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ABSTRACT: 

Mobile mapping systems MMS equipped with cameras and laser scanners are widely used nowadays for different geospatial 
applications with centimetric accuracy either in project wise or national wise scales. The achieved positioning accuracy is very much 
related to the navigation unit, namely the GNSS and IMU onboard. Accordingly, in GNSS denied and degraded environments, the 
absolute positioning accuracy is worsened to few meters in some cases. Frequently, ground control points GCPs of a high positioning 
accuracy are used to align the MMS trajectories and to improve the accuracy when needed. 
The best way to integrate the MMS trajectories to the GCPs is by measuring them on the MMS images where the positioning accuracy 
is dropped. MMS images are mostly spherical panoramic (equirectangular) images and sometimes perspective and, in both types, it is 
required to precisely determine the images orientation in what is called as space resection or camera pose determination.   
For perspective images, the pose is conventionally determined by collinearity equations or by using projection and fundamental 
matrices. Whereas for equirectangular panoramic images it is based on resecting vertical and horizontal angles. 
However, there is still a challenge in the state–of–the–art of image pose determination because of the model nonlinearity and the 
sensitivity to proper initialization and spatial distribution of the points.  
In this research, a generic method is presented to solve the pose resection problem for the perspective and equirectangular images using 
oblique angles. The oblique angles are derived from the measured image coordinates and based on spherical trigonometry rules and 
vector geometry. The developed algorithm has proven to be highly stable and steadily converge to the global minimum. This is related 
to the robust geometric constraint offered by the oblique angles that are enclosed between the object points and the camera. As a result, 
the MMS trajectories are realigned accurately to the GCPs and the absolute accuracy is highly refined. Four experimental tests are 
presented where the results show the efficiency of the proposed angular based model in different cases of simulated and real data with 
different image types. 

INTRODUCTION 

Mobile Mapping Systems MMS are widely used nowadays for 
different applications in urban and rural environments like for 
highways and roads engineering projects, façades dimensional 
surveying, traffic signs detection, as built surveying applications, 
infrastructure monitoring and many other applications (Karel 
Sukup and Jan Sukup, 2010). Mostly, those mentioned 
applications require a high level of positioning accuracy which 
might be a challenge in urban canyons, tunnelling roads and 
dense forest areas of denied GNSS environments. Accordingly, 
ground control points GCPs either surveyed in the field or 
acquired from aerial images are used to realign the MMS 
trajectories to centimetre or decimetre accuracy levels. Normally 
the GCPs are measured on the MMS images and a space resection 
model is then applied. The output of space resection or camera 
pose computations are the exterior orientation parameters 
namely: the camera position  and its rotation angles 

 at the instant of capture. 
It should be noted that the MMS can be equipped either with a 
frame camera or with a 360 panoramic camera like the Ladybug 
camera which is widely used in the MMS nowadays (FLIR 2019) 
Hence, in the case of spherical panoramic imaging, an angular 
based model is used for solving the resection problem.  
In principle, a spherical projection is used to project the whole 
sphere on a flat surface and result in an equirectangular 
(equidistant projection) image, with a 2:1 ratio where the width 

is exactly twice the height. This is logical, since it covers 360 
horizontally and 180° vertically and allowing the viewer to look 
in every direction, including the zenith and nadir (Figure 1).  

Figure 1. Points projected from 3D space into the 2D panorama 
equirectangular image. 

Therefore, every point in the equirectangular panorama has a 
latitude  (vertical angle) and longitude  (horizontal angle) 
coordinates. The horizontal and vertical angles are used to solve 
the pose of the equirectangular panorama by space resection. 
However, the resection model is nonlinear and sensitive to initial 
values that should not be far by more than 1' to have a proper 
convergent solution (Shepherd 1982, Schofield 2007, Alsadik 
2016). 
On the other hand, when a frame camera is used, then the 
collinearity resection model is used. Collinearity is considered as 
the standard mathematical model in photogrammetry and 
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machine vision to compute the images orientation within the 
bundle adjustment (Lourakis and Argyros 2004, McGlone, 
Mikhail et al. 2004). The collinearity concept is based on 
assuming the object point, its image coordinates, and the camera 
lens are collinear, and all located on a straight line (Figure 2).  

Figure 2. Collinearity equations principle. 

A minimum of three reference points or GCPs are required to 
solve the resection problem (Luhman, Robson et al. 2014). 
Basically, collinearity equations are nonlinear and normally 
solved by starting from a proper set of initial pose values which 
are crucial in the solution. 
Different methods are introduced in the field of photogrammetry 
and machine vision to solve the nonlinearity in the collinearity 
model and to efficiently solve with a minimum number of control 
points.  
From a machine vision perspective, the camera pose is commonly 
solved as the perspective n-point (PnP) problem and this direct 
solution approach is mainly developed with three points (P3P) or 
four points (P4P) methods (Horaud, Conio et al. 1989, Grafarend 
and Shan 1997, Quan and Lan 1999, Gao and Chen 2001, Kneip, 
Scaramuzza et al. 2011). However, the PnP direct methods result 
in more than one solution and the correct solution should be 
determined. Furthermore, these methods are limited to a specific 
number of reference points (n=3, 4, or 5) and do not consider the 
redundancy in observations which is supposed to strengthen the 
solution from a statistical viewpoint (Alsadik 2016).  
Another common approach is the well-known direct linear 
transformation (DLT) (Marzan and Karara 1975) and it is based 
on the projective relations between the image and the object 
space by estimating the so called projection matrix. A minimum 
of five reference points is necessary to solve the system of DLT 
equations in a direct linear solution (Luhman, Robson et al. 
2014).  
In summary, the mentioned camera orientation approaches are 
either nonlinear solutions and dependent on the proper initial 
values or linear, non-rigorous solutions which cannot handle 
statistically the redundant observations. Moreover, these 
methods are sensitive to the poor spatial distribution of the points 
and when the interior orientation of the camera is also required. 
Specifically, bad distribution is present when the points are 
placed on or close to a straight line. Similarly, DLT can result in 
a weak conditioned system of equations if all reference points are 
positioned on a common plane (Luhman, Robson et al. 2014).  
Accordingly, the aim of this research is to develop a generic 
mathematical model for perspective and equirectangular 
panoramic image orientation determination that: 1) consider the 
redundancy in observations and 2) robust to improper initial 
values. This means to introduce a solution with a geometric 
stability, reliability and converge to global minimum even with 
improper initial values.   
The developed model is based on using angular conditions 
represented by oblique angles instead of using horizontal and 

vertical angles. Spherical trigonometry laws will be used to 
derive the oblique angles while vectors geometry will be applied 
to develop the mathematical model that relates: the observed 
(derived) angles, the camera unknown orientation parameters, 
and the coordinates of the object points. The MMS absolute 
accuracy improvement, through the realignment of the 
trajectories, will highly benefit from such proposed resection 
model.  

Following in section 2, the method of deriving the oblique angles 
and their use in the mathematical model will be presented. In 
section 3, different experimental tests will be presented for 
panoramic images and perspective images. Finally, in section 4, 
the discussion of results and conclusions will be presented. 

2. METHODOLOGY

The proposed method of the image resection determination is 
based on deriving oblique angles from the observed image 
coordinates in the viewing cameras. A spherical trigonometry 
law is used to apply the oblique angle derivation as will be 
discussed in the following section 2.1. Afterward, the 
development of the proposed mathematical model of the image 
pose determination will be shown in section 2.2.  

2.1 Oblique angle derivation 

A spherical triangle ABC with two vertical angles ( ଵ ଵ), one 
horizontal angle (  ), and one oblique angle is shown in      
Figure 3.  

Figure 3. Spherical triangle ABC and oblique angle . 

The cosine rule in equation 1 can be used to solve the spherical 
triangle ABC and to compute the oblique angle  (Murray 1908).  

ଵ ଶ ଵ ଶ

The described solution of the spherical triangle and the derived 
oblique angle can be used to solve the problem of pose 
determination and the triangulation problem as will be shown in 
section 2.2 and section 2.3 respectively. A related point to 
consider is the minimum required number of GCPs. Three points 
are necessary to define the oblique angle in the camera pose 
problem. Accordingly, if every oblique angle formulates one 
observation equation then a minimum of three oblique angles is 
necessary to define the object space coordinates  of the 
camera and the same applies for the image triangulation problem 
(Alsadik 2016). 

2.2 Mathematical model  

The computations start by deriving the observed oblique angles 
enclosed between the camera and two control points  and . For 
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perspective images, this is possible by using the observed image 
coordinates referenced to the principle point of both control 
points as follows:   


ିଵ ௫


   


ିଵ ௫ೕ


   

 


ିଵ ௬

ඥሺ௫ሻమାమ


ିଵ ௬ೕ

ටሺ௫ೕሻమାమ

where          observed image coordinates of the points  
 and  respectively.  

 camera focal length. 

While for the equirectangular panoramic images, one horizontal 
angle  and two vertical angles   are easily computed by 
applying equations 7 and 8 assuming the images are aligned on 
the horizontal plane at the panorama centre. 


  (7) 

,
  ௧

ଶ , (8) 

where    = the observed columns ( -coordinates) in  
            pixels for the control points and respectively. 

,  the observed rows (y-coordinates) in pixels for   
            the control points  and .

  the pixel size in degrees. 

Then, for both types of images, the oblique angle  can be 
computed using the spherical trigonometry rules as mentioned in 
Equation 1.  
It should be noted that a high redundancy of the observed angles 
can be attained based on the number of control points . As 
shown in Figure 4a, three GCPs produce three observed oblique 
angles while the addition of a fourth GCP will result in six 
observed oblique angles as shown in Figure 4b and so on. 
Therefore, the possible number of oblique angles can be 
calculated based on the number of measured GCPs  using the 
following equation 9: 

ሺమିሻ

ଶ

a)        b) 

Figure 4. The composed oblique angles related to three and four 
observed control points. a) three observed oblique angles. b) six 

observed oblique angles. 

The high redundancy of the observed oblique angles is expected 
to strengthen the stability of the solution and the convergence to 
an optimal minimum as will be shown in the experimental tests.    
So far, the oblique angles are derived from the measured imag 
coordinates. The same oblique angles can also be computed using 
the approximate camera 3D coordinates applying the vectors dot 
product as shown in equation 10. 

ௗ௫ௗ௫ೕାௗ௬ௗ௬ೕାௗ௭ௗ௭ೕ

ೕ
(10) 

where          the difference in coordinates  
              between the viewing camera  and points . 

  = spatial distances between the camera and the  
             observed control points respectively. 

Equation 10 can be reformulated as shown in equation 11 to 

further compute the partial derivatives (
 డி

 డು

 డி  

 డು

 డி  

 డು
) to the 

unknown coordinates of the camera station (   ) as 
follows: 

        (11)

 డி  

 డು
  

௦ఊ ሺುିሻೕ



௦ఊ ൫ುିೕ൯

ೕ

 డி  

 డು
  

௦ఊ ሺುିሻೕ



௦ఊ ൫ುିೕ൯

ೕ
(12) 

 డி  

 డು
  

௦ఊ ሺುିሻೕ



௦ఊ ൫ುିೕ൯

ೕ

The partial derivatives of equation 12 are necessary to solve the 
nonlinearity and redundancy of the observation equations 
system. The solution will be applied by least squares adjustment 
using either a Gauss-Newton technique or Levenberg Marquardt 
(Marquardt 1963, Ghilani and Wolf 2006, Alsadik 2019) as 
shown in a matrix form in equation 13.   

௧


ିଵ ିଵ ௧


ିଵ (13)

While the covariance matrix is computed as shown in equation 
14. 


ଶ ௧


ିଵ ିଵ

(14) 

where = vector of corrections to the camera coordinates 
ು ು ು

. 
matrix of partial derivatives to the camera 

coordinates   , 
డி

డು

డி

డು

డி

డು
. 

  cofactor weight matrix of the observations. 
covariance matrix of the camera coordinates. 

2.3 Proposed method workflow 

The workflow diagram of Figure 5 is shown to summarize the 
implementation of the developed algorithm and a MATLAB code 
of the proposed resection model is listed in the appendix as well. 
The algorithm is applicable for both: perspective and panoramic 
images where the GCPs are measured on the images in pixels. 
The image coordinates are transformed into horizontal and 
vertical angles which are finally converted into derived oblique 
angles using spherical trigonometry.  
Since the sky is open with no surrounding objects exist nearby 
aeroplanes, aerial images absolute accuracy is not degraded by 
GNSS multipath and line of sight errors. Accordingly, well 
identified objects on both: aerial images and the MMS images 
can serve for GCPs of centimetric accuracy. Another approach is 
to have GCPs by the traditional field surveying which is of a 
higher accuracy, but it requires labour force, time and cost.  
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Figure 5. Oblique angular-based resection workflow. 

3. EXPERIMENTAL TEST

3.1 Pose estimation of the panoramic images  

In this section, we introduce two experimental tests to use the 
proposed method of panoramic image pose determination by 
oblique angles. The first test is applied on simulated data while 
the second test is applied on real panoramic image of a mobile 
mapping system. As mentioned, the images are assumed aligned 
on the horizontal plane at the panorama centre.    

First test – simulated data 
To test the developed method for panoramic images, a simulated 
reality scaled 3D environment is created using Blender tool  
(Community 2018) where the exact (true) locations are known. 
The true camera position P is shown as a red arrow in Figure 6a 
while a panoramic equirectangular image is created with 
dimension of 4800 2400 pixels as shown in Figure 6b. 
Reference points A, B, C, and D on well identified corners are 
selected and measured on the panoramic image to compute its 
pose by the developed method of oblique angles (Table 1). The 
camera P coordinates are simulated to be at m

m, and m. 
The efficiency of the developed method is validated through 
checking whether the computed camera P position is the same as 
designed in the simulated environment or not.  

Point X [m] Y [m] Z [m] 
Col 

[pixels] 
Row 

[pixels] 
A 6.924 -14.972 0.000 222 1345 
B 5.813 -7.945 19.884 731 213 
C 54.687 45.363 18.271 2953 1019 
D  29.085 -76.020 21.878 4599 997 

Table 1. Four control points of the first test. 

The horizontal, vertical and then the derived oblique angles are 
computed based on the observed pixel coordinates as illustrated 
in Table 2 using equations 7 and 8 where the pixel size is . 
The angles are given to the third decimal place for demonstration. 

Angle 
Oblique 

[Deg.] 
Horizontal 

θ[Deg.] 
Vertical  

ଵ[Deg.] 
Vertical 

ଶ[Deg.] 

APB 88.218 38.175 -10.875 74.025 
APC 155.599 155.175 -10.875 13.575 
APD 40.848 31.725 -10.875 15.225 
BPC 91.985 166.650 74.025 13.575 
BPD 69.896 69.900 74.025 15.225 
CPD 117.088 123.450 13.575 15.225 

Table 2. Derived angles of the first test. 

a) 

b) 

Figure 6. a) The simulated 3D scene. b) The simulated 
equirectangular panorama at one station.  

Starting values are selected as: to verify the 
robustness of the solution. The proposed method using the 
derived oblique angles is applied with the nonlinear least squares 
adjustment as applied with the perspective images of section 2.2.  
The correction iterations converged to zero after five iterations as 
shown in Figure 7.    

Figure 7. Convergence of pose corrections of the simulated 
panoramic image to zero values. 

The computed adjusted coordinates are: m
m m. The slight differences with respect to 

the true values are related to the imperfection of the manual 
measurements. However, in practice, automated point 
measurements can be applied. 

Second test – real MMS trajectory data 
The second test is applied on an MMS data consist of 129 
recordings at a degraded GNSS urban environment shown in 
Figure 8a. The MMS is equipped with a panoramic camera 
producing equirectangular images of a 4800 2400 pixels 
resolution (CycloMedia 2019). The suggested resection model is 
applied to determine the position of every image recording along 
the trajectory by the realignment to five predefined GCPs 
measured from Leica CityMapper camera with an accuracy of 10 
cm on average (Figure 8b).  
For illustration, one detailed image resection is given in the 
following description.  

A

B

C
D
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Given: five control points are measured from aerial oblique 
images (Figure 8) and then their measured pixel coordinates on 
the MMS panoramic image are measured as shown in Table 3. 

Point X [m] Y [m] Z [m] 
Column 
[pixels] 

Row 
[pixels] 

A 92291.34 437615.91 38.83 3240.70 619.94 
B 92295.44 437603.79 19.30 3492.10 878.45 
C 92268.87 437625.46 43.96 2712.60 476.81 
D 92276.07 437610.98 -0.35 3151.90 1256.30
E 92243.25 437618.20 53.09 1937.20 333.77 

Table 3. Five control points of the second test. 

The horizontal, vertical and then the oblique angles are computed 
between the panoramic image P and the control points based on 
the observed pixel coordinates as illustrated in Table 4 using 
equations 7 and 8 where the pixel size is . The angles are 
given to the fifth decimal place for demonstration. 

Angle  Oblique 
 𝛾[Deg.] 

Horizontal 
θ[Deg.] 

Vertical  
𝛽ଵ[Deg.] 

Vertical 
𝛽ଶ[Deg.] 

APB 24.80590 18.85500 43.46700 24.07875 
APC 27.74341 39.60750 43.46700 54.20175 
APD 48.10406 6.66000 43.46700 -4.26000
APE 54.43767 97.76250 43.46700 64.92975 
BPC 52.39275 58.46250 24.07875 54.20175 
BPD 37.68708 25.51500 24.07875 -4.26000
BPE 78.68345 116.61750 24.07875 64.92975 
CPD 64.57988 32.94750 54.20175 -4.26000
CPE 30.06680 58.15500 54.20175 64.92975 
EPA 94.32506 91.10250 -4.26000 64.92975

  Table 4. Derived angles of the second test. 

To test the robustness of the suggested algorithm, challenging 
starting values of (0,0,0) for the camera coordinates are selected. 
The solution converged to the optimal values after 22 iterations 
as shown in Figure 9 to 92255.78 m, 437597.07 m, and 2.65 m. 

Figure 9. Convergence of pose corrections of the MMS 
panoramic image to zero values. 

a) 

b) 

Figure 8. a). The MMS trajectory shown on the map in coloured 
dots. b) Illustration of a GCP measured from four oblique aerial 

images and its location in a selected MMS image. 

3.2 Pose estimation of the perspective images 

Two tests are applied to verify the proposed camera pose 
estimation using oblique angles-based method. The first test is 
applied in a simulated scene where the true values are known. 
Since real MMS perspective image data was not available, the 
second test is applied to an aerial image as published in (Easa 
2010). 

First test – simulated data 
To evaluate the computed image orientation, a ground truth data 
is created in a simulation environment. The simulated image is 
rendered where four reference targets are mounted on a building 
façade (Figure 10a). The coordinates of the targets are fixed as 
listed in Table 5 and the rendered image is created assuming a 
Canon 500D camera with a focal length of 18mm (Figure 10b). 
The camera is assumed free of the lens distortion.   
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a) 

b) 

Figure 10. a) Simulated model with four control targets.  
b) Synthetic Image captured by Canon 500D camera.

The camera pose computations are applied using the proposed 
oblique angular based method. The approximate values of the 
camera space coordinate ( ) and the rotation angles 
( , , ) are selected by starting from far improper values to 
verify the method robustness.  
The GCPs XYZ coordinates and their manually measured image 
coordinates are given as follows in Table 5. 

Point X [m] Y [m] Z [m] 
Column 
[pixels] 

Row 
[pixels] 

A -17.0 33.0 23.5 1406 894 
B -16.0 5.0 18.0 3099 1665 
C -11.5 -5.5 5.0 3423 2540 
D 11.0 30.0 4.0 984 2593 

Table 5. Four control points measured in the perspective image. 

The camera pose designed true values are: 
m m and m. 

Far approximate values (Table 6) are used to compute the camera 
pose or its exterior orientation parameters ( ) to 
investigate the stability of the solution and if it converges toward 
optimal minimum.  

𝑋𝑜 [m] 𝑌𝑜 [m] 𝑍𝑜 [m] 𝜔 [Deg.]  𝜑 [Deg.]   𝑘 [Deg.] 

-10 95 7 -10 -10 90 

Table 6. Initial camera orientation parameters. 

The computation of the P camera coordinates is applied using the 
proposed angular based method. The computed horizontal angles 

, vertical angles ( ଵ ଶ , and the derived oblique angles  are 
shown in Table 7 using the observed image coordinates of the 
GCPs given in Table 5. 

Oblique 
 𝛾[Deg.] 

Horizontal 
θ[Deg.] 

Vertical  
𝛽ଵ[Deg.] 

Vertical 
𝛽ଶ[Deg.] 

APB 27.16130 24.90334 9.89955 -1.19798
APC 37.50925 29.50303 9.89955 -13.54558
APD 24.48941 5.76123 9.89955 -13.91349
BPC 13.16006 4.59969 -1.19798 -13.54558
BPD 32.88362 30.66457 -1.19798 -13.91349
CPD 34.22699 35.26427 -13.54558 -13.91349

Table 7. Derived angles of the simulated test. 

Then, the least squares adjustment is iterated until the corrections 
are converged to zero. Figure 11 illustrates the convergence of 
the solution to optimal minimum. Further, collinearity equations 
are reduced to only three unknown rotation angles while fixing 
the determined camera coordinates.   

Figure 11. Convergence of pose corrections to zero values of 
the simulated test of a perspective image.  

The final adjusted pose parameters are computed as shown in 
Table 8: 

𝑋𝑜 [m] 𝑌𝑜 [m] 𝑍𝑜 [m] 𝜔[Deg.]  𝜑 [Deg.]   𝑘 [Deg.] 

-59.923 45.003 1.828 -119.9618 -54.9713 154.9707 

Table 8. Final adjusted pose parameters. 

The slight differences from the true values are related to the 
imperfection of the manually measured image coordinates of the 
GCPs. 

Second test – Aerial image data 
The second test is applied to an aerial perspective image which is 
listed in (Easa 2010).  
Four GCPs and their measured image positions are given in Table 
9. The Camera focal length is given as 152.916 mm.

Point X [m] Y [m] Z [m] x [mm] y [mm] 

1 1268.102 1455.027 22.606 86.421 -83.977
2 732.181 545.344 22.299 -100.916 92.582
3 1454.553 731.666 22.649 -98.322 -89.161
4 545.245 1268.232 22.336 78.812 98.123 

Table 9. GCP coordinates of the second test of a perspective 
image. 

According to (Easa 2010), the optimal pose or exterior 
orientation parameters are: 

m m m 
Furthermore, the initial pose orientation parameters are given as: 

m m m 

Based on the given image coordinates and focal length, the 
oblique angles  are computed as in Table 10. 
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Oblique 
[Deg.] 

Horizontal 
θ [Deg.] 

Vertical  
ଵ [Deg.] 

Vertical 
ଶ [Deg.] 

1P2 80.0766 62.89569 -25.5525 26.80847
1P3 55.42064 62.21334 -25.5525 -26.1252
1P4 55.29259 2.206801 -25.5525 29.69957
2P3 52.93772 0.682352 26.80847 -26.1252
2P4 52.91566 60.68889 26.80847 29.69957 
3P4 80.1131 60.00654 -26.1252 29.69957

Table 10. Derived angles of the aerial image test. 

Firstly, the camera position is computed using the suggested 
method with least squares adjustment and the solution is rapidly 
converged to optimal minimum in three iterations as shown in 
Figure 12. Then the rotation angles are computed using 
collinearity condition where the camera position is fixed.  

Figure 12. Convergence of pose corrections to zero values of 
the aerial image test.  

It’s worth to mention that even when selecting challenging 
approximate values for the camera exterior parameters of zero 
values as: , we 
still get a robust solution which converges to optimal minimum 
after 12 iterations as illustrated in Figure 13. Then, a reduced 
collinearity model can be used for computing the angular 
rotations.  

Figure 13. Convergence of pose corrections to zero values. 

The final adjusted exterior orientation parameters are: 

m m m 

4. DISCUSSION AND CONCLUSIONS

In this paper, a developed method for the equirectangular and 
perspective image pose determination is presented. This is aimed 
,among many potential applications, for improving the mobile 
mapping trajectories using predefined control points.  
The suggested camera pose estimation is based on using derived 
oblique angles and showed promising results. In the four 
presented tests, the method was robust to converge to the optimal 
solution despite the far initial values given to the nonlinear 
model. For demonstration, Figure 14 illustrate the black dots 
which represent the initial values given to the panoramic image 
position within an area extent of 20 square kilometres and where 

the optimal value is located in the middle (red dot). Using the 
proposed algorithm and starting from any initial point 
coordinates represented by the black dots will converge to the 
optimal coordinates as shown by the blue arrows. On the other 
hand, if we applied the conventional solution using horizontal 
and vertical angles instead of the oblique angles, then the solution 
couldn’t converge far by 10 meters away from the optimal 
coordinates. 

Figure 14. Robust convergence of the proposed method toward 
optimal value at the centre. 

For perspective images, the proposed method showed a 
successful integration with the collinearity equations to solve the 
six pose parameters as shown in section 3.2 of the simulated and 
real experimental tests.   
Future work can investigate the efficiency of the proposed 
mathematical model to include the modelling of the interior 
camera calibration parameters. A comparison of performance 
with the other methods of pose determination for perspective 
images can also be investigated. 
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APPENDIX: MATLAB code 
% input 
% point: [x,y,z] n*3 object points 
% oblique angles and % Tx,Ty,Tz: initial value of the unknown position 
% output: adjusted Tx,Ty,Tz  
function [Tx,Ty,Tz]=threeD_resection_oblique(point,Oblique,Tx,Ty,Tz) 
ii=0;D=[1;1;1]; X=point(:,1); Y=point(:,2); Z=point(:,3);  
  while max(abs(D)) >.00001  
     ii=ii+1 ; 
for i=1:size(X,1) 

dx(i,1) = (Tx-X(i,1)); dy(i,1)=(Ty-Y(i,1));dz(i,1)=(Tz-Z(i,1)); 
lp(i,1) = ((Tx-X(i,1))^2+(Ty -Y(i,1))^2 + (Tz - Z(i,1))^2)^(1/2);end 

   kk=0; 
for i=1:size(X,1)-1   
   for j=i+1:size(X,1) 

kk=kk+1; C(kk,1)= cos(Oblique(kk)); 
ax(kk,1) =X(i,1)-2*Tx+X(j,1)+(((C(kk,1))*(2*Tx-2*X(i,1))*lp(j,1))/(2*lp(i,1)))+(((C(kk,1))*(2*Tx-
2*X(j,1))*lp(i,1))/(2*lp(j,1)));  
ay(kk,1) =Y(i,1)-2*Ty+Y(j,1)+(((C(kk,1))*(2*Ty-2*Y(i,1))*lp(j,1))/(2*lp(i,1)))+(((C(kk,1))*(2*Ty-
2*Y(j,1))*lp(i,1))/(2*lp(j,1)));  
aaz(kk,1) =Z(i,1)-2*Tz+Z(j,1)+(((C(kk,1))*(2*Tz-2*Z(i,1))*lp(j,1))/(2*lp(i,1)))+(((C(kk,1))*(2*Tz-
2*Z(j,1))*lp(i,1))/(2*lp(j,1)));  
F(kk,1) = lp(i,1)*lp(j,1) *C(kk,1)-((dx(i,1)*dx(j,1))+(dy(i,1)*dy(j,1))+(dz(i,1)*dz(j,1))); 
   end 
end 
b= [ax ay aaz];N=inv(b'*b);T=b'*-F;D=N*T; % LS adjustment  
Tx=Tx+D(1,1); Ty=Ty+D(2,1);Tz=Tz+D(3,1) ; % update coordinates 
end 
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