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ABSTRACT:

3D indoor mapping and scene understanding have seen tremendous progress in recent years due to the rapid development of sensor
systems, reconstruction techniques and semantic segmentation approaches. However, the quality of the acquired data strongly
influences the accuracy of both reconstruction and segmentation. In this paper, we direct our attention to the evaluation of the
mapping capabilities of the Microsoft HoloLens in comparison to high-quality TLS systems with respect to 3D indoor mapping,
feature extraction and semantic segmentation. We demonstrate how a set of rather interpretable low-level geometric features and
the resulting semantic segmentation achieved with a Random Forest classifier applied on these features are affected by the quality
of the acquired data. The achieved results indicate that, while allowing for a fast acquisition of room geometries, the HoloLens
provides data with sufficient accuracy for a wide range of applications.

1. INTRODUCTION

Rapid 3D mapping and scene understanding for indoor environ-
ments have seen tremendous progress in recent years, enabling
a rich diversity of applications including scene modeling, nav-
igation and perception assistance, and future use cases like tele-
presence. Besides 3D reconstruction based on RGB imagery
(Remondino et al., 2017; Stathopoulou et al., 2019), RGB-D
data (Zollhöfer et al., 2018) or data acquired via mobile in-
door mapping systems (Lehtola et al., 2017; Chen et al., 2018;
Nocerino et al., 2017; Masiero et al., 2018), there has also been
an increasing interest in augmenting the acquired 3D data with
virtual contents or semantics. In this regard, mobile Augmented
Reality (AR) devices like the Microsoft HoloLens allow for the
in-situ visualization of virtual contents (e.g., Building Informa-
tion Modelling (BIM) data or information directly derived from
the acquired data) which, in turn, facilitates numerous applica-
tions addressing facility management, cultural heritage docu-
mentation or educational services.

While the HoloLens has recently been evaluated regarding its
capabilities as an AR device (Liu et al., 2018) and regarding the
spatial stability of holograms (Vassallo et al., 2017), there have
also been first investigations on the spatial accuracy of triangle
meshes acquired by the HoloLens in comparison to ground truth
data acquired with a terrestrial laser scanning system (Khoshel-
ham et al., 2019; Hübner et al., 2019). However, to the best of
our knowledge, the impact of the quality of the acquired data on
the extraction of geometric features and thus on the results of
semantic segmentation (Weinmann, 2016; Poux, Billen, 2019)
still remains an open issue, although it has recently been proven
that the robustness of such geometric features is strongly influ-
enced by such cues (Dittrich et al., 2017).

In this paper, we address 3D indoor mapping with the Microsoft
HoloLens (Version 1) with a particular focus on a quantitative
∗ Corresponding author

and qualitative evaluation by means of geometric features. We
use a set of rather interpretable low-level geometric 3D and 2D
features (Weinmann, 2016; Weinmann et al., 2017), which are
extracted from the local neighborhood of each query point and
concatenated to define the respective feature vector. The latter,
in turn, serves as input to a classifier, for which we use a Ran-
dom Forest classifier (Breiman, 2001) in the scope of our work.
We compare the behavior and expressiveness of the involved
features to their counterparts extracted from downsampled TLS
data, and we analyze the impact of different feature sets on the
classification results.

This paper is organized as follows. We first briefly discuss re-
lated work with respect to sensor systems and recent progress
in indoor mapping in Section 2. Subsequently, we explain the
applied methodology in Section 3. In Section 4, we present and
compare the results achieved for an indoor environment that has
been acquired with the Microsoft HoloLens and a TLS system
in two independent scan campaigns. These results are discussed
in Section 5. Finally, a summary and concluding remarks as
well as suggestions for future work are provided in Section 6.

2. RELATED WORK

In the following, we briefly summarize related work with re-
spect to sensor systems (Section 2.1) and recent progress in in-
door mapping (Section 2.2).

2.1 Sensor Systems

For highly accurate geometry acquisition within indoor envi-
ronments, Terrestrial Laser Scanning (TLS) systems are typi-
cally used. While the quality of a range measurement gener-
ally depends on a variety of influencing factors (Soudarissan-
ane et al., 2011; Weinmann, 2016), remaining errors often tend
to be negligible and are mainly caused by either (i) the char-
acteristics of the observed scene in terms of object materials,
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Figure 1. The considered scene representing an empty apartment in nadir view (top row) and in detailed oblique view (bottom row):
raw TLS data (left), TLS data downsampled via a voxel-grid filter using a voxel size of 3 cm (center), and HoloLens data (right).

surface reflectivity, surface roughness, etc. or (ii) the scanning
geometry (i.e., the relative distance and orientation of object
surfaces with respect to the used scanning device). However,
a TLS system is rather expensive, and a single scan may typ-
ically not be sufficient to achieve a full coverage of the con-
sidered indoor scene. Hence, several scans have to be acquired
and transformed into a common coordinate system, as indica-
ted in Figure 1. In this context, different side constraints such
as range constraints and/or incidence angle constraints may be
taken into account (Soudarissanane, Lindenbergh, 2011) and,
if done manually using artificial markers, this process may be
laborious and time-consuming.

To facilitate indoor scene acquisition, a diversity of Mobile
Laser Scanning (MLS) systems or Mobile Mapping Systems
(MMSs) have been presented with only little loss in measure-
ment accuracy. In this regard, commonly used systems are
represented by trolley-based systems (e.g., the NavVis mo-
bile mapping system1), UAV-based systems (Hillemann et al.,
2019), backpack-based systems (Nüchter et al., 2015; Blaser
et al., 2018) or hand-held systems (e.g., the Leica BLK2GO2).
However, such systems tend to be rather expensive due to the
involved laser scanning device(s) and/or the involved multi-
camera system. Furthermore, trolley-based systems encounter
challenges in stairways, while UAV-based systems require an
expert to fly the sensor platform and backpack-based systems
have a significant weight. Thus, applicability for the end-user
is typically reduced.

To address the required expenses, low-cost RGB-D cameras
(e.g., the Microsoft Kinect or the Intel RealSense) have been
presented which can be used as a hand-held device for scene
acquisition. Such RGB-D cameras allow for scene capture
with high frame rates and are therefore often suitable for ac-
quiring both static and dynamic scenes. Among a diversity of
approaches, KinectFusion (Izadi et al., 2011) and respective
improvements (Nießner et al., 2013; Kähler et al., 2016; Dai
et al., 2017b; Stotko et al., 2019) have become popular meth-
ods for fast scene reconstruction. For a detailed survey on 3D
1 https://www.navvis.com/m6
2 https://blk2go.com

scene acquisition with RGB-D cameras, we refer to (Zollhöfer
et al., 2018). Due to the focus on the low-cost constraint, how-
ever, such systems tend to reveal limited capabilities regarding
the accuracy of geometry acquisition. In particular, errors are
caused by sensor noise, limited resolution and misalignments
due to drift (Zollhöfer et al., 2018).

Providing a trade-off between accurate scene acquisition and
low-cost solution, a popular device is given with the Microsoft
HoloLens3 representing a mobile, head-worn AR device. The
HoloLens provides the capability to map its direct environment
in real-time in the form of triangle meshes and to simulta-
neously localize itself within the acquired meshes. The latter
is achieved based on four gray-scale tracking cameras, while
the 3D mapping relies on a time-of-flight (ToF) range cam-
era operating to distances of up to about 3.5 m. Besides these
mapping capabilities, the HoloLens is capable of augmenting
the physical environment of the user with virtual content. This
AR capability of the device could be used to guide the user by
providing information about where to look in order to have a
scene coverage as high as possible. This makes the Microsoft
HoloLens rather easy-to-use for non-expert end-users.

2.2 Indoor Mapping

Besides geometry acquisition as possible with various sensor
systems described in the previous section, indoor mapping
may also address further tasks, such as the acquisition of the
given room topology as well as Building Information Model-
ing (BIM) (Tran et al., 2017; Nikoohemat et al., 2019; Och-
mann et al., 2019), and semantic segmentation (Armeni et al.,
2016; Engelmann et al., 2017; Poux et al., 2018; Poux, Billen,
2019). The latter can be done on point-level (i.e., each point
is assigned a class label indicating one of the defined object
categories) and on instance-level (i.e., each point is assigned a
semantic class label indicating one of the defined object cat-
egories and an instance label indicating the respective object in
the scene), and by using traditional approaches relying on the
use of hand-crafted features or by using modern deep learning
techniques.
3 https://www.microsoft.com/en-us/hololens
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To foster research on indoor scene reconstruction and under-
standing, a variety of datasets have been presented:

• The dataset released with the ISPRS Benchmark on Indoor
Modelling (Khoshelham et al., 2017) contains five indoor
scenes, each captured with a different sensor.

• The Stanford 2D-3D-Semantics Dataset (Armeni et al.,
2017) contains six large-scale indoor areas with both se-
mantic and geometric annotations.

• The ScanNet dataset (Dai et al., 2017a) represents a large-
scale RGB-D video dataset containing more than 1.5k in-
door scenes annotated with respect to camera poses, sur-
face reconstructions, and semantic segmentation.

• The Matterport3D dataset (Chang et al., 2017) is a large-
scale RGB-D dataset containing 90 indoor scenes and
more than 2000 rooms annotated with respect to surface
reconstruction, camera poses, and both 2D and 3D se-
mantic segmentations suitable for several scene under-
standing tasks.

• The House3D dataset (Wu et al., 2018) contains more than
45k human-designed, visually realistic 3D indoor scenes
characterized by a diversity of 3D objects, textures and
scene layouts.

• The Replica Dataset (Straub et al., 2019) contains high-
quality reconstructions of a variety of indoor scenes,
whereby the focus was set on obtaining visually, geomet-
rically, and semantically realistic models of the world.

While all these datasets have been created with a focus on the
mapping and/or modeling of large-scale indoor scenes, none
of them contains data for the same scene, but acquired with
different sensor systems.

3. METHODOLOGY

For evaluating the influence of the quality of the acquired data
on the expressiveness of geometric features and on the accuracy
of semantic segmentation, we focus on a traditional workflow.
To describe each 3D point via geometric features, characteris-
tics of the spatial arrangement of neighboring points have to be
encoded appropriately. Accordingly, we first need to recover
the local neighborhood for each point of the point cloud (Sec-
tion 3.1) in order to encode the local 3D structure via geometric
features (Section 3.2). The derived encoding then serves as in-
put for classification (Section 3.3).

3.1 Recovery of Local Neighborhoods

To recover the local neighborhood for each point Xi of the
point cloud, we focus on local neighborhoods with a locally-
adaptive neighborhood size (Weinmann, 2016). Instead of re-
lying on an identical scale parameter (represented by the num-
ber k of nearest neighbors) that needs to be determined once
for the considered dataset, this definition relies on the idea that
the selection of an optimal neighborhood size parameterized by
ki = ki,opt might depend on the local 3D structure and thus, to
some degree, the considered classification task. To achieve such
a local adaptation, we focus on eigenentropy-based scale selec-
tion (Weinmann, 2016) that has proven beneficial compared to
dimensionality-based scale selection (Demantké et al., 2011).

The main idea of eigenentropy-based scale selection (Wein-
mann, 2016) consists in the consideration of different values of

the scale parameter to derive multiple neighborhoods for each
3D point and selecting the value of the scale parameter that cor-
responds to the minimal disorder of 3D points across the con-
sidered local neighborhoods. More specifically, for different
values of the scale parameter (here: k), the 3D coordinates of
a query point Xi = Xi,0 and its k nearest neighbors Xi,j with
j = 1, . . . , k are used to calculate the 3D structure tensor

Si =
1

k + 1

k∑
j=0

(
Xi,j − X̄i

) (
Xi,j − X̄i

)T (1)

representing a 3D covariance matrix for the local barycenter

X̄i =
1

k + 1

k∑
j=0

Xi,j . (2)

Thus, the three eigenvalues of Si exist, are non-negative and
indicate the dispersion magnitude along their corresponding
eigenvectors (Dittrich et al., 2017). Normalizing these ei-
genvalues by their sum yields normalized eigenvectors λi,1,
λi,2 and λi,3. Without loss of generality, we assume that
λi,1 ≥ λi,2 ≥ λi,3 ≥ 0, and that these normalized eigenval-
ues can be expressed as a function of the neighborhood size:
λi,j = f(k). The optimal neighborhood size ki,opt minimizes
the eigenentropy Ei (i.e., a measure for the disorder of neigh-
boring 3D points) according to

ki,opt = arg min
k∈K

Ei = arg min
k∈K

(
−

3∑
j=1

λi,j(k) lnλi,j(k)

)
.

(3)
In accordance with related work (Demantké et al., 2011; Wein-
mann, 2016), we consider scale parameters within the interval
K = [kmin, kmax], whereby we consider relevant statistics to
start with a minimum number of kmin = 10 neighboring points
and, in order to limit the computational burden, we select the
upper boundary as kmax = 100.

3.2 Extraction of Geometric Features

To encode characteristics of the spatial arrangement of points
within the local neighborhood of a query point Xi, we consider
the corresponding 3D structure tensor Si and its normalized ei-
genvectors λi,1, λi,2 and λi,3. The latter, in turn, are used to
derive the dimensionality features of linearity Li, planarity Pi
and sphericity Si as well as further eigenvalue-based features
represented by omnivariance Oi, anisotropy Ai, eigenentropy
Ei and change of curvature Ci (West et al., 2004; Pauly et al.,
2003):

Li =
λi,1 − λi,2

λi,1
(4)

Pi =
λi,2 − λi,3

λi,1
(5)

Si =
λi,3
λi,1

(6)

Oi = 3

√√√√ 3∏
j=1

λi,j (7)

Ai =
λi,1 − λi,3

λi,1
(8)

Ei = −
3∑
j=1

λi,j lnλi,j (9)
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Ci =
λi,3
3∑
j=1

λi,j

(10)

Furthermore, we follow (Weinmann, 2016) and consider geo-
metric features represented by the absolute height Hi of the
query point Xi, the radius Ri of the local neighborhood, the
local point density ρi with

ρi =
k + 1
4
3
πR3

i

, (11)

the verticality Vi with

Vi = 1− |nz| (12)

where nz is the vertical component of the local normal vector,
and the maximum difference ∆Hi as well as the standard de-
viation σH,i of the height values of all points within the local
neighborhood.

Finally, we take into account that indoor environments reveal
many vertical structures. Accordingly, we apply a 2D projec-
tion of the point Xi and its ki nearest neighbors onto a ho-
rizontal plane (Weinmann, 2016). Based on the 2D coordi-
nates of these projections, we derive the 2D structure tensor
in analogy to the 3D structure tensor. The 2D structure tensor,
in turn, has two eigenvalues ξ1 and ξ2 with ξ1 ≥ ξ2 ≥ 0 from
which we derive their sum Σξ,i as well as their ratio Rξ,i. Be-
sides these eigenvalue-based 2D features, we also consider the
radius ri and the point density ζi on the basis of the 2D projec-
tions.

For our framework, we consider different feature sets as input
for a subsequent classification. These feature sets comprise the
set S3D,EV including all eigenvalue-based 3D features, the set
S3D,other including all other geometric 3D features, the set S3D,all
including all 3D features, the set S2D,all including all 2D fea-
tures, and the set Sall including all 3D and 2D features:

S3D,EV = {Li, Pi, Si, Oi, Ai, Ei, Ci} (13)
S3D,other = {Hi, Ri, ρi, Vi,∆Hi, σH,i} (14)
S3D,all = {Li, Pi, Si, Oi, Ai, Ei, Ci,

Hi, Ri, ρi, Vi,∆Hi, σH,i} (15)
S2D,all = {Σξ,i, Rξ,i, ri, ζi} (16)
Sall = S3D,all ∪ S2D,all (17)

3.3 Supervised Classification

To assign an appropriate class label to a query point, in the
scope of this paper, we focus on only considering the cor-
responding feature vector resulting from the concatenation of
all extracted features, while we consider both smooth labeling
techniques (Schindler, 2012) and structured regularization tech-
niques (Landrieu et al., 2017) as subject of future work.

Given a set of representative training data, we focus on su-
pervised classification based on a Random Forest classifier
(Breiman, 2001). This classifier is a representative of discrim-
inative classification approaches searching for the best separa-
tion of data points, independent of underlying probability den-
sity functions. More specifically, a Random Forest classifier is
generated via a strategic combination of a set of weak learners
represented by decision trees. These decision trees are trained

on different, randomly chosen subsets of the given training data
(Breiman, 1996). When training a single decision tree, the fo-
cus is set on a successive splitting of the data into smaller sub-
sets based on specific homogeneity criteria until the resulting
subset at a leaf node is as pure as possible. Since all decision
trees are trained on independent, randomly different subsets of
the given training data, their hypotheses for new unseen data
to be classified can be considered as de-correlated. Thus, tak-
ing the majority vote across all these hypotheses represents a
reasonable class prediction with improved generalization and
robustness (Criminisi, Shotton, 2013).

To select the internal settings of the Random Forest (e.g., the
number of involved decision trees), we perform a grid search
on a suitable raster during the training process. Given the hypo-
theses of the involved decision trees also allows interpreting the
output of the Random Forest as a soft assignment indicating the
probabilities with which a query point Xi is associated to each
of the given classes. Such a soft assignment thus represents a
measure of confidence with respect to the assigned class label.

4. EXPERIMENTAL RESULTS

In the following, we first focus on the two involved sensor
systems represented by the Microsoft HoloLens and a Leica
HDS6000 (Section 4.1), and we then describe the acquired data-
sets (Section 4.2). Subsequently, we demonstrate the impact of
the quality of the acquired data on the extraction of geomet-
ric features (Section 4.3). Finally, we present the classification
results achieved when using different feature sets as input for
classification (Section 4.4).

4.1 Microsoft HoloLens vs. Leica HDS6000

The Microsoft HoloLens is equipped with a variety of sensors.
Among these sensors, a video camera is used to allow record-
ing screenshot videos and pictures, in which the physical envi-
ronment can be augmented with virtual contents. In addition,
there are four gray-scale tracking cameras for a robust self-
localization. Two of these are oriented to the front in a stereo
configuration with large overlap, while the other two are ori-
ented to the right and left with nearly no overlap to the center
pair. Furthermore, the HoloLens contains a time-of-flight (ToF)
depth sensing camera providing images with pixel-wise range
measurements, whereby range images can be queried in two
different modes for the range from 0 m to 0.8 m (“short throw”
mode) and the range from 0.8 m to about 3.5 m (“long throw”
mode). The respective field-of-view of these sensors is illus-
trated in Figure 2. More detailed specifications can be accessed
via the Microsoft Windows 10 SDK for the device.

The Leica HDS6000 is a standard phase-based terrestrial laser
scanner with survey-grade accuracy (within a few mm range)
and a field-of-view of 360◦ × 155◦. To obtain complete scene
coverage, several scans have to be taken from different posi-
tions and, as the data acquired with each scan refers to the local
coordinate system of the scanner, all acquired scans have to be
transferred into a common reference coordinate system. This
process is referred to as point cloud registration.

4.2 Datasets

The considered scene is represented by an empty apartment
consisting of five rooms of different size and one central hall-
way as shown in Figure 1.
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Figure 2. Overlay of the images recorded by the different
sensors of the Microsoft HoloLens (Hübner et al., 2020).

For HoloLens-based scene acquisition, an operator wearing
the device went through the apartment and achieved a rapid
and comfortable mapping of the indoor scene within a few
minutes. To create the triangle mesh, the commercially avail-
able SpaceCatcher HoloLens App4 was used, since this allowed
directly visualizing the triangle meshes for the operator while
they were recorded. The resulting mesh is visualized in the
right part of Figure 1 and contains 105,200 points.

For TLS-based scene acquisition, 11 scans were taken from
the positions indicated with a circle in the left part of Fig-
ure 1 and registered by using artificial planar and spherical
markers placed in the apartment to establish correspondence.
Subsequently, the complete point cloud was manually cleaned,
downsampled via a voxel-grid filter using a voxel size of 3 cm,
and finally meshed via Poisson Surface Reconstruction (Kazh-
dan et al., 2006). The resulting mesh is visualized in the center
part of Figure 1 and contains 178,322 points.

4.3 Feature Extraction Results

We use eigenentropy-based scale selection to derive locally-
adaptive neighborhoods (i.e., local neighborhoods whose size
is optimized for each query point individually; see Section 3.1).
Based on these neighborhoods, geometric features are extracted
(see Section 3.2). The behavior of the neighborhood size and
the different features across the complete mesh is visualized in
Figures 3 and 4 for the HoloLens dataset and the TLS dataset,
respectively.

4.4 Classification Results

For classification, we focus on a rather simple scenario with
the three classes “Ceiling”, “Floor” and “Wall” in the scope
of this work. The ground truth labeling obtained via manual
annotation is visualized in Figures 3 and 4 for the HoloLens
dataset and the downsampled TLS dataset, respectively.

For training, we take into account that an imbalanced amount
of training examples across different classes may have a detri-
mental effect on the generalization capability of the classifier.
Hence, we randomly select 1000 points per class for training
and all remaining points for performance evaluation. The lat-
ter is carried out based on commonly used evaluation metrics:
Overall Accuracy (OA), κ-Index and class-wise F1-scores.

The classification results achieved when using different feature
sets as input for the classifier are provided in Tables 1 and 2
4 http://spacecatcher.madeinholo.com

for the HoloLens dataset and the downsampled TLS dataset,
respectively. Visualizations corresponding to these results are
provided in Figure 5.

Feature Set OA κ F1(C) F1(F) F1(W)
S3D,EV 59.36 28.23 43.50 40.53 71.03
S3D,other 93.28 87.36 90.84 91.57 94.62
S3D,all 93.26 87.25 90.51 91.94 94.63
S2D,all 73.08 52.65 60.60 51.56 84.12
Sall 93.36 87.46 90.69 92.02 94.70

Table 1. Results (in %) achieved for the classification of the
HoloLens dataset when using different feature sets as input for
the classifier: Overall Accuracy (OA), κ-Index and class-wise

F1-scores (C: Ceiling; F: Floor; W: Wall).

Feature Set OA κ F1(C) F1(F) F1(W)
S3D,EV 57.30 30.36 37.42 60.71 65.65
S3D,other 98.60 97.47 98.42 97.99 98.86
S3D,all 98.44 97.17 97.88 98.11 98.72
S2D,all 82.12 67.56 63.40 50.61 97.42
Sall 98.10 96.57 97.58 97.57 98.44

Table 2. Results (in %) achieved for the classification of the
downsampled TLS dataset when using different feature sets as
input for the classifier: Overall Accuracy (OA), κ-Index and

class-wise F1-scores (C: Ceiling; F: Floor; W: Wall).

5. DISCUSSION

The provided visualizations reveal that the accuracy of the ac-
quired HoloLens dataset is worse compared to the accuracy of
the downsampled TLS dataset. However, the HoloLens allows
for a fast acquisition of the room geometry, and the accuracy
is still sufficient as initialization to apply voxel representations
or plane fitting techniques for creating a 3D model of the in-
door scene. The accuracy might also still be sufficient to have
a fast guess about the area and volume of the apartment, two
cues important when calculating the rent for or the costs of the
apartment.

The visualizations in Figures 3 and 4 indicate the flexibility
of the neighborhood size varying between 10 and 100 nearest
neighbors for the query points. Furthermore, they allow for
reasoning about expressive features (e.g., the heightHi, the ver-
ticality Vi, or the ratio Rξ,i of the eigenvalues of the 2D struc-
ture tensor) and less-expressive features (e.g., the radii Ri and
ri of the local neighborhood in 3D and 2D, the local point den-
sities ρi and ζi in 3D and 2D, or the sum Σξ,i of the eigenvalues
of the 2D structure tensor) with respect to the considered classi-
fication task. Of course, some features might be less suitable if
there are more classes with a higher similarity or more complex
indoor scenes (e.g., scenes covering different floors and/or also
containing room inventory).

Among the feature sets, the set S3D,EV including all eigenvalue-
based 3D features is not suitable to achieve appropriate classi-
fication results (Figures 3 and 4 and Tables 1 and 2). The reason
for this is that the respective features describe local character-
istics around the query point with respect to the principal axes
of the 3D ellipsoid spanned by the neighboring points, while
the absolute orientation with respect to horizontal and vertical
directions is not taken into account. Also the set S2D,all includ-
ing all 2D features does not allow appropriately separating the
defined classes, since the 2D features ri, ζi and Σξ,i are less
expressive and only Rξ,i is expressive allowing to separate ver-
tical from horizontal planes, which is not sufficient for separat-
ing the defined classes. The other feature sets S3D,other, S3D,all
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Scene Ground Truth Neighborhood Size Linearity Planarity 

Sphericity Omnivariance Anisotropy Eigenentropy Change of Curvature 

Height k-NN Radius Point Density Verticality Height Difference 

Std. of Height Values 2D Radius 2D Point Density Sum of EVs in 2D Ratio of EVs in 2D 

Neighborhood Size 
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Feature 

Figure 3. Visualization of the scene, the ground truth labeling, the neighborhood size, and the 17 considered features (scaled to [0, 1])
for the HoloLens dataset.

and Sall lead to classification results of almost the same qual-
ity, since they have several features in common that are highly
relevant for the considered classification task (e.g., the height
Hi, the verticality Vi, and the maximum difference ∆Hi and
standard deviation σH,i of height values).

A comparison of the classification results achieved for the
HoloLens dataset and for the downsampled TLS dataset
(Tables 1 and 2 and Figure 5) reveals a decrease in OA when
using the HoloLens for data acquisition. This decrease in OA
is about 5 %, when considering the more suitable feature sets
S3D,other, S3D,all and Sall.

6. CONCLUSIONS

In this paper, we have focused on rapid 3D mapping and scene
understanding for indoor environments. In particular, we have
addressed 3D indoor mapping with the Microsoft HoloLens
with a particular focus on a quantitative and qualitative eval-
uation by means of geometric features. Considering an indoor
scene acquired with either a HoloLens or a TLS system (Leica
HDS6000), we have extracted a set of rather interpretable low-
level geometric 3D and 2D features and provided these fea-
tures as input for a Random Forest classifier. We have analyzed
the impact of the quality of the acquired point cloud data on
the behavior and expressiveness of the interpretable geometric
features and on the classification with respect to three classes
(“Ceiling”, “Floor” and “Wall”). Furthermore, we have eval-
uated the impact of different feature sets on the classification
results.

In future work, we plan to increase the number of considered

classes and the complexity of the considered scene (e.g., by
considering indoor scenes covering different floors and also
containing room inventory). Furthermore, we aim at guiding
the user during the acquisition regarding scene completion and
densification of sparsely reconstructed areas.

REFERENCES

Armeni, I., Sax, S., Zamir, A. R., Savarese, S., 2017. Joint
2d-3d-semantic data for indoor scene understanding. arXiv pre-
print arXiv:1702.01105v2.

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I.,
Fischer, M., Savarese, S., 2016. 3d semantic parsing of large-
scale indoor spaces. Proc. 2016 IEEE Conference on Computer
Vision and Pattern Recognition, 1534–1543.

Blaser, S., Cavegn, S., Nebiker, S., 2018. Development of a
portable high performance mobile mapping system using the
robot operating system. ISPRS Ann. Photogramm. Remote Sens.
Spat. Inf. Sci., IV-1, 13–20.

Breiman, L., 1996. Bagging predictors. Mach. Learn., 24(2),
123–140.

Breiman, L., 2001. Random forests. Mach. Learn., 45(1), 5–32.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Nießner, M.,
Savva, M., Song, S., Zeng, A., Zhang, Y., 2017. Matterport3D:
learning from rgb-d data in indoor environments. Proc. 2017
International Conference on 3D Vision, 667–676.

Chen, Y., Tang, J., Jiang, C., Zhu, L., Lehtomäki, M.,
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Hübner, P., Landgraf, S., Weinmann, M., Wursthorn, S.,
2019. Evaluation of the Microsoft HoloLens for the mapping
of indoor building environments. Proc. Dreiländertagung der
DGPF, der OVG und der SGPF, 44–53.

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R.,
Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A.,
Fitzgibbon, A., 2011. KinectFusion: real-time 3d reconstruc-
tion and interaction using a moving depth camera. Proc. 24th
Annual ACM Symposium on User Interface Software and Tech-
nology, 559–568.

Kähler, O., Prisacariu, V. A., Murray, D. W., 2016. Real-time
large-scale dense 3d reconstruction with loop closure. Proc.
European Conference on Computer Vision, 500–516.

Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson surface
reconstruction. Proc. Fourth Eurographics Symposium on Geo-
metry Processing, 61–70.

Khoshelham, K., Dı́az Vilariño, L., Peter, M., Kang, Z.,
Acharya, D., 2017. The ISPRS benchmark on indoor model-
ling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLII-
2/W7, 367–372.

Khoshelham, K., Tran, H., Acharya, D., 2019. Indoor mapping
eyewear: geometric evaluation of spatial mapping capability of
HoloLens. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,
XLII-2/W13, 805–810.

Landrieu, L., Raguet, H., Vallet, B., Mallet, C., Weinmann,
M., 2017. A structured regularization framework for spatially
smoothing semantic labelings of 3d point clouds. ISPRS J. Pho-
togramm. Remote Sens., 132, 102–118.

Lehtola, V. V., Kaartinen, H., Nüchter, A., Kaijaluoto, R.,
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Nüchter, A., Borrmann, D., Koch, P., Kühn, M., May, S., 2015.
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