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ABSTRACT: 
 
Deblurring is a vital image pre-processing procedure to improve the quality of images. It is a classical ill-posed problem. A new blind 
deblurring method based on image sparsity prior is proposed here. The proposed image sparsity prior combines patch-wise minimal 
and maximal pixels of latent image, and improves gradually the image sparsity during deblurring. An algorithm that is different with 
half quadratics splitting algorithm is applied under the maximum a posterior (MAP) framework. Experiment results demonstrate that 
the proposed method can keep more subtle texture and sharpened edges, reduce the artefacts in visual, and the corresponding 
evaluated indexes perform favourably against it of the state-of-the-art methods on synthesized, natural and remote sensing images 
(RSI) quantitatively.  
 
 

1. INTRODUCTION 

Due to the atmospheric effect (Gerwe et al., 2002), platform 
high-frequency jitter (Wang and Ma et al., 2018; Ye et al., 2019) 
and camera defocus (Gajjar et al., 2017), images are somewhat 
degraded by the blur, in particular for remote sensing images 
(RSI). Blur leads to degraded images and ruins the considerable 
useful information of observation. In order to recover the lost 
information, deblurring is indispensable. In this research, we 
focus on establishing of image sparsity prior and corresponding 
model of deblurring for degraded images. 
 
With the assumption that the blur is uniform and spatially 
invariant, the blurring process can be modelled as a convolution 
operation (Chan et al., 1998; Perrone and Favaro, 2014) as  

 
 Y k I n= ⊗ +   ( )1   
 
where Y, I, k and n denote the blurred image, latent (clear) 
image, blur kernel (which can be seen as point spread function, 
PSF) and random noise, respectively. The symbol of ⊗  is the 
convolution operator. The inversion problem of latent image I 
in Eq. (1) is an ill-posed problem. Based on whether the blur 
kernel is known or not, deblurring methods to restore the latent 
image are classified as two types: non-blind deconvolution 
(NBD) and blind deconvoltuion (BD). 
 
As to BD methods, blur kernel and latent image need to be 
simultaneously estimated, which leads to more ill-posed 
problems than NBD methods. Therefore, additional constraints 
and potential prior knowledge on images and blur kernel are 
required to make the problems well-posed. Since the pioneering 
work of Chan et al. (1998) was achieved on employing total 
variation (TV) as a prior to deblurring, the main successes of 
deblurring methods have lay on hand-crafted image prior and 
edge-prediction strategies (Cho and Lee, 2009; Xu and Jia, 2010; 
Xu et al., 2011). These sophisticated priors contain the gradient 
sparsity prior (Chan and Wong, 1998; Levin et al., 2009, 2011; 
Perrone and Favaro, 2014; Pan et al., 2014; Zuo et al., 2016), 
normalized sparsity prior (Krishnan et al., 2011), patch prior 

(Wen et al., 2019), low-rank prior (Ren et al., 2016), dark or 
bright channel prior (Pan et al., 2016, 2017; Yan et al., 2017; 
Cao et al., 2018), a discriminative prior (Li and Pan et al., 2019) 
and a deep prior (Ren et al., 2019). Furthermore, the following 
priors of blur kernel are usually adopted, such as gradient 
sparsity prior (Levin et al., 2009; Pan et al., 2016, 2017; Zuo et 
al., 2016) and spectral prior (Liu et al., 2014). The deblurred 
images can be estimated by Variational Bayes (VB)-based 
method (Levin et al., 2009) and MAP-based method. Due to the 
heavy computational burden of VB-based method, MAP-based 
method as a popular method has been explored and exploited in 
recent decade. 
 
Sometimes, single image prior cannot satisfy high requirement 
of deblurred image quality. Combinations of image priors are 
employed to achieve better restoration. The image sparsity prior, 
which is one of the most frequently used priors, is applied to 
restore degraded images by jointing with priors like low-rank 
prior (Ren et al., 2016), dark or bright channel priors (Pan et al., 
2016, 2017; Yan et al., 2017) and so on. In particular, the dark 
channel prior, as one of the state-of-the-art methods, has shown 
promising effectiveness, but still faces with expensive 
computation and non-rigorous approximation of half quadratic 
splitting method (Wen et al., 2019). Therefore, Wen et al. (2019) 
proposed the patch-wise minimal pixels (PMP, which is 
replaced by PMinP) prior, and the corresponding algorithm 
avoids the non-rigorous approximation for nonexplicit 
subproblems and reduce the computation burden.  
 
However, the patch-wise maximal pixels (PMaxP) in clear 
images are not likely to keep maximal after the blurring process, 
which is ignored in PMinP prior. Therefore, a new concept of 
PMaxP prior is defined, and a combined patch-wise minimal-
maximal pixels (CPMMP) prior and corresponding 
regularization method are provided in this research. We briefly 
illustrate the empirical observation of PMaxP in statistics and 
exploit corresponding property as a prior to restore the blurred 
images. For the application of L0-regualrization, a competitive 
algorithm distinguishing from the classical half quadratic 
splitting method is recommended. 
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The rest of this research is organized as follows. In section 2, 
the definition of PMaxP prior is reviewed and a new image 
sparsity prior is proposed. In Section 3, a detailed algorithm 
based on the new image sparsity prior is provided. In Section 4, 
benchmark dataset, simulated and real blurred GF-2 satellite 
images, and OVS-A video satellite image are employed to test 
the performance of the proposed deblurring method. Finally, in 
Section 5, the major findings are concluded. 

 
2. COMBINED PATCH-WISE MINIMAL-MAXIMAL 

PIXELS 

2.1 Definition of PMaxP prior  

The PMinP prior of an image I is defined as Wen et al. (2019) 
 

 ( )( )
{ }

( )
min

min , ,
min min ,

i c r g bi
P I i I i c

∈∈Ω

 =  
 

  (2) 

 

where m n cI × ×∈ , i=1, 2, …, N, m nN
r r

   =       
, which means 

the image I is divided into N nonoverlapped patches with a 
patch size of r r× . The symbol of min

iΩ  denotes the index set 
of the minimal pixel locations of the ith patch.  
 
Similarly, we can define the PMaxP prior of an image I as 
 

 ( )( )
{ }

( )
max

max , ,
max max ,

i c r g bi
P I i I i c

∈∈Ω

 =  
 

  ( )3   

 
The symbol of max

iΩ  denotes the index set of the maximal pixel 
locations of the ith patch.  
 
2.2 Statistic property of PMinPs and PMaxPs  

A dataset of over 10,000 natural images from the VGG data 
(http://www.robors.ox.ac.uk/~vgg/data/) is selected. Every 
image in this dataset has a blurred version. The blurred images 
are synthesized by the blur kernel of the dataset (Levin et al., 
2009). The histogram of the average number and cumulative 
probability of PMinPs and PMaxPs for all clear and blurred 
images are calculated. The histogram of the average number of 
PMinPs and PMaxPs are shown in Figure 1 (a) and (b). We can 
find that a larger portion of the PMinPs of clear images are 
closer to 0, and PMaxPs of clear images are closer to 1 than that 
of blurred images. Figure 1 (c) and (d) are the corresponding 
cumulative distribution of the PMinPs and PMaxPs, 
respectively. It can be found that the PMaxPs is comparable to 
the PMinPs, and the sparsity of clear images is superior to that 
of blurred images. As Wen et al., (2019) reported, the PMinps 
and PMaxPs of clear images (under a threshold such as 0.9) 
follow a hyper Laplacian distribution and are much sparser than 
those of blurred images. 
 
Except for experimental statistical results illustrated in Figure 1, 
the theoretic property of PMinP and PMaxP can be given as 
follows. Let Pmin(Y) and Pmin(I) denote the PMinP of the blurred 
and clear images, Pmax(Y) and Pmax(I) denote the PMaxP of the 
blurred and clear images, respectively, the inequality 

( ) ( )min minP Y P I≥  can be directly given from Wen et al. (2019). 
Similarly, for the PMaxP prior, we can get the following 
inequality:  

 

 ( ) ( )max max1 1P Y P I− ≥ −  ( )4   
 

 
    (a)                                (b) 

 
    (c)                                (d) 

Figure 1. Statistics of the minimal and maximal pixels in clear 
and blurred images over 10,000 natural images, patch size is 

35 35×   
 
where “1” presents the maximal value of the PMaxPs. The 
mentioned inequality property can be easily proven referring to 
Pan et al. (2016, 2017), Yan et al. (2017) and Wen et al. (2019).  
 
2.3 Definition of a combined prior  

Therefore, we can get a new prior by combining PMinPs and 
PMaxPs with L0-regularization as 
 
 ( ) ( ) ( )min max0 0

1R I P I P I= + −   ( )5   

 
This prior can take advantages of both PMinP and PMaxP prior 
to facilitate the image deblurring problem. A blind deblurring 
algorithm with this combined prior will be described in next 
Section. 
 

3. DEBLURRING ALGORITHM BASED ON THE 
COMBINED PRIOR 

Based on the MAP framework, the objective function is given 
by  
 
 ( ) ( ) ( )

,
min ,

k I
L k I Y H k R Iγ µ⊗ + +   ( )6   

 
where γ and μ are positive weight parameters, and L is a data 
fidelity term, which confines k I⊗  to be consistent with the 
blurred image Y. In order to solve the ill-posed problem, H and 
R are the priors of the blur kernel and the latent image, 
respectively. 
 
3.1 The Proposed Flowchart   

The workflow of CPMMP prior regularization method is 
illustarated in Figure 2 and Figure 3. The deblurring process 
contains two main steps: blur kernel estimation and nonblind 
deconvolution.  
 
Blur Kernel Estimation: In Figure 2, the process in red 
rectangle presents the blur kernel estimation. Figure 3 illustrate 
the ith-level of blur kernel estimation process. 1) Achieve the 
image prior according to the definition of CPMMP prior in 
section 2. 2) Compute a corase latent image with the prior by 
limited iterations. 3) Obtain the accurate blur kernel in ith level 
of pyramid with the gradient freature of Y(i,0) and latent image 
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I(i,n) (I(i,n)=Y(i,n)). 4) Get the initilized blur kernel of the next level 
pyramid by upsampling.  
 
Latent Image Esiamtion: In Figure 2, the blue arrow presents 
the final step of the deblurring process, i.e., once the final blur 
kernel is estimated, a classical nonblind decovlution method is 
implemented to restore the latent image with the estimated blur 
kernel and input image. 

 

 
Figure 2. Flowchart of the proposed CPMMP prior 

regularization method for deblurring.  
 

 
Figure 3. ith-level of blur kernel estimation process. 

 
3.2 The Proposed Model for Deblurring 

On account of the sparsity of the gradient of clear images, R(I) 
is usually chosen as L0-norm regularizer of I∇   (the gradient of 
I), and the loss function L and the regularization term H is select 
L2-norm. This yield  
 
 2 2

2 2 0,
min

k I
k I Y k Iγ µ⊗ − + + ∇   ( )7   

 
The deblurring process is modelled as an optimization problem 
by alternatively solving the latent image I in the 1st and 3rd items 
of Eq. (7). Introducing the proposed sparsity promotion of 
CPMMP (see Eq. (5)), the Eq. (7) is rewritten as 

 
( ) ( )2 2

min max2 2 0 0 0,
min + 1

k I
k I Y k I P I P Iγ µ α β⊗ − + + ∇ + −

( )8   
where α and β are positive weight parameters. The latent image 
I and blur kernel k can be estimated by the half quadratics 
splitting algorithm. Motivated by Wen et al. (2019), we employ 
an efficient algorithm which can avoid non-rigorous 
approximation. 
 
3.3 Optimization Algorithm 

Firstly, the blur kernel k is fixed, a soft-threshold method 
proposed by Wen et al. (2019) is employed to update I by the 
constraint of CPMMP prior in Eq. (5). Then, fix the latent 
image I, one step augmented Lagrange method is applied to 
update blur kernel. The detailed algorithm for estimating I and k 
is described in the following subsections. 
 

3.3.1 Estimating Latent Images: Given an interim 
estimation of the blur kernel k(t-1) as the current estimation at (t-
1)th level of pyramid, the problem on latent image I is 
formulated as  
 

 ( ) 21
02

min t

I
k I Y Iµ− ⊗ − + ∇   (9-1) 

 { }min max. . ( )( ) ~ ( ), ( )( ) ~ 1 ( ), for 1, ....,s t P I i p u P I i p u i N− ∈   
(9-2)  

 
As explained in section 2, p(x) is a probability density function 
of a hyper Laplacian distribution for u below a threshold such as 
0.9 (Wen et al., 2019). With the half-quadratics strategy, using 
an auxiliary variables G in regard to the image gradient I∇ , the 
function (9) can be reformulated by 
 

 ( ) 2 21
2 02

min t

I
k I Y I G Gη µ− ⊗ − + ∇ − +   

 { }min max. . ( )( ) ~ ( ), ( )( ) ~ 1 ( ), for 1, ....,s t P I i p u P I i p u i N− ∈   

( )10   
 
where η is a positive and sufficient large penalty parameter to 
enforce  I G∇ ≈ .  
 
Due to the constraints in Eq. (9-2), I and G cannot be solved by 
the block coordinate descent algorithm. However, inspired by 
Wen et al. (2019), we use a simple thresholding/shrinkage step 
in the iteration procedure to impose sparsity promotion on the 
CPMMP prior of I. At the mth iteration of the tth latent image I 
subproblem, denote the PMinP subset of It,m as ,

min :t mI = ( ),
min

t mP I , 

and the PMaxP subset of It,m as ,
max :t mI =  ( ),

max
t mP I = 

( ),
min1 1 t mP I− − , the process is presented as the 1st Step in Figure 

4.  
 

 
Figure 4. Flowchart of estimating I  

 
In order to get the (m+1)th latent image I at tth level of pyramid, 
we iteratively impose thresholding on It,m+1. Firstly, make λmin > 
0 as a threshold parameter. The PMinP is thresholded as  
 

 ( )
( )

( )
{ }

,
min min,

min ,
min

0,
, 1,...,

,

t m
t m

t m

I i
I i for i N

I i else

λ <= ∈








  ( )11   

 
Likewise, the PMaxP can be inferred as 
 

 ( )
( )

( )
{ }

,
min max,

max ,
max

0, 1
, 1,...,

,

t m
t m

t m

I i
I i for i N

I i else

λ − <= ∈








  ( )12   

 
where λmax is a positive threshold parameter. Let the index set of 
the PMinP and PMaxP in It,m be ( ){ ( )( ), ,

min min min, | ,t m t mi j I i j λΩ = <  

}1,...,j T=  and ( ) ( )( ){ }, ,
max max max, | 1 , 1,...,t m t mi j I i j j TλΩ = > − = . T is 

the total number of the ith image patch pixels. The mask 
corresponding to the PMinPs and PMaxPs is defined as 
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 ( ) ( ) ,
min,

min

1, ,
,

0,

t m
t m if i j

M i j
else

 ∈Ω= 


  ( )13   

 ( ) ( ) ,
max,

max

1, ,
,

0,

t m
t m if i j

M i j
else

 ∈Ω= 


  ( )14   

 
The operators of PMinP prior ( )min : m n NP I × →   and PMaxP 

prior ( )max : m n NP I × →  have corresponding inverse operation 

defined as: ( )min :T N m nP z ×→    and  ( )max :T N m nP z ×→   for 

any Nz ∈  (i.e. its transpose). Therefore, the minI  and maxI  can 
be presented by 

 
 ( )( )min min min min: TI P P I I M= =    ( )15   

 ( )( )max max max max: TI P P I I M= =    ( )16   
 
where  is dot product. Therefore, the It,m can be updated as ,t mI  
 
 ( ) ( ) ( ), ,

min max min ma
, , , ,

mi axn m x= 1 t m tt m t m t m tm T mTI I IM M P IP− − + +  

    

 ( ), , ,
min

, , , ,
min max min maxmax= 1t m t mt m t m t t mtm mM M M MI I I− − + +





   ( )17   

 
The expression can be diagrammed in 2nd step shown in Figure 
4. 
 
Insert ,t mI to Eq. (10), the subproblem on G can be solved as the 
following equation 
 

 
2, 1 , , ,

02
arg mint m t m t m t m

G
G I G Gη µ+ = ∇ − +   ( )18   

 
where ( )= ,h v∇ ∇ ∇  and G = (Gh, Gv).  Gh and Gv are image 
gradients in the horizontal and vertical directions, respectively. 
Eq. (18) is a proximal minimization from Pan et al. (2014) and 
the solution can be given by  
 

 ( ) ( )( ), , 2
, 1 , , , /

0,

t m t m
t m i j if iG I I j

else

µ η+
 ≥= 


 

  ( )19   

 
Finally, the image It,m+1 can be updated via the next 
subproblems 
 

 ( ) 2 21, 1 , 1

22
arg min tt m t m

I
I k I Y I Gη−+ += ⊗ − + ∇ −   ( )20   

 
which can be efficiently computed by least-square method in 
Fourier field. The solution formulation given by means of fast 
Fourier transform (FFT) is present as follows  
 

( )( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( ) ( )( )

, 1

1 , 1 , 1

-1

1 1

t m

t t m t m
h h v v

t t
h h v v

I

k Y G G

k k

η

η

+

− + +

− −

=

 + ∇ + ∇ 
 

+ ∇ ∇ + ∇ ∇ 
 

     


     



  

  

( )21   
 
where the symbols of (·) and -1(·) represent the FFT and 

inverse FFT operators. ( )   presents conjugate transpose 
operator. 

 
3.3.2 Estimating Blur Kernel: Similar to the estimating 
procedure of latent image, expression of subproblem with  

 
2 2,

22
min

t

t t m t

k
k I Y kγ⊗ − +   ( )22   

 
The objective formulation (22) is in spatial domain. In order to 
utilize the gradient features of latent images, the equivalent 
objective formulation in gradient space is,  
 

 
2 2,

22
=arg min

t

t t t m t

k
k k I Y kγ⊗ ∇ − ∇ +   ( )23   

 
The blur kernel can be efficiently obtained by FFT as follows:  
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
, ,

1

, , , ,

t m t m
h h v vt

t m t m t m t m
h h v v

I Y I Y
k

I I I I
−

 
∇ ∇ + ∇ ∇ 

=  
∇ ∇ + ∇ ∇ 

 

   


   

 

 

   

 

  

  ( )24   
The blur kernel estimation needs to satisfy the non-negative 
constraint and the normalization constraint. Furthermore, a 
coarse-to-fine multi-scale strategy (Cho, 2009; Pan et al., 2014) 
illustrated in Figure 2, is employed to make the blur kernel 
estimation more robust and efficient. 
 
The main steps of latent image I and blur kernel k estimation for 
blurred images are summarized in Algorithm 1. 
 
Algorithm 1 Proposed Deburring Algorithm 
Input: Blurred Image Y. 

generate Q-level pyramid of Y, {YQ,…,Y1}, Y1 = Y. 
initialize Qth blur kernel kQ. 

for t = Q : -1: 1 
      It ← Yt, β←β0, initialize βmax 

Repeat  
           It,0 ←  It 

           For m = 0: J-1 do 
 Get ,

min
t mI  and ,

max
t mI via (11) and (12)  

Get ,
min
t mM  and ,

max
t mM  via (13) and (14) 

Update ,t mI via (17). 
Calculate gradient features of ,t mI and thresholds 
Update Gt, m+1 via (19). 

                   Update It,m+1via (20). 
           End For 

It←It,J. 

β←aβ. 

Until β>βmax 
For i = 1: iter_num do 

Estimate ki via (23). 
End For 
Obtaine kt+1 by upsampling 

End For 
1k̂ k← , 1Î I←   

Output: Blur kernel estimation  k̂  and Latent image Î .  
 
The key step in Algorithm 1 contains two loops. The inner loop 
enforces smooth result with fewer artefacts in restored image, 
and the outer loop reduce the artefacts generated by the sparsity 
prior.  
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4. EXPERMENTAL RESULTS AND DISCUSSION  

A benchmark dataset of blurred images (Levin et al., 2009) is 
used to test the performance of the proposed method. Two 
quantitative metrics, i.e., peak signal-to-noise ratio (PSNR), 
structural similarity (SSIM) (Wang et al., 2004), are employed 
here. In order to validate the superiority of the proposed for 
RSIs, simulated blurred RSIs with deterministic blur kernel in 
Levin et al. (2009) and real RSIs are used. The real RSIs include 
two blurred RSIs from GF-2 satellite captured on the second 
day after launch, and a motion blurred video sequence from 
commercial satellite OVS-A (Cao et al., 2018). The no-
reference metric linear regression (LR) index (Liu et al., 2013) 
is used evaluate the real data experiment results.  
 
Parameters are set as 34 10µ −= × , a=2, J=3, β0=2μ, βmax=105, 
iter_num = 5, min max 0.1λ λ= = , and the patch size r = 
0.025 · mean(m,n). All experiments are carried out on a desktop 
computer with an Intel Core i5-8300H processor and 8 GB 
RAM. 
  
4.1 Benchmark Dataset Experiments 

The dataset from Levin et al. (2009) contains 32 blurred 
samples corresponding to 4 clear images and 8 blur kernels. 
Figure. 5 shows the PSNR and SSIM of four deblurring 
algorithms, namely means based on dark channel prior (DCP), 
extreme channel prior (ECP), PMinP prior and the proposed 
CPMMP prior. To verify the effectiveness of the proposed 
method, all the algorithms follow the protocols of Levin et al. 
(2009) for fair comparisons. As shown in Figure. 5 (a), the 
proposed algorithm achieves the highest PSNR on average. In 
Figure. 5 (b), the SSIM gotten by CPMMP are almost the 
highest among the four algorithms, which demonstrates the 
proposed algorithm outperforms the other three state-of-art 
methods.  
 

 
(a)                                             (b) 

Figure 5. Quantitative evaluations of the benchmark dataset. (a) 
PSNR. (b) SSIM. 

 
4.2 Simulated RSI Experiments 

In order to validate the performance of the proposed CPMMP 
prior regularization method on RSIs, a group of blurred RSIs 
with known blur kernels are simulated. A GF-2 multi-spectral 
image is selected as shown in Figure 6 (a). We convolute the 
blur kernels in Levin et al. (2009) with the GF-2 image, and add 
small random noise to obtain the blurred RSIs, which contains 8 
blurred samples corresponding to 8 blur kernels. For example, 
the 2nd blurred image is shown in Figure 6 (b). The blurred 
image suffers the loss of surface features and texture, see the 
zoomed regions in red rectangles.  
 
After deblurred by the means based on DCP prior, ECP prior, 
PMinP prior and the proposed CPMMP prior, the details of the 
restored images reconstructed from different methods are shown 
in Figure 6 (c)~(e). The zoomed part of the proposed method is 
smoother than the other three methods compared to an RGB 
image from Google Earth. The restored images are evaluated 
with PSNR, as shown in Figure 7. We can find that the 

proposed method is with the highest PSNR for almost all 
images and with the highest average PSNR. 
 
4.3 Real-Data Experiments 

For the real data experiments, two typical blurred data scenarios 
are selected: 
1) focus adjusting of GF-2 satellite.  The GF-2 satellite need 
refocusing after arriving the designed orbit. The GF-2 satellite 
image shown in Figure 8 (a) was captured on the second day 
after its launch, which is a typical performance of refocusing. 
 

 
(a) Ground Truth                       (b) Blurred 

 
(c) DCP                                   (d) ECP 

 
(e) PMinP                              (f) CPMMP 

Figure 6. Deblurring results for simulated images with the 
second blur kernel in Levin et al. (2009). Zoom the suset in red 

rectangle. 
 

Four different deblurring methods are used to restore the 
defocusing image. The sharpness of the surface features can be 
enhanced and a great deal of textures can be shown visually. In 
particular, as shown in Figure 8 (b)~(e), we can find that the 
house edges zoomed in red rectangle are sharper. There are least 
artefacts exist in Figure 8(e), while the other restored images 
somewhat have repetitive house edges in Figure 8(b)~(d). The 
LR values of the four methods are listed in Table 1. It is 
obvious that the proposed method obtains the largest value, 
which indicates that the restored performance of the proposed 
method is the best. Furthermore, in Table 2, the runtime of 
CPMMP can be saved compared to DCP and ECP due to the 
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traversal by patches in CPMMP instead of the traversal by 
pixels in DCP and ECP, but be inferior to PMinP, because the 
equivalent regularized prior items (2) and (3) is implemented 
not parallelly. The runtime of the prior item (2) and (3) are 24s 
and 23s in theoretically statistics, if (2) and (3) are implemented 
parallelly to save at least 23s. The efficiency of CPMMP may 
be improved by the multi-processing of the CPU. 

 

 
Figure 7. Quantitative evaluation of the simulated GF-2 multi-

spectral image. 
 

 
(a)      (b) 

 
(c)     (d) 

 
(e)     (f) 

Figure 8. Blurred image reconstruction for GF-2 satellite. (a) 
input image. The reconstruction results of: (b) DCP, (c) ECP, (d) 
PMinP, (e) CPMMP. (f) an RGB image from Google Earth. The 
comparison with the house edges are zoomed in red rectangle. 

 
2) Motion Blur from Video Satellite. An OVS-A RGB image 
located at (14.9610°W, 37.4630°N) is extracted from a video 
sequence data as illustrated in Figure 9 (a). The satellite uses the 
area-array sensor, which includes motion in video mode instead 
of typical TDI (time delay integration) line-array sensor. The 
blurred video sequence was caused by the mismatch of the 
velocity before the stabilization of the orbit (Cao et al., 2018). 
 
In Figure. 9, after deblurring using different methods, the clear 
video can be recovered well. The zoomed region in Figure 9 (e) 
from CPMMP shows more details than the others. Visual 

inspection finds that many surface features of the other restored 
images are homogenized to reduce the representation on the 
texture. In addition, as displayed in the third row of Table 1, LR 
value of CPMMP is the highest one among all methods. 
Meanwhile, CPMMP has advantages over DCP and ECP in 
computational efficiency. In summary, the proposed CPMMP 
performs favourably against the three involved state-of-the art 
methods here for real RSIs.  
 

 
(a)      (b) 

 
(c)     (d) 

 
(e)         (f) 

Figure 9. Blurred image reconstruction for OVS-A satellite. (a) 
input image. The reconstruction results of: (b) DCP, (c) ECP, (d) 

PMinP, (e) CPMMP. (f) an RGB image from Google Earth. 
 
 DCP ECP PMinP CPMMP 
GF-2 -11.06 -11.54 -10.77 -10.64 
OVS-A -10.96 -11.02 -10.97 -10.91 

Table. 1 LR values of different methods 
 

 DCP ECP PMinP 
CPMMP 

Order Parallel 
(Statistically) 

GF-2 184s 221s 70s 95s 72s 
OVS-A 638s 622s 160s 205s 162s 

Table. 2 Runtime of different methods 
 

5. CONCLUSION 

In this research, we find that patch-wise maximal pixels 
(PMaxP) in clear images will lessen, and the corresponding 
sparsity will become weaker after the images are blurred. By 
combining the PMaxP with PMinP, a new prior named CPMMP 
is proposed to recover the latent images for the blur kernel 
estimation. Based on the MAP framework and coarse-to-fine 
optimization strategy, an algorithm discriminating with half 
quadratics splitting algorithm is carried out. It is more efficient 
than the existing intensity prior based algorithms, because the 
proposed CPMMP prior can impose flexibly sparsity promotion 
during the deblurring procedure. The proposed method can 
preserve more subtle texture and sharpened edges, and reduce 
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artefacts than other three methods during the experiments for 
benchmark dataset, panchromatic or multi-spectral GF-2 images 
and satellite video sequence data.  
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