R-G-B
format) of test site. Collection was based on the visual 
identification of road boundary in the colored point cloud 
data. Once road boundary was identified, all the points 
within it were segmented out from the input data. 
Segmented out road surface had total number of 1,866,066
points, which was used as reference data points for 
validating the result. Average road width was calculated by 
dividing the road into 5 equal segments.  Road width at 
each 5 segmented location was measured manually and 
averaged out. It came out to be 7 m. It was used as 
reference average road width of the test site.

3.3 Result

The proposed method was tested on the MLS data points of 
test site using the threshold values of parameters (see Table 
1) the road surface points (see Figure 7) were extracted. 
First, square gridding and rough ground classification were 
performed using user defined thresholds listed in Table 1.
Their values were chosen based on the terrain undulation. 
Road surface behaves like piece-wise planar connected 
surfaces. The 2D point density of ground points is highest 
near ground projected MLS trajectory and it decreases 
away from the trajectory. Large regions formed by 
considering similarity in intensity and elevation (height) are 

mainly lies on the road surface and have large number of 
data points (see Figure 5). In intensity based road surface 
filtering a range of intensity values from road surface was
chosen by analyzing intensity values of different road 
patches. These road patches were selected from different 
locations of the road, i.e. along and across the road. Road 
surface is like ribbon pattern and made up with specific 
material, so the intensity differences of neighboring points 
are quite less. These above properties were used to decide 
threshold values of road surface point through conducting 
several preliminary experiments. Total extracted road 
surface points for the chosen test site were 1,798,531.

Table 1. Parameters values used for the test site.
Method (Stage) Threshold 

Parameter
Value

Square gridding m×m (m) 10×10
Rough ground 
classification

 (m)h 1.3

Road surface points 
detection

R (m) 0.3
th 0.1

th
780

th 2
PD  (pts/ m )P 1200

1 2,I I 0,10

thI 4

Road boundary of the test site was not defined clearly. It
was separated by asphalt/soil, asphalt/vegetation, or 
asphalt/grassy bank (Yadav and Singh, 2018). Thus,
extracted road surface boundary was not smooth (Figure 7). 

Figure 7. Perspective view of MLS data points of extracted 
road surface 

3.4 Discussion

Proposed method uses only XYZ coordinate and intensity I
of MLS data points, thus it does not depend on the scanning 
geometry and neighborhood structure in the data file.

3.4.1 Quantitative evaluation of 3D road extraction

Quantitative evaluation of the extracted road surface by 
proposed method is shown in Table 2. Precision of 98.85%
and recall of 95.27% were achieved, as defined in the table 
below. Overall accuracy was 94.23%. Average road width 
of 7.1 m was measured using extracted road surface. It was
calculated by dividing the road into 5 equal segments.  
Road width at each 5 segmented location was measured 
using boundary points and averaged out. It deviated by 
1.43% from the reference average road width.
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Table 2: Quantitative accuracy assessment of extracted 
road surface points

Precision* 
(Correctness)

[1777823/(1777823+20
708)] ×100

98.85%

Recall** 
(Completeness)

[1777823/(1777823+88
243)] ×100

95.27%

Overall 
accuracy

[(1777823+0)/
(1777823+0+20708+88
243)]×100

94.23%

* Precision = [TP/(TP + FP)]×100; Recall = [TP/(TP + 
FN)]×100 
**Accuracy = [(TP + TN)/(TP + TN + FP + FN)]×100 
Where, TP and TN are the true positive and true negative 
classified road points; FP and FN are the false positive and 
false negative classified road points.

3.4.2 Run time performance 

The execution time of the proposed method mainly depends 
on the parameters: (1) square grid size (m×m), (2) height of 
first slice (h), (3) radius of circle (R) and point density of 
dataset ( ୔ܲୈ).
Results were generated on the tuned values of these 
parameters for getting highest precision, recall, and overall 
accuracy. Proposed method was implemented on the test 
site, 7.6 million MLS data points of size 27.1MB, using 
Matlab2017a installed in standard PC (CPU: Intel Core 
i5@3.6GHz 8th Gen., RAM: 16GB). The total execution 
time of the proposed method was 24 minutes. Discussion 
on execution time for 3D road surface point’s extraction 
from MLS data points is not clearly emphasised in the 
existing literature. So time complexity comparative 
analysis of proposed method with existing methods cannot
perform here.

4. Conclusion and Future Recommendation

A computationally time efficient method is proposed in this 
paper for extracting road surface from MLS data points. 3D 
road surface point extraction is an important step in the 
pavement condition assessment. First rough ground 
classification is performed then planar surfaces having road 
surface are extracted using mathematical framework of 
PCA. Further road surface points are extracted based on the 
similarity in intensity and height difference of road surface 
pointe in their neighbourhood. Point density achieved in the 
roughly classified ground points is also highest from road 
surface thus used as additional criterion to extract road 
surface points. MLS data points from complex road 
environment test site were used for testing the proposed 
method. Precision of 98.85% and recall of 95.27% were
achieved. Overall accuracy is 94.23%. Average road width 
was measured at accuracy of 1.43%. Missing and falsely 
classified road points were from the road boundary, 
because the boundary of the road was not clearly 
geometrically defined.
Using the results obtained in the test site and thorough 
analysis of the existing methods, it can be concluded that 
the proposed method is more general and removes the 

limitations of the existing methods by: (i) detecting road 
surface points without curb (ii) being computationally 
efficient (iii) being independent of the scanning geometry 
information and requiring only MLS data points in X-Y-Z-I
format. Future work would focus on smoothing of road 
boundary. 
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