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ABSTRACT: 
 
In recent years, the importance of indoor mapping increased in a wide range of applications, such as facility management and mapping 
hazardous sites. The essential technique behind indoor mapping is simultaneous localization and mapping (SLAM) because SLAM 
offers suitable positioning estimates in environments where satellite positioning is not available. State-of-the-art indoor mobile 
mapping systems employ Visual-based SLAM or LiDAR-based SLAM. However, Visual-based SLAM is sensitive to textureless 
environments and, similarly, LiDAR-based SLAM is sensitive to a number of pose configurations where the geometry of laser 
observations is not strong enough to reliably estimate the six-degree-of-freedom (6DOF) pose of the system. In this paper, we present 
different strategies that utilize the benefits of the inertial measurement unit (IMU) in the pose estimation and support LiDAR-based 
SLAM in overcoming these problems. The proposed strategies have been implemented and tested using different datasets and our 
experimental results demonstrate that the proposed methods do indeed overcome these problems. We conclude that IMU 
observations increase the robustness of SLAM, which is expected, but also that the best reconstruction accuracy is obtained not with a 
blind use of all observations but by filtering the measurements with a proposed reliability measure. To this end, our results show 
promising improvements in reconstruction accuracy. 
 

1. INTRODUCTION & MOTIVATION 

Indoor mapping is important for a wide range of applications, 
such as virtual tourism, facility management, interior design. Up-
to-date 3D indoor maps of public buildings (hospitals, shopping 
malls, stations, airports, etc.) are also a prerequisite for 
navigation within these locales. Rapid advancements in light 
detection and ranging (LiDAR) technology, IMUs, optical 
instruments (cameras) have thus led to the development of many 
indoor mobile mapping systems (IMMSs). 
 
The state-of-the-art IMMS consists of a movable platform 
equipped with laser scanners, IMUs and/or cameras to capture 
the indoor environment. Based on the selected moving platform, 
the developed IMMSs can be grouped into pushcart-based 
systems, such as Viametris i-MMS and iMS3D trolleys 
(Viametris, 2020), hand-held systems such as ZEB1 and ZEB 
REVO (Bosse et al., 2012; GeoSLAM, 2020) and backpack-
based systems such as BIMAGE Backpack (Blaser et al., 2019) 
and Jafri et al. (2019). All these systems would solve SLAM 
algorithms for positioning indoors. 
 
Unlike human-carried systems, pushcart-based systems do not 
have the ability to access whole interior areas, such as staircases. 
Thomson et al. (2013) have appraised the performance of ZEB1 
and Viametris i-MMS by implementing two comparisons against 
a reference scan from the Faro Focus3D laser scanner. Through 
this, he found that ZEB1 is less compatible with the FARO cloud 
than i-MMS. Besides hardware, the software might also restrict 
the use of the IMMS. For example, Visual-based SLAM will fail 
in a textureless environment as it is based on matching similar 
features in consecutive images. 
 
Karam et al. (2019a) have presented a backpack mobile mapping 
system that solves planar feature-based SLAM to obtain 3D point 
clouds of indoor environments. The 6DOF pose estimates are 
constrained by spline functions that guarantee a level of 
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smoothness for the trajectory. The system consists of three laser 
range finders (LRFs - Hokuyo UTM-30LX scanners with 30 m 
range) that contribute to the 6DOF pose estimation of the system, 
and Xsens MEMS IMU is used for pose prediction (Karam et al., 
2019b). As shown in Figure 1, the system is designed to have one 
scanner being horizontally positioned (S0), while the other two 
scanners are slanted and positioned to the right and left of the 
horizontal one. The IMU is then mounted under the horizontal 
scanner. The LiDAR-based SLAM is designed to map indoor 
environments with planar and vertical structures through the 
linear segments detected in the single scanlines (Vosselman, 
2014). Each laser point in a linear segment which is associated to 
a plane in the SLAM map forms an observation equation for the 
6DOF pose estimation. 
 

   
Figure 1. The used laptop and the current backpack system with 
four sensors mounted: three scanners S0, S1, and S2 and Xsens 

MEMS IMU (below S0) 

This backpack system does not have multi-line LiDARs and 
therefore is in need of IMU support. This is because it is sensitive 
to a greater number of pose configurations where the geometry 
of laser observations is not strong or sufficient enough to reliably 
estimate the 6DOF pose of the system. Regardless of this 
sensitivity, the problem itself is generic. Even with multi-line 
LiDARs, pathological pose configurations can easily be found       
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(e.g long homogeneous hallways). Hence, this problem is present 
with all systems, motivating our research. 
 
Weighting the balance between the inertial (or motion) 
measurements and the optical measurements is one of the key 
questions in SLAM post-optimization (Thrun and Montemerlo, 
2006). Although it is well-known that weighing should be done, 
the exact way on how to do it is situational and often depends on 
the design of the sensor system and the environment. To this end, 
we shall compare two sensor fusion strategies: one that fuses all 
the data without considering the reliability of that data, and one 
that employs a proposed reliability measure to detect individual 
erroneous poses. 
 
In this paper, we set out to study the above-mentioned strategies 
for IMU-SLAM integration. From Karam et al (2019b), it is 
obvious that the IMU can be used to guide the SLAM algorithm 
so that the algorithm avoids some pitfalls of the problematic 
measurement geometry. In contrast to the ZEB1 (Bosse et al., 
2012) where the IMU is essential for the SLAM workability, the 
IMU plays a supportive role in our SLAM. However, the big 
question is whether the IMU observations can be used also in the 
(final) pose estimation so that (1) pathological pose 
configurations are overcome and (2) the effect of IMU’s own 
drift to the pose estimates remains negligible. We answer to these 
very questions by proposing a combination of (1) a reliability 
measure for pose estimates derived from LiDAR observations 
and (2) coordinate and known-velocity updates, which reset the 
IMU drift. This resetting technique does not require a specific 
data capture mode to eliminate the IMU drifts as it is the case 
with the well-known Zero Velocity Updates (ZUPTs) technique 
(Chow et al., 2014).  
 
The remainder of this paper is organized as follows: Section 2 
presents the related works, while Section 3 describes our 
proposed strategies to integrate the IMU with LiDAR into SLAM 
after a short explanation of the IMU-less SLAM. In Section 4, we 
present results and discuss limitations of our approaches. The 
paper ends with conclusions in Section 5. 
 

2. LITERATURE REVIEW 

Studies show IMU integration increases the SLAM robustness 
regardless of the type of the optical sensor. Many works tend to 
use LiDAR-based SLAM algorithms that incorporate one or 
more scanners in the pose estimation. NavVis, for example, 
provided several solutions to map indoors as a trolley-based 
mobile mapping system that consisted mainly of scanners, IMUs 
and cameras (NavVis, 2019). GeoSLAM company evolved 
several versions of the hand-held ZEB-scanner (GeoSLAM, 
2020) such as ZEB-REVO, ZEB-REVO RT, and ZEB Horizon. 
Besides the trolley-based and hand-held systems, there are 
several backpack systems (Lehtola et al., 2017). The Würzburg 
Backpack incorporates a 3D scanner (RIEGL VZ400), a 2D 
scanner (SICK LMS100) and an IMU that was utilized in the 
initial trajectory estimation (Lauterbach et al., 2015). Their 
experimental results showed maximum error about 7º in 
orientation and 25 cm in positioning. Zhang et al. (2017) attached 
an IMU to a LiDAR system to estimate odometry in real-time. 
All their walking experiments show that this combination 
improves the accuracy of motion estimation (See Table 3 in 
Zhang et al, 2017). The MEMS IMU in BIMAGE system, a 
component that combines two Velodyne VLP-16 laser scanners 
and one panorama camera, was exploited to estimate the camera 
orientation (Blaser et al., 2019). They solved 3D LiDAR-based 
SLAM for the Cartographer that combines the laser and IMU 
data, and then applied an image-based georeferencing approach 

to improve the camera pose estimation. Chow et al. (2014) 
integrated a MEMS IMU in their stop-and-go mobile mapping 
system (Scannect) to support the vision-based localization in case 
the scene lacks features to be matched. They captured the data in 
a stop-and-go movement mode in order to utilize ZUPTs to 
eliminate their IMU drifts. 
 

3. IMU-SLAM INTEGRATION STRATEGIES 

As the backpack system is a mobile and multi-sensor system, we 
defined two main coordinate systems. The frame system (f) 
which is constantly moving. The data of all sensors are registered 
in this system. The model system (m) which is a fixed system and 
used to register the moving frame system over time. The final 
point clouds are defined in this system as well.   
 
In our planar feature-based SLAM, we modelled the frame 6DOF 
pose parameters (X, Y, Z, ω, ϕ, κ)  in the model coordinate system 
(m) as functions of time using splines, and the planes were 
modelled by the normal vector and distance to the origin. The 
coefficients of the pose splines and the plane parameters are 
estimated simultaneously (Karam et al., 2019a). Thus, the 
adjustment process within SLAM does not only estimate and 
update the pose parameters but also the planes, which goes 
through different stages, as listed below. Figure 2 illustrates these 
stages exemplary. The differences between these stages are the 
splines’ order, parameters to estimate, and the number of scans 
involved. 
 
 • Local adjustment: runs over a few successive scans captured 
during 0.1 s or slightly longer, and relies on the pose predicted 
by the IMU to check data association between the newly captured 
points and the previously reconstructed planes (Karam et al., 
2019b). Each assigned point forms a laser observation equation 
and participates in the estimation of pose parameters that are 
modelled using linear splines. The laser observation equation is 
formulated based on the expectation that the distance between a 
point and its associated plane, i.e. plane that the point belongs to, 
equals zero. See Vosselman (2014) for details. The pose 
parameters are estimated and updated in this adjustment, while 
parameters of earlier instantiated planes are kept fixed. 
 
• IMU-based prediction: runs at the beginning of each local 
adjustment to test the data association as mentioned above.  Here, 
we utilized the strength of the IMU in short-term pose prediction 
and we predicted the pose within a time window that covers the 
time interval of one scan (25 ms). The IMU drifts are reset at the 
start time of each prediction window by using the position and 
the approximate velocity of the system estimated from the 
previous local adjustment at that time. Then, using the IMU data 
taken within this window, we predict the pose of the next scan 
(Karam et al., 2019b). 
 
• Section adjustment: is executed when a plane has been 
observed for 0.5 s and runs over all successive scans that are 
captured in this period. The purpose of this adjustment is to 
improve the accuracy of the parameters of the plane instantiated 
0.5 s ago. The increase in the number of laser observations 
enables us to use cubic splines instead of linear ones. The outputs 
of the local adjustment, including the estimated poses and 
instantiated planes, are inputs of this section adjustment as 
approximates. Consequently, the system poses, and planes states 
are estimated and updated in this stage. 
 
• Global adjustment: combines all the captured scans in a final 
integral adjustment that provides an optimal estimate of all 
instantiated planes, along with a complete trajectory of the 
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system. The pose splines resulting from this adjustment are used 
to reconstruct the final point cloud in the model coordinate 
system. 

 
Figure 2. An exemplary representation of the prediction and 

adjustment processes within SLAM. 
 
For the purpose of increasing the robustness of these adjustment 
processes against the aforementioned problematic areas, we 
developed the following three strategies for IMU-SLAM 
integration. They are comparable to Zhang et al. (2017) in terms 
of IMU integration purposes. In these strategies, the IMU 
participates not only in the pose prediction but also in the pose 
estimation. 
 
3.1 IMU-SLAM Switching 

The principle of the IMU-SLAM switching strategy is based on 
a replacement of the local adjustment-based pose by the IMU-
based pose prediction in case the local adjustment is considered 
unreliable. The replacement occurs when the local adjustment 
fails or when the geometry of the laser observations is insufficient 
to estimate the pose. We decide whether or not to switch to the 
IMU-based estimate based on several indicators that measure the 
reliability of the SLAM-based estimate.  
 
The first indicator is the reciprocal condition number (rcond) of 
the normal matrix which tells how close/far the normal matrix is 
to being singular. A very small rcond indicates that the normal 
matrix is close to being singular or badly scaled. Another 
indicator of a poor conditioned equation system is a high 
correlation between the estimated parameters. We determined the 
correlation matrix and check the maximum absolute value of all 
non-diagonal elements. If this value is approaching 1 for any pair 
of parameters, these parameters are highly correlated and it 
would, therefore, be hard to determine them separately. 
 
In addition, we added a well-known scan matching technique, 
iterative closest points (ICP), to the proposed method. This 
technique is commonly used as a pose estimation method to 
support SLAM by defining the relative transformation between 
successive scans (Lee et al., 2011). We utilized the strength and 
efficiency of 2D ICP in estimating the relative 2D transformation 
(X, Y, κ) when it matches two successive scans of the 
horizontally mounted scanner. As the time interval of one scan is 
25 ms, a large rotation between two scans in this short period is 
not expected. However, we would not rely on the 3DOF ICP-
based pose to move forward in SLAM. Rather, we are simply 
determining the differences in the estimated pose parameters (X, 

Y, k) between the ICP and local adjustment. A big difference 
would raise the suspicion that one of the two methods is wrong, 
and this is used as an indicator to switch to the IMU-based 
prediction. 
 
3.2 IMU-based Pose Estimation 

The difference with the switching technique is that we always use 
the IMU-based pose prediction instead of the local adjustment-
based pose, no matter whether the local adjustment seems reliable 
or not. The role of the local adjustment is limited to instantiate 
planes and for the checking of data association. 
 
3.3 IMU-SLAM Joint Estimation 

In this strategy, we deepen the SLAM-IMU integration by 
including the IMU observations in the 6DOF pose estimation 
besides the laser observations. Our Xsens MEMS IMU measures 
three-dimensional angular velocity and three-dimensional 
dynamic acceleration over time. Some of our IMU specifications 
are listed in Table 1. Similar to Hussnain et al. (2018), we 
formulate six IMU observation equations at each timestamp, 𝑡𝑡, as 
described in the following subsections. 
 

SLAM Gyroscope Accelerometer 
Bias 

repeatability 0.2º/s 0.03 m/s2 

In-run bias 
stability 10º/h 40 μg  

Table 1. Key specifications of the Xsens MEMS IMU 
 
3.3.1 Acceleration Observation Equations 
 
The IMU accelerometers observe the accelerations 𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠  = 
(𝑋̈𝑋𝑖𝑖𝑖𝑖𝑖𝑖s , 𝑌̈𝑌𝑖𝑖𝑖𝑖𝑖𝑖s , 𝑍̈𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 ) in the sensor coordinate system (s) which 
needs to be rotated to the frame coordinate system (f) with the 
time-independent rotation matrix 𝑅𝑅𝑠𝑠

𝑓𝑓 = 𝑅𝑅𝑧𝑧(90). This will also 
need to be performed on the model system (m) with the time-
dependent rotation matrix 𝑅𝑅𝑓𝑓𝑚𝑚(𝜔𝜔,𝜑𝜑, 𝜅𝜅). Hence, 
 

𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 = 𝑅𝑅f𝑚𝑚 𝑅𝑅𝑠𝑠
𝑓𝑓 𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠    (1) 

 
As the resulting accelerations (𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 ) should correspond to the 
second-order derivative of the backpack’s location (𝑇̈𝑇𝑓𝑓𝑚𝑚) in the 
model system, the following observation equations are 
formulated: 

𝑇̈𝑇𝑓𝑓𝑚𝑚 = 𝑅𝑅𝑓𝑓𝑚𝑚 𝑅𝑅𝑠𝑠
𝑓𝑓 𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 − �

0
0
𝑔𝑔
�     (2) 

 
where 𝑇̈𝑇𝑓𝑓𝑚𝑚 = (𝑋̈𝑋𝑓𝑓m, 𝑌̈𝑌𝑓𝑓m, 𝑍̈𝑍𝑓𝑓𝑚𝑚). 
 
Since the z-axis in the model system is assumed to be vertical, 
we compensate for the effect of gravity in the accelerometer 
reading by subtracting the average gravitational acceleration (𝑔𝑔) 
from the acceleration along this axis. 
 
As the pose parameters are modelled using splines in the laser 
observation equations, we also modelled the accelerations using 
splines. Splines are polynomial functions and it is straightforward 
to derive the accelerations (𝑇̈𝑇𝑓𝑓𝑚𝑚) as the second-order derivatives 
of the translations (𝑇𝑇𝑓𝑓𝑚𝑚). For example, for the translation 𝑋𝑋 spline 
𝑋𝑋(𝑡𝑡) = ∑ 𝛼𝛼𝑥𝑥,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 , the acceleration 𝑋̈𝑋 spline becomes 𝑋̈𝑋(𝑡𝑡) =
∑ 𝛼𝛼𝑥𝑥,𝑖𝑖  𝐵̈𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 ,  where 𝛼𝛼𝑥𝑥,𝑖𝑖 is the 𝑋𝑋 spline coefficient to be 
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estimated on interval 𝑖𝑖. Hence, both the translations and 
accelerations are expressed in terms of the same to-be-
determined spline coefficients. 
 
By doing the same for the measured accelerations along other 
axes, we formulated the following linearized acceleration 
observation equations in which the upper index ˚ refers to the 
approximate values: 

𝑇̈𝑇𝑓𝑓𝑚𝑚
0 − 𝑅𝑅𝑓𝑓𝑚𝑚

0𝑅𝑅𝑠𝑠
𝑓𝑓  𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 + �

0
0
𝑔𝑔
�                               (3)

= −

⎝

⎜
⎜
⎜
⎛
�Δ𝛼𝛼𝑥𝑥,𝑖𝑖  𝐵̈𝐵𝑖𝑖
𝑖𝑖

�Δ𝛼𝛼𝑦𝑦,𝑖𝑖  𝐵̈𝐵𝑖𝑖
𝑖𝑖

�Δ𝛼𝛼𝑧𝑧,𝑖𝑖  𝐵̈𝐵𝑖𝑖
𝑖𝑖 ⎠

⎟
⎟
⎟
⎞

+  
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0

𝜕𝜕𝜕𝜕 𝑅𝑅𝑠𝑠
𝑓𝑓  𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 �Δ𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

 

                                   +   
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0

𝜕𝜕𝜕𝜕 𝑅𝑅𝑠𝑠
𝑓𝑓 𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 �Δ𝛼𝛼𝜑𝜑,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

+  
𝜕𝜕𝑅𝑅𝑓𝑓𝑚𝑚

0

𝜕𝜕𝜕𝜕 𝑅𝑅𝑠𝑠
𝑓𝑓 𝑇̈𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 �Δ𝛼𝛼𝜅𝜅,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

 

 
where Δ𝛼𝛼𝑥𝑥,𝑖𝑖, Δ𝛼𝛼𝑦𝑦,𝑖𝑖 , Δ𝛼𝛼𝑧𝑧,𝑖𝑖 , Δ𝛼𝛼𝜔𝜔,𝑖𝑖 , Δ𝛼𝛼𝜑𝜑,𝑖𝑖 and Δ𝛼𝛼𝜅𝜅,𝑖𝑖 are the 
unknown increments of the pose splines coefficients.  
 
In the first iteration of the estimation process, 𝑇̈𝑇𝑓𝑓𝑚𝑚

0
and 𝑅𝑅𝑓𝑓𝑚𝑚

0
 are 

derived from the SLAM as the approximate acceleration and 
rotation of the system, respectively. This will reset the IMU’s 
accelerometers drift which helps to mitigate the effects of the 
IMU biases (see Table 1) on the pose estimation. 
 
3.3.2 Angular Velocity Observation Equations 
 
Similarly, the angular velocity observation equations were 
formulated as the IMU angular velocities 𝑉̇𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 =
(𝜔̇𝜔𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠 ,  𝜑̇𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 ,  𝜅̇𝜅𝑖𝑖𝑖𝑖𝑖𝑖s ) should be related to the first-order 
derivatives of the backpack’s rotation angles 𝑉̇𝑉𝑓𝑓𝑚𝑚 =
(𝜔̇𝜔𝑓𝑓𝑚𝑚, 𝜑̇𝜑f𝑚𝑚, 𝜅̇𝜅𝑓𝑓𝑚𝑚). However, while the IMU gyroscopes 
observed the angular velocities around the axes of the IMU 
sensor frame, the backpack rotation angles are defined around the 
axes of the model system and are used to rotate from the 
backpack frame to the model system. Therefore, in order to 
determine the relationship between these two groups of angular 
velocities, we first need to define the direction and order of 
rotation. The rotation from the model system to the IMU sensor 
frame system can simply be defined as the inverse of the rotation 
(𝑅𝑅𝑓𝑓𝑚𝑚𝑅𝑅𝑠𝑠

𝑓𝑓): 
 
𝑅𝑅𝑚𝑚s = (𝑅𝑅f𝑚𝑚𝑅𝑅𝑠𝑠

𝑓𝑓)𝑇𝑇 =  𝑅𝑅𝑓𝑓𝑠𝑠𝑅𝑅𝑚𝑚
𝑓𝑓 = 𝑅𝑅𝑓𝑓𝑠𝑠 𝑅𝑅3�𝜅𝜅𝑓𝑓𝑚𝑚�

𝑇𝑇𝑅𝑅2�𝜑𝜑𝑓𝑓𝑚𝑚�
𝑇𝑇𝑅𝑅1�ω𝑓𝑓𝑚𝑚�

𝑇𝑇
(4) 

 
As κ is the first rotation applied when rotating from the backpack 
frame to the model system, the angular velocity around the z-axis 
(𝜅̇𝜅𝑓𝑓𝑚𝑚) would not have to be rotated by 𝑅𝑅𝑚𝑚

𝑓𝑓  (Karam et al., 2019b). 
Indeed the IMU angular velocity  𝜑̇𝜑𝑖𝑖𝑖𝑖𝑖𝑖s  around the y-axis does 
not hold a direct correspondence with the first derivative of 𝜑𝜑𝑓𝑓𝑚𝑚 
when simply rotating (𝑅𝑅𝑓𝑓𝑆𝑆) from the backpack frame to the IMU 
sensor system. This is as the y-axis has already been rotated by 
−𝜅𝜅𝑓𝑓𝑚𝑚 around the z-axis prior to the measuring of  𝜑̇𝜑𝑖𝑖𝑖𝑖𝑖𝑖s  in the 

IMU sensor system. As such, the derivative of 𝜑𝜑𝑓𝑓𝑚𝑚 should also be 
rotated to the frame system. Similarly, the derivative of 𝜔𝜔𝑓𝑓𝑚𝑚 
would need to be rotated by −𝜑𝜑𝑓𝑓𝑚𝑚 around the y-axis, and by −𝜅𝜅𝑓𝑓𝑚𝑚 
around the z-axis, in order to obtain an angular velocity vector in 
the frame system. Hence, after rotating from the frame system to 
the IMU system, we were able to obtain the angular velocities as 
defined by the pose splines in the IMU system. This leads to the 
following observation equations: 
 

�
𝜔̇𝜔𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠

𝜑̇𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠

𝜅̇𝜅𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠
� = 𝑅𝑅𝑓𝑓𝑆𝑆 �

0
0
𝜅̇𝜅𝑓𝑓𝑚𝑚

� + 𝑅𝑅𝑓𝑓𝑆𝑆𝑅𝑅3�𝜅𝜅𝑓𝑓𝑚𝑚�
𝑇𝑇 �

0
𝜑̇𝜑f𝑚𝑚

0
� 

                                        + 𝑅𝑅𝑓𝑓𝑆𝑆𝑅𝑅3�𝜅𝜅𝑓𝑓𝑚𝑚�
𝑇𝑇𝑅𝑅2�𝜑𝜑𝑓𝑓𝑚𝑚�

𝑇𝑇 �
𝜔̇𝜔𝑓𝑓m

0
0
�        (5) 

It can be shortened to: 
 

𝑉̇𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 = 𝑅𝑅𝑓𝑓𝑆𝑆𝑆𝑆𝑚𝑚
𝑓𝑓 𝑉̇𝑉𝑓𝑓𝑚𝑚            (6) 

 

with 𝑆𝑆𝑚𝑚
𝑓𝑓 = �

cos𝜑𝜑 cos 𝜅𝜅 sin𝜅𝜅 0
− cos𝜑𝜑 sin𝜅𝜅 cos𝜅𝜅 0

sin𝜑𝜑 0 1
�
𝑚𝑚

𝑓𝑓

 

where 𝑆𝑆𝑚𝑚
𝑓𝑓  is the transformation matrix from the model to the 

frame system. 
 
We model the angular velocities using splines as well by taking 
first-order derivatives of the rotation angles. For instance, for the 
rotation angle ω spline ω(𝑡𝑡) = ∑ 𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 , the angular 
velocity 𝜔̇𝜔 spline becomes 𝜔̇𝜔(𝑡𝑡) = ∑ 𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵̇𝐵𝑖𝑖(𝑡𝑡)𝑖𝑖 ,  where 𝛼𝛼𝜔𝜔,𝑖𝑖 is 
the ω spline coefficient to be estimated on interval 𝑖𝑖. 
 
Hence, the linearized angular velocity observation equations 
becomes: 
 

𝑉̇𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 − 𝑅𝑅𝑓𝑓𝑠𝑠𝑆𝑆𝑚𝑚
𝑓𝑓 0𝑉̇𝑉𝑓𝑓𝑚𝑚

0                                                             (7)

= 𝑅𝑅𝑓𝑓𝑠𝑠𝑆𝑆𝑚𝑚
𝑓𝑓 0

⎝

⎜
⎜
⎜
⎛
�Δ𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵̇𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖

�Δ𝛼𝛼𝜑𝜑,𝑖𝑖  𝐵̇𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖

�Δ𝛼𝛼𝜅𝜅,𝑖𝑖  𝐵̇𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖 ⎠

⎟
⎟
⎟
⎞

+  𝑅𝑅𝑓𝑓𝑠𝑠
𝜕𝜕𝑆𝑆𝑚𝑚

𝑓𝑓 0

𝜕𝜕𝜕𝜕 𝑉̇𝑉𝑓𝑓𝑚𝑚
0�Δ𝛼𝛼𝑘𝑘,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

+  𝑅𝑅𝑓𝑓𝑠𝑠
𝜕𝜕𝑆𝑆𝑚𝑚

𝑓𝑓 0

𝜕𝜕𝜕𝜕 𝑉̇𝑉𝑓𝑓𝑚𝑚
0�Δ𝛼𝛼𝜑𝜑,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

 

Similar to the acceleration equation, the angular velocities 𝑉̇𝑉𝑓𝑓𝑚𝑚
0 

and the transformation matrix 𝑆𝑆𝑚𝑚
𝑓𝑓 0 in the first iteration of the 

estimation process are derived from the approximate splines. 
This helps to reset the IMU’s gyroscopes drift and this, in turn, 
eliminates the attitude drift considerably. 
 
3.3.3 Joint Estimation 
 
For the joint estimation method, the IMU observation equations 
(eq. 3 and eq. 7) are added to the laser observation equations in 
all adjustment processes addressed above: local, section and 
global. This fusion enables us to use cubic splines instead of 
linear ones in the local adjustment. As our backpack system was 
mounted with three Hokuyo scanners with a scanning frequency 
of 40 Hz and 1080 points per scan line, every 25 ms the system 
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records 3240 laser points. The accelerations and angular 
velocities are recorded by the IMU with a sampling frequency of 
200 Hz; thus, for a local adjustment within 0.1 s, we have 12960 
laser points, 60 IMU acceleration readings, and 60 IMU angular 
velocity readings. However, not all laser points were assigned to 
planes and can contribute to the pose estimation, as this is based 
on the data association criteria. 
 

4. EXPERIMENTAL RESULTS AND DISCUSSION  

In order to test the performance of the three proposed strategies 
for a SLAM-IMU integration, several experiments on different 
indoor environments were conducted. Three datasets were 
collected at the Institute of Geodesy and Photogrammetry 
building at the University of Braunschweig, Germany. They are 
denoted Diemen0, Diemen1, and Diemen2, respectively. The 
number of captured laser points and the walking duration for all 
test areas are approximately 38 million/5-minute, 73 million/9-
minute, and 38 million/5-minute, respectively. Diemen0 is 
captured in the relatively cluttered basement, while the other two 
datasets are captured on the ground floor with different operators 
and trajectories. The mapped areas show distinct office 
environments that have many doors and windows. There were 
also several narrow rooms with glass windows and uneven 
curtains. In order to test for the aforementioned weaknesses, 
some doors were wide open, and others were opened by the 
operator while the data was being captured. As the rooms in 
Diemen1 and Diemen2 were nearly empty due to renovation 
works, the number of planar structures is limited. This, in turn, 
affected the estimability of the system pose using only laser 
observations. The previously mentioned features of the test areas 
sometimes constitute as obstacles, and this may cause some of 
previously developed LiDAR-based SLAMs to fail before the 
mapping was completed, see Table 3. 
 
We mapped these test areas using our backpack indoor mobile 
mapping system and ran five different versions of SLAM 
algorithms on each dataset. For the IMU-SLAM Switching, the 
rcond and correlation thresholds are experimentally determined 
and set to 0.02 and 0.7, respectively. The differences thresholds 
with ICP to raise the suspicion in SLAM performance are set to 
1 cm for (x, y), and 0.5º for κ.  
 
For the purpose of simplicity, we use the following terminology 
for the five compared SLAM strategies; 
 
LiDAR-based SLAM: relies on the linear extrapolation for pose 
prediction instead of the IMU (Karam et al., 2019a). LiDAR-
based SLAM with IMU prediction: takes advantage of the IMU 
to predict the next pose (Karam et al., 2019b). IMU-SLAM 
Switching, IMU-based Pose Estimation, and IMU-SLAM 
Joint Estimation are the three IMU-SLAM integration 
techniques proposed in this paper (see Table 2). 
 

SLAM Algorithm 6DOF Pose 
prediction 

6DOF Pose 
estimation 

LiDAR-based SLAM 
(Karam et al., 2019a) LiDAR LiDAR 

LiDAR-based SLAM 
(Karam et al., 2019b) LiDAR+IMU LiDAR 

Three methods 
proposed in this paper LiDAR+IMU LiDAR+IMU 

Table 2. Comparison between the proposed methods in this 
paper and previously developed methods regarding the data 

source for pose prediction and estimation. 

The most crucial aspect in the testing of the proposed methods 
was to check the robustness against poor laser observations 
geometry. Indeed, the improvement in terms of robustness was 
evident through the ability to handle more datasets. This is 
particularly evident for the Diemen1 data, which the LiDAR-
based SLAM, even with the help of IMU prediction, failed to 
process, as shown in Table 3. While for the Diemen0 data, all 
methods that estimate the pose without the use of IMU 
observations failed. This failure is caused by the divergence of 
the global adjustment because of insufficient laser observations 
in a sequence of five or more intervals. Figure 3 shows an obvious 
case where the LiDAR-based SLAM fails without the support of 
an IMU. There is an insufficient amount of laser observations to 
estimate the translation along the Y-axis. Therefore, the system 
slides along the Y-axis and leads to an erroneous map. One 
reason for the poor laser observations is that the narrow wall in 
front of the operator has a large transparent object (glass window) 
which leads to missing or incorrect range measurements. 
Problem areas also include a non-flat panel radiator underneath 
the window and a winding curtain reflect in sparse laser scans in 
which it is hard to detect linear segments. There are also no 
observations on the wall at the opposite side of the room because 
of the 270º opening angle of the Hokuyo scanners. 
 
In comparison to other methods, the IMU-SLAM joint estimation 
is the most robust method due to its ability to handle all datasets 
in this paper. The reliance on IMU allows the SLAM to reconnect 
to planes seen some longer time before; thus, this prevents the 
system from sliding in any direction and supports the SLAM in 
going ahead.  

             
                       (a)                                                (b) 

Figure 3. An example of a problematic area for the LiDAR-
based SLAM. a) 3D reconstructed planes (black) with the 

assigned laser points from four scans (colours indicate point 
associations to a particular plane) and the points that are not 
associated to a plane (red). The arrow refers to the Y-axis 

direction in the model system. b) The wall is in front of the 
operator. 

Figure 4 shows the generated point clouds of all test areas with 
colours showing the plane association. The points that are not 
associated to a plane and the points on the ceiling are removed 
for visualisation purposes.  
 
We performed a comparison between the resulting point clouds 
based on several factors, such as the number of points assigned 
to the reconstructed planes and the root mean square error 
(RMSE) of the residuals, as demonstrated in Table 3. In this 
paper, the term residuals refers to the distances between the 
model planes and the points associated to them. Table 3 
demonstrates that the use of IMU in pose estimation has 
increased significantly the number of assigned points to planes in 
Diemen2 dataset from about 24 million points to 28 million 
points. Approximately 97% of the assigned points have residuals 
below 3 cm which is 10% higher than the case of not using the 
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IMU. Also, the RMSE of the residuals decreased from 1.8 cm 
with LiDAR-based SLAM to about 1.3 cm. Consequently, the 
proposed strategies for IMU integration lead into a more robust 
data association between the captured points and the 
reconstructed planes. 
 
As the SLAM-IMU joint estimation tries to fit the trajectory to 
the IMU observations, it is slightly sacrificing the minimization 
of the point-to-plane distances. Therefore, table 3 shows that this 
method is not always the best performing method regarding the 
RMSE of residuals, even if it is the most robust method. 
 
Figure 5 compares the histograms of the points’ residuals of all 
resulting point clouds for the Diemen2 dataset as it is the only 
dataset that was processed successfully by all methods. It 
demonstrates that approximately 57% of the assigned points have 
residuals below 1 cm when the IMU was not used at all. This 
improved to 61% when the switching technique took place, to 
64% when the IMU was utilized in pose prediction and to about 
70% when IMU contributes to the pose estimation. On the other 
hand, approximately 13% of the residuals exceeded 3 cm when 
the IMU was not used. This percentage is negligible when the 
IMU is utilized for pose prediction and estimation. As such, this 
is why the RMSE value of the assigned points’ residuals 
decreases (Table 3). 
 
However, the previous measurements, the number of assigned 
points and the RMSE of their residuals, do not adequately reflect 
the overall quality of the methods’ performance. The lower 
RMSE indicates that we do a better fit of points to planes, but this 
does not necessarily mean that we have a better model. In 
addition, the RMSE could be influenced badly by an incorrect 
merge of two planes. 
 
Therefore, we applied further quality measures which utilized the 
architectural constraints of walls (perpendicularity and 
parallelism) as they are predominant characteristics in the 
scanned areas (Karam et al., 2018). We assessed the ability of the 
system to capture the true geometry of the scanned environment. 
The results in Table 4 show the reconstruction accuracy with the 
IMU contribution is much better than without IMU. The 
percentages of small angles’ errors (<0.5º) increase and of 
outliers (>1º) decrease in all proposed methods that utilize the 
IMU. 
 
 
 
 

 It also demonstrates that the reliance on the IMU at many 
locations did not negatively affect the internal consistency of 
walls; thus, it did not impede upon the correctness of the final 3D 
reconstruction. However, Table 4 shows that the best results were 
reached when the SLAM kept switching to the IMU. 

 

 
(a) Diemen0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Diemen2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Diemen1 
 

Figure 4. The generated point cloud of the test areas with colours show plane association and trajectory followed (white). For 
visualization purposes, the points that are not associated to a plane and the points on the ceiling are removed from the point clouds.
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                                          Dataset 
SLAM   Diemen0 Diemen1 Diemen2 

LiDAR-based SLAM 
(Karam et al., 2019a) 

Nr (million)  
x 
 

 
x 
 

24 
RMSE (cm) 1.8 

Perc (%) 87 

LiDAR-based SLAM 
(Karam et al., 2019b) 

Nr (million)  
x 

 
x 
 

24 
RMSE (cm) 1.3 

Perc (%) 96 

IMU-SLAM switching 
Nr (million)  

x 
 

53  28 
RMSE (cm) 1.5 1.4 

Perc (%) 96 97 

IMU-based Pose Estimation 
Nr (million)  

x 
 

53 28 
RMSE (cm) 1.8 1.4 

Perc (%) 96 97 

IMU-SLAM Joint 
Estimation 

Nr (million) 28 53  28 
RMSE (cm) 1.5 1.6 1.3 

Perc (%) 98 96 97 

Table 3. Comparison between the performance of the proposed method on all datasets regarding the number of assigned points (Nr), 
the corresponding RMSEs of the residuals, and the percentage of residuals below 3 cm (Perc). The results of two previously 

developed methods are also listed at the beginning of the table for comparison. The letter “x” refers to the failure of the method to 
process the corresponding dataset.  

                                       Dataset 
SLAM   

Diemen0 Diemen1 Diemen2 
perp par perp par Perp  par 

LiDAR-based SLAM 
(Karam et al., 2019a) 

[0º 0.5º[ 

x x 

58 50 
[0.5º 1º] 26 12 
[1º 5º] 16 38 

RMSE (deg) 1.34º 1.76º 

LiDAR-based SLAM 
 (Karam et al., 2019b) 

[0º 0.5º[ 

x x 

70 66 
[0.5º 1º] 23 13 
[1º 5º] 7 21 

RMSE (deg) 0.66º 1.39º 

IMU-SLAM Switching 

[0º 0.5º[ 

x 

69 62 67 65 
[0.5º 1º] 19 16 23 16 
[1º 5º] 12 22 10 19 

RMSE (deg) 0.54º 1.31º 0.96º 1.50º 

IMU-based Pose Estimation 

[0º 0.5º[ 

x 

68 54 70 71 
[0.5º 1º] 17 16 23 11 
[1º 5º] 15 30 7 18 

RMSE (deg) 0.66º 1.36º 0.63º 1.06º 

IMU-SLAM Joint Estimation 

[0º 0.5º[ 62 39 67 57 67 61 
[0.5º 1º] 25 30 18 16 23 12 
[1º 5º] 13 31 15 27 10 27 

RMSE (deg) 0.63º 1.34º 0.70º 1.45º 0.82º 1.46º 

Table 4. Comparison between the performance of the proposed method on all datasets regarding the architectural constraints. The 
percentages of angles’ errors in three different ranges for parallelism and perpendicularity and the corresponding RMSEs. The results 
of two previously developed methods are also listed at the beginning of the table for comparison. The letter “x” refers to the failure of 

the method to process the corresponding dataset.

 
 
 
 
 
 
 
 

 
 
Figure 5. Histograms of the points’ residuals of all resulting 
point clouds for Diemen2 dataset and for all methods, LiDAR-

based SLAM (black), with IMU prediction (red), IMU-SLAM 
switching (magenta), IMU-based Pose Estimation (blue), and 
the joint estimation (green). 
 
Overall, we observe an improvement in results when the 
erroneous poses that originate from LiDAR-based SLAM are 
replaced by the poses integrated from IMU measurements. 
This goes hand-in-hand with the general understanding that the 
less trustworthy measurements should receive no weight in 
SLAM optimization. 
 
The proposed SLAM strategies are limited to (indoor) environ- 
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ments with planar structures. The IMU drift in velocity and 
heading is reset in each prediction or estimation loop (see 
Section 3), but the IMU biases are not auto-calibrated during 
scanning. This did not cause immediate problems in our 
experiments but should be taken into account with lower 
quality IMUs. In this case, this limitation could be addressed, 
e.g., for the gyro biases (Hyyti and Visala, 2015). 
 

5. CONCLUSION 

We have described several strategies to integrate the IMU with 
the LiDAR-based SLAM. Here, the IMU participates in the 
pose prediction and estimation. We conclude that the IMU 
integration improves the robustness of both the data 
association and pose estimation and therefore it is beneficial in 
the proposed SLAM approach. This improvement in the 
SLAM robustness expands the scope of application of our 
backpack mobile mapping system.  
 
In future works, we intend to investigate whether the IMU is 
capable to generate a reliable prediction for a longer exposure 
period. Reliable prediction for a wider period will help to 
improve the hypothesis generation of planar structures which, 
in turn, enables the SLAM to sense non-vertical walls or non-
horizontal floors/ceilings. Consequently, this would expand 
the applicability of our system. 
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