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ABSTRACT: 

 

Thanks to the rapid technological progress in the field of mobile devices, smartphones are increasingly becoming valuable for science. 

They can serve as photogrammetric measurement devices with built-in cameras, micro-electro-mechanical systems for orientation- 

and position assessment, as well as powerful processing units allowing field-based data acquisition and processing. This paper outlines 

a comprehensive investigation focusing on the accuracy and stability of smartphone camera rotation parameters determined by built-

in smartphone sensors. For that purpose, the rotation parameters were measured under a range of different conditions. Four test 

scenarios were defined considering indoor- and outdoor measurements using three different devices being in static and dynamic modes. 

Furthermore, the influence of magnetic perturbations was investigated. The rotation parameters were determined from the 

measurements applying different sensor fusion approaches. Reference values for accuracy assessment were provided by a superior 

precision inertial measurement unit that measured the rotation parameters simultaneously to the smartphone in each experiment. The 

analysis of the smartphone-based rotation parameters, separated in the Euler angles azimuth, pitch and roll, shows average accuracies 

below 2° for pitch and roll. In comparison, azimuth shows significantly lower accuracies of more than 30° especially when the 

smartphone is in motion and when it is exposed to magnetic perturbations. In this regard, advanced multi-sensor fusion approaches 

were examined that handle such interferences to considerably improve the accuracy of azimuth measurements. In conclusion, a 

summary of accuracies and stabilities to be expected from smartphone sensors is given referring to ambient conditions and investigated 

sensor fusion strategies. 

 

 

1. INTRODUCTION 

Smartphones are ubiquitously available in modern society. They 

are not only pure communication tools, but also equipped with 

cameras and a variety of sensors to measure the device position 

and orientation. Thus, smartphones are increasingly used as 

versatile measurement devices, which has been demonstrated in 

different studies. For instance, Bruinink et al. (2015) and Elias et 

al. (2019) developed photogrammetric smartphone applications 

for water level observation and flash flood prediction. Novakova 

and Pavlis (2017), Kröhnert et al. (2017) and Kehl et al. (2019) 

use smartphones for field-based interpretations of geological 

features. Bianchi et al. (2017) have shown that smartphones are 

suitable for the determination of forest inventory parameters. 

Muratov et al. (2016) introduced a method to perform 3D 

reconstruction based on structure from motion (SfM) on 

smartphones. Each of these applications requires precise 

information about smartphone camera’s position- and rotation 

parameters, i.e. the exterior orientation. Referring to this, state-

of-the-art global navigation satellite system (GNSS) receivers, 

implemented in smartphones, promise accuracies of less than 1 m 

for the position parameters using real-time precise point 

positioning (PPP) strategies (Chen et al., 2019a). Despite 

numerous technical innovations, the smartphone-based 

determination of absolute rotation parameters using built-in 

micro-electro-mechanical system (MEMS) inertial measurement 

units (IMUs) is still challenging due to sensor instabilities and 

external magnetic field interferences, e.g. Poulose et al. (2019a), 

and requires a comprehensive investigation.  

                                                                 
*  Corresponding author 

 

For that purpose, typical problems in rotation parameter 

determination must be simulated in relation to the above-

mentioned applications, e.g. when the device is exposed to 

magnetic perturbations during field-based measurements.  

 

1.1 Related Work 

Elias et al. (2019) address the challenge of smartphone-based 

rotation parameters in their description of a smartphone 

application enabling the determination of water levels in flood 

events. The presented approach is based on image-to-geometry 

registration and needs good approximations for smartphone 

camera's exterior orientation. They point out that the success of 

water level determination highly depends on the rotation 

parameters and may be impeded when the determined azimuth 

(also known as heading or compass angle) deviates by more than 

40° from the actual value, which is quite possible according to 

the work of Blum et al. (2013). They determined deviations of 

about 30° regarding azimuth with significant drifts after a few 

minutes in an augmented reality (AR) application where the 

smartphone is used in a static mode. Similar observations were 

made by Kok et al. (2017). Novakova and Pavlis (2017) even 

determined azimuth-related errors up to 90° using the 

smartphone as a compass in geological applications. 

 

It is obvious that the precise determination of rotation parameters 

using built-in smartphone sensors is not trivial and a subject in 

manifold research. However, most studies are focussed on the 

measurement of relative rotation parameters, necessary for e.g. 

indoor navigation, using the output directly from physical sensors 
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or from virtual sensors that implement standard sensor fusion 

approaches, e.g. Ma et al. (2013), Aicardi et al. (2014), Gikas and 

Perakis (2016) and Kuznetsov et al. (2018). This paper affiliates 

these investigations with a particular focus on the above-

mentioned issues regarding photogrammetric applications. For 

that purpose, the rotation parameters were determined in relation 

to a world reference frame under a range of different conditions 

utilising three Android devices, equipped with low-cost IMUs 

based on MEMS technology, and implementing three inertial 

multi-sensor fusion approaches. Of course, inertial sensors can 

also be coupled with GNSS, e.g. Hide et al. (2009) and Sheta et 

al. (2018), cellular signals or visual sensors, e.g. Angelino et al. 

(2012), Solin et al. (2018) and Qin et al. (2018), to improve the 

rotation measurements, but only provided that the device is in 

motion. In view of the mentioned applications predominantly 

requiring the smartphone in static mode, however, this paper is 

focused on the accuracy and stability assessment of rotation 

parameters (f)using only inertial sensors. The accuracy was 

determined comparing the rotation parameters from smartphones 

to those from a superior precision IMU and the stability was 

determined observing the variability of the rotation parameters 

when the investigated smartphone was used in a static mode.  

 

Smartphone camera, MEMSs and GNSS module are closely 

mounted on a single circuit board. With respect to the expected 

reduced accuracies in comparison to high-end sensor systems 

used in, for example, airborne laser scanning applications, the 

determination of the boresight alignment was neglected in the 

following investigations.  

 

1.2 Paper structure 

Before starting with the measurements, Section 2 provides basic 

knowledge about physical and virtual sensors that are commonly 

used to determine rotation parameters. Furthermore, the relation 

between the smartphone sensor coordinate system and a world 

coordinate system is described. As the paper investigates the 

impact of magnetic perturbations on the measurement of rotation 

parameters, a short outline is provided dealing with magnetic 

effects and how to calibrate them. Section 3 provides information 

about the conducted experiments including a description of the 

test scenarios, of the applied hardware and sensor fusion 

techniques and of the experimental setup. Furthermore, the 

synchronisation of smartphone and IMU is described. The 

measurement results are given in Section 4 separated in 

investigations on accuracy and on stability. Finally, a short 

summary is provided in Section 5. 

 

 

2. BASICS 

2.1 Sensors systems for orientation estimation 

As the term sensor fusion indicates, the measured values from 

multiple physical sensors are combined to generate advanced 

virtual sensors. Such sensor fusion concepts are commonly 

implemented by state-of-the-art IMUs and increasingly by 

smartphones with the purpose of rotation parameter 

determination. 

 

2.1.1 Physical Sensors are MEMSs built in smartphones that 

can be classified into three groups (Google, 2020): 

 

 Environmental sensors, e.g. barometer 

                                                                 
1 natural device orientation of smartphones and phablets: 

portrait mode; tablets: landscape mode (valid for most devices) 

 Position sensors, e.g. magnetometer (+ GNSS) 

 Motion sensors, e.g. gyroscope and accelerometer 

 

By default, the sensor data of magnetometer, gyroscope and 

accelerometer is used to determine the rotation parameters. In this 

regard, the accelerometer measures linear accelerations and 

gravities along three axes, the magnetometer measures the 

ambient magnetic field and the gyroscope measures angular 

velocities and accelerations in 3D space. 

 

2.1.2 Virtual sensors are a result of fusing the data from 

physical sensors. They show significant advantages over the 

exclusive usage of single physical sensors. One the one hand, 

integrating position sensors in addition to motion sensors allows 

to determine the absolute device orientation in Earth-North-Up 

reference frame. On the other hand, sensors with complementary 

strengths and weaknesses can be combined to overcome sensor-

specific issues. As an example, accelerometers measure inertial 

forces at the device, but they are susceptible to smallest 

vibrations and non-gravity accelerations that result in noisy 

angular measurements. Gyroscopes accurately measure the 

angular acceleration of a device, but they are prone to drift effects 

due to bias instability and high-frequency noise called angular 

random walk (ARW). Fusing the measurements from both 

sensors helps to reduce noise occurring from non-gravity forces 

and drift effects. More details are given in Beavers (2017). Sensor 

fusion is mostly implemented by means of a Complementary 

Filter (CF), a Linear Kalman Filter (LKF) or an Extended 

Kalman Filter (EKF) including the data from the physical 

sensors, e.g. Natarajasivan and Govindarajan (2016), Islam et al. 

(2017), Cloud et al. (2019) and Poulose et al. (2019b).  

 

2.2 Smartphone coordinate systems 

The orthogonal smartphone sensor coordinate system is defined 

in relation to the natural orientation of the device1 where 

 

 x points to the right edge of the device 

 y points to the top edge of the device 

 z points out of the display 

 

The world coordinate system is expressed as orthogonal 

coordinate system where 

 

 X (Y×Z) is tangential to the ground pointing to East 

 Y is tangential to the ground pointing to magnetic 

North 

 Z is perpendicular to the ground pointing in direction 

of the sky 

 

Smartphone-based rotation parameters will be zero when the 

smartphone is flat on the ground with the screen facing the sky 

and with the top edge pointing to magnetic North (see Figure 1). 

The respective Euler angles are derived in azimuth-pitch-roll 

order, where 

 

 Azimuth rotates about -Z-axis in North East South 

West (NESW) compass direction [0,
�

�
,π,−

�

�
] 

 Pitch rotates about -X-axis [−π,π] 

 Roll rotates about Y-axis [−
�

�
, 

�

�
] 

 

More details about the different coordinate systems are given by 

Google (2020). 
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Figure 1. Smartphone sensor coordinate system in relation to a 

world coordinate system. 

 

Note: Using the device upright, e.g. in AR- and photogrammetric 

applications, requires remapping of the sensor coordinate system 

in order to align camera's principal axis with the Y-axis. 

 

2.3 Magnetic perturbations 

Measuring the azimuth in relation to the world reference system 

requires measurements of Earth's magnetic field that can be 

described by three components. Declination and inclination 

describe Earth's magnetic field orientation where the declination 

provides information about the deviation from magnetic North to 

true North. 3D magnetometers are able to measure the third 

component, the magnetic field intensity, which is used to 

determine the device direction in relation to magnetic North. 

Unfortunately, magnetometers are prone to errors occurring from 

inferences with the geomagnetic field, called magnetic 

perturbations. These can be classified in soft- and hard iron 

effects. Details are given in Caruso (2000), Seco and Jiménez 

(2018) and Muraccini et al. (2019). 

 

2.3.1 Hard iron effects arise from fixed-installed magnetised 

objects close to the sensor system, which applies to almost all 

components built in smartphones. These error sources will cause 

a constant bias to the sensor measurements resulting in a 3D 

offset of the measured magnetic field intensities that need to be 

calibrated. 

 

2.3.2 Soft iron effects occur from flexible magnetised objects 

close to the sensor system that can distort and deflect Earth's 

magnetic field measurements. This results in bias towards the 

sources of interference. Soft iron effects can occur indoor and 

outdoor, for example when the device is exposed to changes of 

the physical environment.  

 

2.3.3 Magnetometer calibration implies the correction of 

hard- and soft iron effects including, on the one hand, the 

determination of the offset referring to hard iron effects and, on 

the other hand, the establishment of the complex relationship 

between the magnetic field and soft-iron-induced distortions 

(Vishwatheja et al., 2016). Magnetometer calibration is 

mandatory and must be performed immediately before the actual 

measurement. However, soft iron effects are highly variable and 

will thus influence the measurements even if the sensor has been 

calibrated in advance. For that reason, they were considered in 

the experiments to quantify their impact on the determined 

rotation parameters with a special focus on the measurements of 

the compass angle azimuth. 

3. EXPERIMENTS 

Three sensor systems, built in three different Android devices, 

were used to investigate the accuracy and the stability of 

smartphone rotation parameters determined from three virtual 

sensors. For that purpose, four indoor and outdoor test scenarios 

were defined, where the device was in: 

 

1. static mode 

2. static mode being exposed to soft iron effects 

3. dynamic mode 

4. dynamic mode being exposed to soft iron effects 

 

3.1 Hardware 

Details on the investigated devices are given in Table 1. Each 

investigated smartphone has a 6-axis MEMS gyroscope and 

accelerometer (see Table 1, Inertial sensor system) and a 3-axis 

electronic compass (see Table 1, Magnetometer). The reference 

values, given in Euler angles, were determined using the IMU 

Spatial v6.1 by Advanced Navigation. It comes with a virtual 

sensor that fuses the measurements from built-in 3D 

accelerometer, gyroscope and magnetometer. Table 2 shows 

IMU's specifications, provided by Advanced Navigation (2020). 

 
 LG Google 

Nexus 5 

Samsung Galaxy 

S8 

Samsung Galaxy 

S10+ 

Operation 
System 

Android 6.0 Android 8.0 Android 9.0 

SoC 
Snapdragon 

800 
Exynos 8895 Exynos 9820 

CPU 4x2.26 GHz 8x2.3 GHz 8x1.9-2.7 GHz 

GPU 
450 MHz 

Adreno 330 

900 MHz Mali-

G71 MP20 

900 MHz Mali-

G76 MP12 
Inertial 

sensor system 

InvenSense 

MPU-6515 

STMicroelectronics 

LSM6DSL 

STMicroelectronics 

LSM6DSO 

Magnetometer 
Asahi Kasei 

AK8963 
Asahi Kasei 
AK09916C 

Asahi Kasei 
AK09918C 

Table 1. Smartphone specifications. Abbreviations: 

Central Processing Unit (CPU), Graphics Processing Unit 

(GPU), System on Chip (SoC). 

 
Static Dynamic 

Azimuth Pitch, Roll Azimuth  Pitch, Roll 

0.5° 0.1° 0.8° 0.2° 

Table 2. Manufacturer's information to IMU Spatial. 

 

3.2 Experimental setup 

The experiments were carried out with a smartphone and the IMU 

being fixed on a stable bar at a distance of 1 m to ensure that both 

sensor systems do not disturb each other (see Figure 2).  

 

 

Figure 2. Experimental setup. 

 

Smartphone and IMU were aligned in such a way that the sensor 

coordinate systems of both devices were parallel. Note, Spatial 

measures the pitch as rotation around the y-axis whereas the 
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smartphone measures the pitch as rotation around the -x-axis, 

which resulted in opposite directions of rotations that must be 

considered in the data analysis.  

 

Three repeated measurements were performed with measuring 

times of about 90 seconds. At the beginning of each experiment, 

both sensor systems were calibrated with regard to the magnetic 

field following the explanations given in Google (2020) and 

Advanced Navigation (2020) while information about the 

calibration validity was given by the operating system. After that, 

the bar, being parallel to the ground, was roughly aligned to true 

North. Regarding experiments where the device was used in a 

dynamic mode, the bar was moved in a slight rowing motion. 

Soft-iron effects were induced by means of magnetised objects 

that were placed close to the smartphone with varying positions. 

 

3.2.1 Smartphone implementation: The experiments were 

conducted using a self-developed smartphone application that 

implements the virtual sensors: 

 

 Android Rotation Vector (ARV) 

 Improved Rotation Sensor 1 (IRS1) 

 Improved Rotation Sensor 2 (IRS2) 

 

to determine the rotation parameters to be compared with those 

from the reference IMU. The default-implemented ARV 

measures the rotation parameters in relation to a world coordinate 

system (see Figure 1) fusing the measurements from 

accelerometer, gyroscope and magnetometer by means of an 

EKF. In this regard, the gyroscope gives the orientation, the 

accelerometer provides the correction measuring the gravity 

forces at the device and the magnetometer provides the correction 

to magnetic North (Pacha, 2015). Unfortunately, ARV shows 

residual drift effects that seem to be related with the gyroscope, 

as ARV uses the raw gyroscope measurements directly from the 

physical sensor. The multi-sensor fusion approaches IRS1 and 

IRS2, developed by Pacha (2015), promise solutions for this 

issue fusing ARV with the Android-implemented virtual sensor 

Calibrated Gyroscope. According to the developer, IRS1 

combines the angular acceleration measurements of both sensors 

and is recommended for most AR applications when the device 

is used in a static mode. In contrast to this, IRS2 fuses the angular 

accelerations as well as the angular velocities measured by the 

Calibrated Gyroscope and is recommended for applications 

where the device is used in a dynamic mode. The implementation 

of both virtual sensors, IRS1 and IRS2, used here, is based on the 

source code provided by Pacha (2015). 

 

In the experiments, the virtual smartphone sensors ran with a 

frequency of 25 Hz that allowed for motion tracking when the 

device was moved with moderate speed and provided reasonable 

numbers of about 2250 measurements in a 90-second 

measurement period. 

 

3.2.2 Observing magnetic perturbations: Magnetic 

perturbations can be detected comparing the measured magnetic 

field intensities with expectation values given by the World 

Magnetic Model 2015 (WWM-2015) that provides superior 

information about the Earth's magnetic field depending on the 

device location and current time. Further details can be found in 

Chulliat et al. (2015). In this study, the measured intensity must 

equal the expected intensity with a tolerance of ±5 μT, otherwise 

it was assumed to be affected by uncalibrated soft iron effects. 

As the smartphone application informs the user about the ambient 

magnetic field intensity, deviations could be provoked to 

simulate soft iron effects that ranged between 10 μT and 15 μT 

in the respective experiments. Stronger magnetic perturbations 

were avoided as they are likely to heavily impair the 

magnetometer so that this could not work properly. 

 

3.2.3 Data logging and synchronisation: Regarding data 

logging, the smartphone application recorded the measurements 

including the time stamp in milliseconds given by Unix time, the 

rotation parameters azimuth (to true North), pitch and roll 

measured by three virtual sensors and the deviation of the 

measured magnetic field intensity referring to magnetic 

perturbations. Similar to this, the IMU recorded azimuth (to true 

North), pitch and roll together with a Unix time stamp at a 

frequency of 40 Hz. 

 

Even if both datasets can be synchronised by Unix time, the 

sensor systems showed different latencies that must be corrected 

to make them comparable. Considering the experiments, the lag 

was determined and fixed for each investigated device by means 

of sample cross correlation on the trajectories of azimuth, pitch 

and roll considering the dynamic-mode measurements. Then, it 

was applied to the corresponding measurements when the device 

was used in a static mode. 

 

 

4. RESULTS 

In summary, 216 measurement series were conducted whereby 

one data set contains the rotation parameters from three virtual 

sensors (including four test scenarios performed indoor and 

outdoor applying three devices and three repeated measurements 

per setting). The accuracies were determined for each setting and 

for each device calculating the root mean square errors (RMSEs) 

between the synchronised smartphone- and IMU measurements 

for azimuth, pitch and roll, respectively. In relation to this, the 

RMSEs were individually determined for the measurements of 

ARV, IRS1 and IRS2. The sensor stability was assessed by 

means of the standard deviations that were calculated for the 

smartphone-based rotation parameters involving each 

measurement series where the device was used in a static mode. 

 

The results are visualised in Figure 3–5 with regard to accuracy 

and stability, respectively, taking account of the measurement 

settings, the used devices and the individual virtual sensors. 

 

4.1 Accuracies 

As illustrated in Figure 3, devices used in dynamic mode show 

higher deviations to the ground truth in all rotation parameters 

compared to the measurements performed with devices used in 

static mode. Calculating the median values of the RMSE values 

of a measurement series for azimuth, pitch and roll results in 

24.0°, 0.9° and 0.6° when the device was used in a static mode. 

In contrast, median deviations of 41.9°, 2.1° and 2.8° occurred 

when the device was used in a dynamic mode.  

 

This is particularly evident for azimuth when the device is 

exposed to magnetic perturbations. In this regard, the medians 

show deviations of 45.6°, 1.6° and 1.4° for azimuth, pitch and 

roll irrespective of whether they were captured in dynamic- or in 

static mode or whether the experiment was performed indoors or 

outdoors. On the contrary, devices that were not affected by 

magnetic perturbations show deviations of only 22.0°, 1.7° and 

1.4°. Focussing on pitch and roll, the impact of magnetism is 

negligible as it results in a loss of accuracy of less than 1.0°. 

Comparing the results from indoor- and outdoor measurements, 

the azimuth angles measured outdoor are significantly more 

accurate as when they were measured indoor. 
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One reason for this may be stronger interferences occurring 

inside a building due lamps, radiators, pipes etc. Calculating the 

median deviations results in 51.2°, 1.7° and 1.4° as well as 23.7°, 

1.6° and 1.7° for azimuth, pitch and roll with respect to indoor 

and outdoor measurements. Despite the rather small deviations 

for pitch and roll that were measured in both environments, 

azimuth shows maximum deviations up to 50.8° when it was 

measured outdoors and even up to 90.9° when it was measured 

indoors.  

 

Comparing the results of IRS1, IRS2 and ARV, no significant 

differences became apparent between the respective 

measurements of pitch and roll. However, significantly better 

results could be achieved for azimuth using IRS2, especially in 

case of magnetic perturbations.  

 

 

Figure 5. Histograms of the total deviations regarding azimuth 

in relation to the measurements from IRS1, IRS2 and ARV. 

Figure 3. Accuracy investigation of smartphone-based rotation parameters. Accuracy is defined by the RMSE calculated from the 

deviations between the rotation parameters from the smartphone and the reference values from IMU Spatial. 

Figure 4. Stability investigation of smartphone-based rotation parameters. Stability is defined by the  

standard deviation s of one measurement series when the smartphone was used in static mode. 
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Focussing on Figure 5, 25% of all IRS2 measurements show 

deviations of less than 15° from the ground truth. In contrast, the 

percentage of measurements differing less than 15° amounts to 

only 18% for IRS1- and 13% for ARV measurements. Beside 

this, 50% of all IRS2 measurements show deviations of less than 

30°. 

 

4.2 Stability 

The sensor stability was investigated when the devices were used 

in static mode. As visualised in Figure 4, ARV shows slight, 

negligible variations in all measurements. In contrast, IRS1 and 

IRS2 show variations of 0.6° and 1.8° for azimuth measured by 

LG Google Nexus 5 when the device was exposed to magnetic 

perturbations. These effects may be related with device's sensor 

type that might be more susceptible to interferences than the other 

sensor types. However, stabilities similar to the results of pitch 

and roll could also be observed for azimuth considering the 

measurements from Samsung Galaxy S8 and Samsung Galaxy 

S10+. 

 

 

5. CONCLUSION 

This paper addresses the complex issue of the determination of 

absolute rotation parameters using built-in smartphone sensors. 

For that purpose, their accuracy potential and stability were 

investigated from different perspectives considering indoor- and 

outdoor measurements, magnetic perturbations, smartphones 

running in static and dynamic modes, as well as different (multi-) 

sensor fusion concepts. In each experiment, the rotation 

parameters were simultaneously measured from a superior 

precision IMU whose measured rotation parameters served as 

ground truth.  

 

The experiments have shown that the rotation angles pitch and 

roll can be measured with accuracies of a few degrees under 

different conditions using built-in smartphone sensors. In 

contrast, the accuracy of the azimuth varies between 1° and 90° 

whereby the highest errors occurred when the smartphones were 

used in dynamic mode or when they were exposed to magnetic 

perturbations. However, it was detected that the measurements of 

the azimuth angle could be significantly improved applying 

multi-sensor fusion approaches like IRS2 that provide errors of 

less than 30° in 50% of all measurements.  

 

It is obvious that these accuracies, especially the accuracies 

determined for azimuth, impede the direct georeferencing of 

smartphone images in photogrammetric applications. Poulose et 

al. (2019b) have shown that implementing sensor fusion by 

means of an Unscented Kalman Filter (UKF) could further 

improve the direct measurement of the azimuth, which, however, 

must be evaluated in future investigations. Nevertheless, using 

these values as rough estimates enables the application of image-

to-geometry registration to precisely determine the azimuth with 

the aid of landmarks within spatial resection, e.g. Schwalbe and 

Maas (2017), Eltner et al. (2018), Kehl et al. (2019) and Elias et 

al. (2019).  

 

New advanced approaches integrate deep learning in sensor 

fusion and promise significantly more accurate measurements of 

the rotation parameters combining also (low-cost) inertial 

sensors, provided that the smartphone is used in dynamic mode, 

e.g. Silva do Monte Lima et al. (2019). In this regard, Chen et al. 

(2019b) have shown how to use deep learning to improve the 

robustness of visual-inertial odometry to deal with imperfect 

sensor data, i.e. feature tracking errors and noisy IMU data. 

Shamwell et al. (2019) even trained a neuronal network with 

RGB-depth imagery and IMU data to enable the determination of 

absolute camera trajectories merely using consecutively captured 

camera images. Such approaches could be very helpful to 

improve photogrammetric applications like 3DCapture (Muratov 

et al., 2016), where precise information about the camera 

trajectory is mandatory to perform 3D reconstruction directly on 

the smartphone. 
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