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ABSTRACT:

On-road information, including road boundaries, road markings, and road cracks, provides significant guidance or warning to all
road users. Recently, the on-road information extraction from LiDAR data have been widely studied. However, for the LiDAR
data with lower accuracy and higher noise, some detailed information, such as road boundary, is difficult to be extracted correctly.
Furthermore, most of previous studies lack an exploration of efficiently extracting multiple on-road information from a single
framework. In this paper, we propose a new framework that can simultaneously extract multiple on-road information from high
accuracy LiDAR data and can also more robustly extract detailed road boundaries from low accuracy LiDAR data. First, we propose
a Curb-Aware Ground Filter to extract ground points with rich curb structure features. Second, we transform the vertical density,
elevation gradient and intensity features of the ground points into multiple feature maps and extract multiple on-road information
from the feature maps by employing a semantic segmentation network. Experimental results on three datasets with different data
accuracy demonstrate that our method outperforms other recent competitive methods.

1. INTRODUCTION

On-road information, such as road boundary, road markings,
and road cracks, plays an important role in urban construction.
Extraction of the on-road information is significant in many ap-
plications such as road maintenance (El-Halawany et al., 2012),
city planning, intelligent drive assistant systems (Wen et al.,
2016), High Definition (HD) map (Ma et al., 2018) and traffic
flow monitoring and prediction (Lv et al., 2015). Over the past
few years, due to the huge market of autonomous driving and
intelligent cities, LiDAR industry has developed rapidly, and
the LiDAR data for on-road information extraction have been
widely studied (Ma et al., 2018).

By using high accuracy mobile LiDAR sensors, such as, RIEGL
VQ-450, RIEGL VUX-1HA, and Optech Lynx HS-600 Dual,
high accuracy point clouds can be collected. Some detailed on-
road information, such as road boundaries, could be extracted
from the high accuracy point clouds via the structure feature of
curbs (Jaakkola et al., 2008, Yang et al., 2017). However, there
are many LiDAR sensors with low accuracy, such as Velodyne
VLP-16 and HDL-64E. For the LiDAR data with lower accu-
racy and higher noise level, detailed on-road information are
hard to be extracted correctly, as shown in Fig. 1. In addition,
most of the related methods extract every on-road information
separately. These methods lack an exploration of efficiently ex-
tracting multiple on-road information by a single framework.

In this paper, we propose a multiple feature map-based on-road
information extraction framework. The keys to the framework
are two-fold. (1) We propose a Curb-Aware Ground Filter. In-
stead of other methods that extract ground points without curb
∗ Corresponding author

Figure 1. Inaccurate road boundary extracted (highlighted by red
color) from low accuracy LiDAR data by employing regular

methods.

information (Zai et al., 2017, Wen et al., 2019a), the Curb-
Aware Ground Filter extracts both road surface points and curb
points which provide essential structure features for robust road
boundary extraction. (2) By transforming both the structure
and texture features of on-road information into multiple fea-
ture maps, and employing a semantic segmentation network on
the feature maps, we can simultaneously extract road bound-
aries, road markings and even road cracks from high accuracy
LiDAR data, and also can more robustly extract detailed road
boundary information from low accuracy LiDAR data.

We conducted extensive experiments on multiple datasets in-
cluding a part of the Coastal Ring Road (CRR) (Wen et al.,
2019b), Paris-Lille-3D (Roynard et al., 2018) and KITTI odom-
etry data set (Geiger et al., 2012). The CRR is collected by a
RIEGL VQ-450 LiDAR with millimeter-level accuracy. The
Paris-Lille-3D and KITTI are collected by Velodyne HDL-32E
and Velodyne HDL-64E LiDAR with centimeter-level accu-
racy, respectively. Experimental results on the three data sets
demonstrate that our method outperforms other competitive
methods.
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Figure 2. Framework of our proposed method.

2. RELATED WORK

A large amount of recent work has studied on-road informa-
tion extraction from LiDAR data. These work mainly consists
of road boundary extraction, road marking extraction and road
crack detection, which are detailed as follows.

2.1 Road Boundary Extraction

A variety of road boundary extraction methods have been con-
ducted by converting 3D point clouds into 2D geo-referenced
feature(GRF) images. Jaakkola et al. first converted point cloud
into height image, and then they extracted gradient information
from the height images. Last, a pixel was selected as a curb
point if it has a specified number of neighboring with a spec-
ified gradient (Jaakkola et al., 2008). Based on two assump-
tions (the distance between the road surface, and 3D trajectory
is constant and the normal direction?of the road surface is par-
allel to the z-direction), road surfaces were extracted by GRF
images and then boundaries of all road surface were generated
by alpha-shape algorithm (Yang et al., 2017).

Some road boundary extraction methods are conducted on Li-
DAR data directly. According to the derivatives of the Gaussian
function to MLS point clouds, road edges were extracted by ap-
plying a parametric active contour and snake model (Kumar et
al., 2013). The feature map of RANSAC-based normal direc-
tion was analyzed, and then road edges and road surfaces were
obtained by Kalman filters (Hervieu, Soheilian, 2013).

Other methods also studied the road boundary extraction using
both point clouds and scanning trajectory. Wang et al. first
divided the point cloud into several parts along the trajectory,
and then the road boundary was extracted and refined from
each part (Wang et al., 2015). Zai et al. detected rough road
boundary via supervoxels and alpha-shape algorithm and then
extracted road boundary by applying graph cuts on the trajec-
tory and rough boundary (Zai et al., 2017).

With the development of deep learning, some works used 3D
deep learning to process point cloud data. Since road edge
extraction can be regarded as a classification problem, Rach-
madi et al. detected road edge from the point clouds us-
ing Encoder-Decoder Convolutional Network (Rachmadi et al.,
2017). Liang et al. proposed a convolution network, which
takes as input overhead LiDAR and camera imagery as well
as the gradient of the LiDARs elevation value, generates road
boundaries feature map (Liang et al., 2019).

2.2 Road Marking Extraction

Road markings are highly retro-reflective materials painted on
asphalt concrete pavements. Thus threshold-based methods

have been commonly used for road marking extraction. Wang
et al. proposed a method using an adaptive binary thresh-
old method from binary raster images, which were generated
from the filtered laser points based on their reflective proper-
ties (Wang et al., 2015). Yang et al. proposed an adaptive block
and a multi-threshold method to detect road markings based on
the intensity information from the MLS data (Yang et al., 2018).
By using MLS trajectory to discretize LiDAR data into smaller
sections, Jung et al. extracted road surface by employing con-
strained Random Sampling and Consensus (RANSAC) algo-
rithm. Then the road surface is rasterized into a 2D intensity
image to separate the lane markings. Finally, the remaining in-
correct lane markings are detected and removed through a noise
filtering phase using Dip test statistics (Jung et al., 2019).

Most of the above methods are extracted based on a certain type
or some type of features of road marking, and they require some
prior knowledge, and it is easy to produce omission or wrong
lifting. Thus deep learning is a significant way to solve these
problems. Wen et al. projected 3D MLS data onto a 2D inten-
sity image, and modified U-Net model to segment road marking
pixels (Wen et al., 2019a).

2.3 Road Crack Detection

Because road cracks are lowly retro-reflective on asphalt con-
crete pavements, the intensity feature of point clouds can be
used to detect road cracks. Yu et al. employed the Otsu thresh-
olding algorithm to extract crack candidates. Next, a spatial
density filtering algorithm was performed for outlier removal.
Finally, crack points were clustered into crack-lines, and crack
skeletons were extracted by performing an L1-medial skeleton
extraction algorithm (Yu et al., 2014).

Guan et al. developed ITVCrack to extract pavement cracks
by using the iterative tensor voting (ITV) method (Guan et al.,
2015). Chen et al. first generated Digital Terrain Model (DTM)
from MLS point clouds to detect cracks. Sequentially, local
height changes that may relate to cracks were detected based
on a high-pass filter. Last, a Gaussian-shaped kernel was used
to extract crack features (Chen, Li, 2016). A sparse points
grouping method is proposed by Li Q et al. to detect cracks
from the 3D point clouds (Li et al., 2017).

There are some ways to extract road cracks using deep learn-
ing. Gavilán et al. proposed a seed-based approach by com-
bining Multiple Directional Non-Minimum Suppression (MD-
NMS) with asymmetry check, to extract road cracks (Gavilán
et al., 2011).
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Figure 3. (a) Road objects elimination (cars in blue color,
ground in red color). (b) Ground filter. Current point will be
determined as a ground point if no point detected in purple

region. (c) Differential filter.

3. OUR METHOD

To efficiently extract on-road information from LiDAR data, we
transform structure and texture features of ground points into
multiple feature maps and extract road boundaries, road mark-
ings, and road cracks by employing a semantic segmentation
network on the feature maps. The proposed method consists of
three functional blocks: (1) ground points extraction, (2) mul-
tiple feature maps generation, and (3) on-road information ex-
traction. The framework of our method is illustrated in Fig. 2.
We provide a detailed introduction of each block in the follow-
ing sections.

3.1 Ground Points Extraction

Raw point clouds can be segmented into two parts. One is
the off-ground part, which consists of trees, buildings, poles,
etc. The other is the ground part which consists of road sur-
faces, boundaries, markings, cracks, and others. Filtering out
off-ground point clouds can minimize computational load and
save memory space. Curb points are essential for road boundary
extraction. However, most of the recent methods extracted the
road surface without curb information (Zai et al., 2017, Wen et
al., 2019a). We propose a Curb-Aware Ground Filter to extract
the ground points with the curb points retained.

First, uninteresting points are removed based on lateral density
contrast, such as moving cars (see Figure 3. (a)) in KITTI data.
The lateral density of point Pi is computed as follows

Dl(Pi) =
n∑
j=1

I(
√

(P xi −Nx
j (Pi))

2 + (P yi −N
y
j (Pi))

2 < R),

(1)

where Dl(Pi) = lateral density of Pi,
I = indicator function,
P xi , P

y
i = coordinates of Pi,

Nx
j (Pi), N

y
j (Pi) = coordinates of the neighbors,

point of Pi,
R = searching radius.

According to experimental results, ifDl(Pi) is less than a quar-
ter of mean lateral density, Pi will be regarded as an uninterest-
ing point. However, this step is unnecessary for high precision
LiDAR data, because lateral density differences among points
are tiny. Subsequently, the ground points are always at the bot-
tom area of LiDAR data through observation. Hence, the pro-
posed ground filter demonstrated in Fig. 3 is developed. If there

Raw Data Step1 Step2 Step3

K
IT

T
I

C
R

R

None

Table 1. Results of Ground Points Extraction on millimeter-level
(CRR) and centimeter-level accuracy (KITTI) LiDAR data.

is no other point between the inner radius and the outer radius
(purple region), the current point will be treated as a ground
point. According to the gap between the inner radius and the
outer radius, most of the curb points are retained. Finally, the
ground points are clustered by Euclidean distance.

The processed results of three steps on millimeter-level (CRR)
and centimeter-level accuracy (KITTI) LiDAR data are shown
in Table 1.

Raw Data Vertical
Density

Elevation
Gradient Intensity

K
IT

T
I

C
R

R

Table 2. The visualization results of the multiple feature maps
on millimeter-level (CRR) and centimeter-level accuracy

(KITTI) LiDAR data.

3.2 Multiple Feature Maps Generation

We transform the road texture and structure information into
multiple feature maps. This is a key step to enable our method
to simultaneously extract road boundaries, road markings, and
even road cracks from high accuracy LiDAR data, and also
more robustly extracting detailed road boundary information on
low accuracy LiDAR data. Specifically, feature transformation
processes are conducted on vertical density, elevation gradient,
and intensity perspectives. All the features are projected on the
xy plane to generate multiple feature maps for employing more
efficient image processing.

The first process is to compute the vertical density of ground
points. The vertical density of point Pi is defined as follows

Dv(Pi) =
n∑
j=1

I(dist(Pi, Nj(Pi)) < R), (2)

where Dv(Pi) = vertical density of Pi,
Nj(Pi) = Pi’s vertical neighbor points,
R = searching radius.

Then elevation gradient is calculated by a differential filter
(Figure 3.(c)), which is comprised of a convolution computa-
tion over the height values of neighboring grid cells (Hata et
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Figure 4. Visualization of the on-road information extraction results on CRR, Paris-Lille-3D and KITTI dataset respectively. The
failure cases are shown in (a) to (e).

al., 2014). To eliminate the effect of density, we improve the
method as follows

G(Pi) =
Cx
nx

+
Cy
ny
, (3)

where G(Pi) = elevation gradient of Pi,
Cx, Cy = convolution result of x/y-axis direction,
nx, ny = number of points in neighboring cells of ,

x/y-axis direction.

As most of the previous methods (Wang et al., 2015, Wen et al.,
2019a), the intensity information I(Pi) is projected onto the
horizontal plane directly.

At last, to accelerate the convergence of semantic segmentation
(see Sec. 3.3 ), all the feature maps are enhanced by gamma
transform (Eq. 4) and all the features are normalized to [0, 1].

I = crγ , (4)

where I = output feature,
c = constant,
r = input feature,
γ = parameter of enhancement.

The visualization results of three features on millimeter-level
(CRR) and centimeter-level accuracy (KITTI) LiDAR data. are
shown in Table 2.

3.3 On-Road Information Extraction

After the multiple feature maps generation, we obtain three fea-
ture maps. Every pixel in the feature maps could be a road
boundary point, road marking point, road crack point, or other
points. Therefore, we consider the on-road information(road
boundaries, road markings, road cracks) extraction task as a
four classification problem. We employ Attention U-Net se-
mantic segmentation neural network (Oktay et al., 2018) to
classify every pixel. Compared with U-Net (Ronneberger et
al., 2015), Attention U-Net has more attention to details due to
the increased attention mechanism, and the details are available
in (Oktay et al., 2018).
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Method
CRR Paris-Lille-3D KITTI

Correctness Completeness Quality Correctness Completeness Quality Correctness Completeness Quality

(Jaakkola et al., 2008) 84.49% 39.75% 37.04% 83.26% 45.35% 40.04% 5.92% 17.34% 4.62%
(Yang et al., 2017) 79.88% 84.28% 69.53% 77.21% 88.34% 70.53% 31.34% 50.56% 23.99%
(Zai et al., 2017) 95.03% 98.30% 93.49% 94.64% 98.41% 93.69% 42.98% 93.00% 41.64%

ours 96.31% 97.81% 94.66% 94.89% 97.73% 94.21% 85.71% 92.15% 80.77%

Table 3. Road boundary extraction results on CRR, Paris-Lille-3D and KITTI dataset, respectively. Our method achieves best
completeness and quality on all dataset compared with other competitive methods. Especially, our method has a prominent

improvement on the low accuracy LiDAR dataset (KITTI).

Method
CRR Paris-Lille-3D

Correctness Completeness Quality Correctness Completeness Quality

(Yang et al., 2018) 93.21% 80.32% 77.01% 91.14% 78.91% 74.23%
(Wen et al., 2019a) 95.92% 87.52% 84.75% 94.27% 86.98% 82.78%

ours 96.18% 87.87% 84.92% 94.46% 87.34% 83.01%

Table 4. Road marking extraction results on CRR and Paris-Lille-3D dataset, respectively. Our method achieves best performance on
two dataset compared with other competitive methods.

After semantic segmentation, we obtain on-road information
points, including road boundaries, road markings, and road
cracks. All the on-road information are converted to point
clouds by referring previously extracted ground points. The
ground point closest to the pixel point in the vertical direction
is determined as an on-road information point.

4. EXPERIMENTS

4.1 Datasets and Evaluation Metrics

To verify the effectiveness of our proposed method, we con-
ducted experiments on three datasets including a part of the
Coastal Ring Road (CRR) (Wen et al., 2019b), Paris-Lille-
3D (Roynard et al., 2018) and KITTI odometry data set (Geiger
et al., 2012). The CRR dataset was collected by a RIEGL
VMX-450 system, which is equipped with a RIEGL VQ-450
laser scanner. Because of the very high absolute accuracy of
5 mm and high measuring rates, the collected point clouds are
dense, accurate, and feature-rich. The Paris-Lille-3D dataset
was collected by an MLS prototype of the center for robotics of
Mines ParisTech: L3D2, which is equipped with a GPS (Nova-
tel FlexPak 6), an IMU (Ixsea PHINS in LANDINS mode) and
a Velodyne HDL-32E LiDAR. Due to the worse LiDAR accu-
racy, the road cracks are hard to see in the Paris-Lille-3D dataset
even by a human. The last one is the KITTI odometry data set,
which was collected by MLS system equipped with a Velodyne
HDL-64E LiDAR, an OXTS RT3003 inertial and GPS naviga-
tion system. The point clouds provided by the KITTI dataset
are noisy and with lower accuracy. The road markings and road
cracks are hard to distinguish. Therefore, we just conduct road
boundary extraction on this dataset.

The visualization results of extracted on-road information from
three datasets are illustrated in Fig. 4.

To compare the performance of our method with other meth-
ods, we adopt the widely used three metrics (Zai et al., 2017),
which consist of completeness, correctness, and quality, defined
as Eq 5, where TP, FP and FN refer to true positive, false pos-
itive and false negative respectively. Note that all of the evalu-
ations are conducted on the 2D xy plane, and the width of the
road boundary was not considered.


correctness = TP

TP+FP

completeness = TP
TP+FN

quality = TP
TP+FP+FN

(5)

4.2 Experimental Results

Road Boundaries. To evaluate the effectiveness of our pro-
posed method on the road boundary extraction, we reproduced
the three previous methods (Jaakkola et al., 2008, Yang et al.,
2017, Zai et al., 2017). The comparison results on three datasets
are available in Table 3.

On account of the proposed method has a prominent capac-
ity to encode structure and context features of road boundary.
Our method achieves the best correctness and quality on three
datasets. Especially, our method outperforms other methods by
a large margin on the KITTI dataset, which proves the effec-
tiveness of our proposed method.

Road Markings and Road Cracks. The extraction of road
markings mostly depends on the performance of the segmenta-
tion network in our method. Instead of applying the U-Net as
the segmentation network (Wen et al., 2019a), we employed
Attention U-Net that takes more attention to details extrac-
tion. Therefore, the performance of our method on two datasets
shows a superior improvement compared with other methods.
The results of road marking extraction are available in Table 4.

Through the proposed multiple feature maps, the road cracks
can also be detected from high accuracy LiDAR data. The re-
sults are demonstrated in Table 5.

Method Correctness Completeness Quality

ours 65.67% 51.86% 40.86%

Table 5. Road crack extraction results on CRR dataset.

4.3 Parameters

To reduce the computing time, down-sampling of the dense
point cloud is necessary. However, the reduction of points
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means the loss of point cloud features. In our method, every
point is projected onto the corresponding grid cell, and only one
point in each grid cell is defined as a boundary point. There-
fore, if there are points in a grid cell, we should make sure that
the grid cell has at least one point after down-sampling. We
preprocessed the high precision LiDAR point cloud by a voxel
grid-based down-sampling with a threshold of 0.03m, and the
grid size of projection is 0.05m.

Through observation, the curb height in the CRR dataset is
about 0.15m. Therefore, the inner radius of the ground filter
is set between 0m to 0.15m. The outer radius should be big-
ger than the inner radius. The convolution grid size of height-
gradient is determined by the inner radius. The estimated curb
height of KITTI point cloud is between 0.2m and 0.25m, re-
garding the errors of 0.05m. Thus, the inner radius and outer
radius of the ground filter set at bigger values. In the features
enhancement step, when the gamma value is less than 1, the
area with a lower value in the feature maps is enhanced, and the
area with a higher value is compressed. When the gamma value
is greater than 1, the area with a higher value in the feature map
is enhanced, and the area with a lower value is compressed. In
our experiments, we set a gamma value at 2 to improve the con-
trast of the feature maps. The parameters of our method are
shown in table 6.

Parameters
Dataset

CRR PL3D KITTI

Grid size of down-sampling (m) 0.030 0.050 0.050
Grid size of projection (m) 0.050 0.050 0.100

Inner radius of ground filter (m) 0.089 0.089 0.250
Outer radius of ground filter (m) 0.440 0.440 0.500

Gradient convolution grid size (m) 0.045 0.050 0.125
Gamma value of feature enhancement 2.000 2.000 2.000

Table 6. Parameters of experiments, where PL3D denotes
Paris-Lille-3D dataset.

4.4 Failure Cases Analysis

The proposed methods can work well on most of the LiDAR
data. Nevertheless, due to the changeable environment and the
limitation of LiDAR performance, there are also failure cases,
a part of which is shown in Fig. 4. On account of the irregular
variation of intensity, some road markings are falsely extracted,
such as the areas of (a), (b) and (c). There are also some inac-
curately extracted road boundaries due to the occlusion and un-
clear curbs, as shown in (d) and (e). By increasing the LiDAR
scanning accuracy or introduce other supporting information,
such on-road information can be extracted correctly.

5. CONCLUSIONS

In this paper, we proposed a new on-road information extraction
framework. First, a Curb-Aware Ground Filter is developed to
extract ground points with curb information. Second, we trans-
form structure and texture features into multiple feature maps
from the extracted ground points and employ a deep learning
network to extract multiple on-road information from the fea-
ture maps robustly. The superior experimental results on three
datasets demonstrate the effectiveness of our proposed meth-
ods.
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