
AERIAL-TRIANGULATION AIDED BORESIGHT CALIBRATION FOR A LOW-COST 
UAV-LIDAR SYSTEM 

 

 Jianping Li 1, *, Bisheng Yang 1, *, Chi Chen 1, Weitong Wu 1, Luqi Zhang 1 

 
1 State Key Laboratory of Information Engineering in Survey, Mapping and Remote Sensing, Wuhan University, 

No. 129, Luoyu Road, Wuhan, PR China  

(lijianping; bshyang; ChiChen; weitongwu)@whu.edu.cn; zhangluqi0209@126.com 

 

 

Commission I, WG I/9 

 

KEYWORDS: Low-cost, UAV-LiDAR System (ULS), Boresight Calibration, Dynamic Networks 

 

ABSTRACT: 

 

The Laser-IMU boresight calibration is the precondition for an Unmanned Aerial Vehicle (UAV)-Light Detection and Ranging (LiDAR) 

system (ULS). The existing methods achieve good performance for calibrating ULSs with high-precision positioning and orientation 

systems (POS) (e.g., APX-15), in which, the systematic errors of the high-precision POS can be ignored, only the boresight parameters 

are estimated. However, these methods have difficulties in calibrating the low-cost ULSs with low-precision POS. To overcome the 

impact of the systematic errors of the low-precision POS on boresight calibration, an aerial-triangulation aided boresight calibration is 

proposed in this paper. It simultaneously estimates the laser-IMU boresight angles and system states (e.g. trajectory) by setting the 

point clouds derived from aerial-triangulation (AT point clouds) as the reference. Firstly, the planar voxels from the AT point clouds 

are extracted, due to the fact that they are more reliable in AT point clouds. Secondly, raw laser observations are matched with the 

extracted planar voxels to establish laser matching observations. Thirdly, a Dynamic Network (DN) is built using the GNSS 

observations, inertial observations, and laser matching observations to simultaneously optimize the initial laser-IMU boresight angles 

and the system states. All the sensor observations involved in the ULS are modeled with proper error models, which are essential for 

analyzing and refining the data quality of the low-cost ULS. The proposed method was tested to calibrate a low-cost ULS, KylinCloud-

II, in a calibration field. It showed that the average distance between the laser point clouds and the referenced AT point clouds was 

decreased from 2.560m (RMSE = 3.88m) to 0.08m (RMSE = 0.99m). 

 

 

1. INTRODUCTION 

Unmanned Aerial Vehicle (UAV)-Light Detection and Ranging 

(LiDAR) Systems (ULS) are widely used in many applications, 

such as building information modeling (Roca et al., 2014), urban 

changes detection (Qin et al., 2016), power-line corridor 

inspection (Chen et al., 2018), forest inventory estimation 

(Jaakkola et al., 2010; Li et al., 2019b; Liu et al., 2018; Wallace 

et al., 2012). Nevertheless, the costs of high-end ULSs are still 

high and unacceptable for non-professional users, compared 

with those of UAV photogrammetric systems.  

 

Developing low-cost ULSs is conducive to the promotion of the 

ULS point cloud based applications (Habib, 2017), so it has 

attracted extensive attention from the communities of academy 

and industry in recent years (Jaakkola et al., 2017, 2010; Li et al., 

2019a; Ravi et al., 2018a). Wallace et al., (2012) developed a 

low-cost ULS with structure from motion (SfM) aided 

orientation, which was used for forest inventory successfully. 

Ravi et al. (2018b) integrated a ULS with a low-cost multi-beam 

laser scanner and a high-end APX-15 POS, and calibrated the 

boresight parameters with plane fitting accuracy in terms of 

0.02m. Li et al. (2019a) integrated a low-cost ULS system, 

named KylinCloud-I, which equipped with a low-end MEMS-

based IMU, achieving plane fitting accuracy in terms of 0.05cm.  

 

Boresight calibration, estimating the laser-IMU mounting angles, 

was a core step for mobile mapping systems (Glennie, 2013; 

Skaloud and Lichti, 2006). Filin (2003) calibrated the laser-IMU 

boresight angles utilizing natural and man-made surfaces for an 

airborne LiDAR system (ALS). Zhang et al. (2015) calibrated 

the laser-IMU boresight angles using aerial triangulated images 
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as control information by matching corresponding feature points 

extracted from images and ALS points. The laser-IMU boresight 

angles can also be self-calibrated without reference data. 

Skaloud and Lichti (2006) calibrated laser-IMU boresight angles 

of an ALS using plane features from different strips by 

estimating plane parameters and boresight angles simultaneously. 

Chan et al. (2013) calibrated laser-IMU boresight angles of a 

mobile laser scanning (MLS) system using multi-features (plane 

feature and catenary feature). Glennie (2013) simultaneously 

calibrated the laser-IMU boresight parameters and interior 

scanner parameters using planar features. The trajectory errors 

of ULSs equipped with high-end POSs could be ignored (Li et 

al., 2019; Ravi et al., 2018b), then the laser-IMU boresight 

angles were estimated using the corresponding geometry 

features selected from different strips. The calibration accuracy 

is analyzed according to the bias impact analysis (Ravi et al., 

2018b). However, the trajectory errors of the low-cost ULSs 

equipped low-end POSs can not be ignored, posing difficulties 

for the existing calibration methods. This problem was partly 

solved by integrating a camera in a ULS to improve the 

trajectory accuracies with the aid of aerial-triangulation 

(Elbahnasawy et al., 2018; Li et al., 2019a). However, as far as 

a low-cost ULS without a camera, the laser-IMU boresight 

calibration problem was still an open question. 

 

To handle the boresight calibration problem for low-cost ULSs, 

system states (e.g. trajectory) and boresight parameters should 

be estimated together (Qin and Shen, 2018; Yang and Shen, 

2017). Dynamic Networks (DN) was used as the basic 

framework for the parameter estimation in this paper. DN was 

firstly proposed to simultaneous modeling and adjusting of raw 

inertial observations with optical and GNSS data streams 
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(Rouzaud and Skaloud, 2011). It was a post-processing 

framework, which was superior to the smoother based method 

for the integration of optical sensors (Rouzaud and Skaloud, 

2011). Based on DN, Cucci et al. (2017a) proposed a bundle 

adjustment with raw inertial observations to estimate the UAV 

trajectories and the camera-IMU boresight angles through a 

dedicated calibration flight. 

 

In this paper, an aerial-triangulation aided boresight calibration 

method is proposed to calibrate the laser-IMU boresight angles 

for a low-cost ULS equipped with low-end POS. Setting the AT 

point clouds as the reference, the planar voxel in the AT points 

are extracted first and used for the following calibration process, 

for the reliability of the planar points in AT point clouds. Then 

the laser point clouds are matched with the extracted planar 

voxels according to the distance. At last, all the sensor 

observations (GNSS, IMU, and laser matching) are integrated 

into a DN to optimize the involved parameters. Different from 

the existing methods, the proposed method considers the 

systematic error of the low-end POS, and estimates the laser-

IMU boresight and system states simultaneously. In this manner, 

the sensors' error models are properly modeled, which are 

essential for analyzing and refining the data quality of the low-

cost ULS. 

 

The remainder of this paper is organized as follows. In Section 

2, the steps of the proposed method are elaborated in detail. In 

Section 3, experiments were undertaken to evaluate the 

performance of the proposed method, after which conclusion is 

drawn at the end of this paper. 

 

2. THE PROPOSED CALIBRATION METHOD 

The proposed aerial-triangulation aided boresight calibration 

mainly consists of three steps: (1) planar voxel extraction 

(Section 2.2); (2) establishing laser matching (Section 2.3); (3) 

building Dynamic Networks (Section 2.4), as illustrated in Fig.1. 

For the convenience of method description, the system 

description of the low-cost ULS is first detailed as follow: 

 

 
2.1 System description of the low-cost ULS 

The low-cost ULS, named KylinCLoud-II, is composed of a 

multibeam laser scanner, a GNSS receiver, and a low-cost 

MEMS-based IMU. The multibeam laser scanner, R-FANS161, 

 
1 www.isurestar.com 
2 www.novatel.com/products/gnss-receivers 

is with 250 m measurement range and 2 cm distance accuracy. 

The GNSS receiver is Novatel OEM-7192. The gyro in-run bias 

of the low-cost IMU is 6 deg/h. The whole system was mounted 

on a multi-rotor UAV, DJI M6003, produced by DJI. 

 

Similar to the definition of the common ULS (Ravi et al., 2018b), 

three coordinate frames are involved in the proposed method, 

namely, the mapping frame 𝐹𝑚 , body frame 𝐹𝑏 , and 16 laser 

frames for each scan lines {𝐹𝑙(𝑖), 𝑖 = 0, … ,15}, as illustrated in 

Fig.2. A laser point 𝑟𝑝
𝑚 in mapping frame is calculated using 

the observations by Eq.1  

 

𝑟𝑝
𝑚 = 𝑅𝑏

𝑚(𝑡)𝑅𝑙
𝑏(𝑖)𝑟𝑝

𝑙(𝑖)
+ 𝑅𝑏

𝑚(𝑡)𝑟𝑙
𝑏 + 𝑟𝑏

𝑚(𝑡) (1) 

 

where, 𝑟𝑝
𝑙(𝑖)

  is the point observed by the 𝑖𝑡ℎ  laser scan line; 

𝑅𝑙
𝑏(𝑖) is boresight rotation matrix for the 𝑖𝑡ℎ laser scan line; 

𝑟𝑙
𝑏  is the level-arm vector for the laser scanner.  𝑅𝑏

𝑚(𝑡)  and 

𝑟𝑏
𝑚(𝑡) are the exterior parameter at time 𝑡 for the system. 

 
 

2.2 Planar voxel extraction 

The AT point clouds are used as the reference data. Due to the 

fact that the AT point clouds usually contain a lot of noise, only 

the planar points in the raw AT point clouds are used. To save 

computation cost, an octree with a 5 m grid size is built for the 

AT point clouds. Then principal components analysis (PCA) is 

performed for points located in each voxel to obtain the three 

eigenvalues 𝜆1 > 𝜆2 > 𝜆3 . The planarity of each voxel is 

evaluated by Eq.2. 

 

𝑝𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 =
√𝜆2 − √𝜆3

√𝜆1

 (2) 

 

Only the voxels, whose planarity more than 0.8, are selected for 

the following steps. For each selected planar voxel, plane fitting 

is performed. A 4× 1 parameter vector 𝜃4×1  are involved in 

each plane.  

 

2.3 Establishing laser matching 

Once the planar voxels are extracted from the referenced AT 

point clouds, we establish the matching between the raw laser 

3 www.dji.com/cn/matrice600 

 
 

Fig.1 Workflow the proposed method. 

 

 

Fig.2 Coordinate definitions involved in the proposed low-cost 

UAV-LiDAR system: KylinCloud-II. 
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observation and the planar voxels. Using the direct referencing 

equation Eq.1, we project the raw laser observation into the 

mapping frame according to the initial laser-IMU boresight 

parameters and initial trajectory obtained by a loosely coupled 

GNSS/IMU integration via Inertial Explorer. For each projected 

laser point, we find a closest planar voxel for it. If the distance 

between the projected laser point and the closest planar voxel is 

smaller than 5 m, the laser point, and the closest planar voxel 

construct a laser matching. However, there may exist a lot of 

outliers in these selected matches, which will be handled in the 

solving step (Section 2.4.5). This laser matching means the laser 

point is located on the plane presented by the planar voxel. 

 

2.4 Building Dynamic Networks 

DN is first introduced in (Rouzaud and Skaloud, 2011), it could 

simultaneously model and adjust raw inertial observations with 

optical and GNSS data streams. Compared with the traditional 

Kalman filter basded integration (Zhu et al., 2019) or 

GNSS/IMU aided bundle adjustment (Yuan et al., 2009), DN is 

a rigorous approach for the complex time- and space-dependent 

measurements from different sensors. Two types of equations, 

namely, static-condition equation and dynamic-condition 

equation are involved in the DN. The static-condition equations 

are established using GNSS measurements and optical 

measurements (e.g. from camera, laser scanner, and etc.) by 

back-projecting the mesurements to the time-dependent system 

states. The dynamic-condition equations are established using 

gyroscope and accelerometer measurements by differential the 

adjacent system states. In this manner, all the mesurements are 

took into a tight integration framework. For more details of DN, 

we refer the reader to (Cucci et al., 2017). In this work, we use 

DN to fuse GNSS data, IMU data, and laser matching for the 

laser-IMU boresight estimation.  

 

2.4.1 Unknowns 

The unknows in this problem consist of (1) System state 𝑥(𝑡) 

for each time 𝑡; (2) Boresight angles {𝑅𝑙(𝑖)
𝑏 , 𝑖 = 0, … ,15}. The 

system state 𝑥(𝑡) at time 𝑡 is written by 

 

𝑥(𝑡) = {𝑟𝑏
𝑚(𝑡) , 𝑣𝑏

𝑚(𝑡) , 𝑞𝑏
𝑚(𝑡) , 𝑏𝑔(𝑡) , 𝑏𝑎(𝑡)} (3) 

 

where, 𝑞𝑏
𝑚(𝑡) is a quaternion corresponding to 𝑅𝑏

𝑚(𝑡). 𝑏𝑔(𝑡) 

and 𝑏𝑎(𝑡) are the biases of the gyroscope and the accelerometer, 

respectively. 

 

2.4.2 GNSS positioning and velocity 

The raw GNSS observations are processed using Inertial 

 
4 www.novatel.com/products/software/inertial-explorer 

Explorer software 4  via carrier-phase differential post-

processing. Then the position observation 𝑧𝑝 and velocity 

observation 𝑧𝑣 of the GNSS antenna are obtained. The GNSS 

positioning nominal equation is written by: 

 

𝑟𝑎
𝑚(𝑡) = 𝑟𝑏

𝑚(𝑡) + 𝑅𝑏
𝑚(𝑡) 𝑟𝑎

𝑏 (4) 
 

where, 𝑟𝑎
𝑏 is the level arm vector between the body frame and 

the GNSS antenna. 𝑟𝑎
𝑚(𝑡) is the position of the GNSS antenna. 

GNSS positioning error equation is written by: 

 

𝑧𝑝 + 𝜉𝑝 = 𝑟𝑏
𝑚(𝑡) + 𝑅𝑏

𝑚(𝑡) 𝑟𝑎
𝑏 (5) 

 

where, 𝜉𝑝 is the observation error for position observation 𝑧𝑝. 

The GNSS velocity nominal equation is written by: 

 

𝑣𝑎
𝑚(𝑡) = 𝑣𝑏

𝑚(𝑡) + 𝑟𝑏
𝑚(𝑡) [𝑤𝑚𝑏

𝑏 (𝑡)]
∧

𝑟𝑎
𝑏 (6) 

 

where, 𝑣𝑎
𝑚(𝑡)  is the velocity of the GNSS antenna. GNSS 

velocity error equation is written by: 

 

𝑧𝑣 + 𝜉𝑣 = 𝑣𝑏
𝑚(𝑡) + 𝑟𝑏

𝑚(𝑡) [𝑤𝑚𝑏
𝑏 (𝑡)]

∧
𝑟𝑎

𝑏 (7) 

 

where, 𝜉𝑣 is the observation error for velocity observation 𝑧𝑣. 

 

2.4.3 Angular velocity 

The angular velocity 𝑧𝑤 is observed by the gyroscope at 200 

Hz. The nominal equation for the angular velocity is written by: 

 

Ω𝑖𝑏
𝑏  

= Ω𝑖𝑒
𝑏 + Ω𝑒𝑚

𝑏 + Ω𝑚𝑏
𝑏  

= (𝑅𝑚
𝑒 𝑅𝑏

𝑚(𝑡))𝑇[𝑤𝑖𝑒
𝑒 ]∧𝑅𝑚

𝑒 𝑅𝑏
𝑚(𝑡) + [𝑤𝑚𝑏

𝑏 (𝑡)]
∧
 

(8) 

 

where, Ω𝑖𝑏
𝑏   is the rotation rate of the body frame. 𝑤𝑖𝑒

𝑒   is the 

Earth rotation rate. 𝑅𝑚
𝑒  is the rotation between Earth-centered-

Earth-fixed (ECEF) frame to the mapping frame. Ω𝑖𝑏
𝑏   is the 

angular velocity in the body frame. Then the angular velocity 

error equation is written by: 

 

𝑧𝑤 + 𝜉𝑤 

= [(𝑅𝑚
𝑒 𝑅𝑏

𝑚(𝑡))𝑇[𝑤𝑖𝑒
𝑒 ]∧𝑅𝑚

𝑒 𝑅𝑏
𝑚(𝑡) + [𝑤𝑚𝑏

𝑏 ]
∧

]
∨

+ 𝑏𝑔(𝑡) 

(9) 

 

where, 𝜉𝑤 is the observation error for angular velocity 𝑧𝑤. 
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2.4.4 Specific force 

The specific force 𝑧𝑓 is observed by the accelerator at 200 Hz. 

The nominal equation for the specific force is written by: 

 

𝑓𝑏  

= 𝑅𝑏
𝑚(𝑡)𝑇 (�̇�𝑏

𝑚(𝑡) + 2(𝑅𝑚
𝑒 )𝑇[𝑤𝑖𝑒

𝑒 ]∧𝑅𝑚
𝑒 𝑟𝑏

𝑚(𝑡) + 𝐺𝑚) 
(10) 

 

where, 𝑓𝑏  is the acceleration of the body frame presented in the 

body frame.  �̇�𝑏
𝑚(𝑡)  is the differential value of the velocity 

𝑣𝑏
𝑚(𝑡) . 𝐺𝑚  is the gravity in the mapping frame. Then the 

specific force error equation is written by: 

 

𝑧𝑓 + 𝜉𝑓 

= 𝑅𝑏
𝑚(𝑡)𝑇 (�̇�𝑏

𝑚(𝑡) + 2(𝑅𝑚
𝑒 )𝑇[𝑤𝑖𝑒

𝑒 ]∧𝑅𝑚
𝑒 𝑟𝑏

𝑚(𝑡) + 𝐺𝑚)
+ 𝑏𝑎(𝑡) 

(11) 

 

where, 𝜉𝑓 is the observation error for specific force 𝑧𝑓. 

 

2.4.5 Laser matching 

The laser scanning points are matched with the closest planar 

voxels. For a laser matching between the laser point and a planar 

voxel, the nominal equation is written by: 

 

0

=
𝜃[0:2]

𝑇(𝑅𝑏
𝑚(𝑡) 𝑅𝑙

𝑏𝑅𝑝
𝑙 + 𝑅𝑏

𝑚(𝑡) 𝑟𝑙
𝑏 + 𝑟𝑏

𝑚(𝑡)) + 𝜃[3]

√𝜃[0]
2 + 𝜃[1]

2 + 𝜃[2]
2

 (12) 

 

which means a laser point is located on the plane. Then the error 

equation is written by: 

 

𝜉𝑝𝑙

=
𝜃[0:2]

𝑇(𝑅𝑏
𝑚(𝑡) 𝑅𝑙

𝑏𝑅𝑝
𝑙 + 𝑅𝑏

𝑚(𝑡) 𝑟𝑙
𝑏 + 𝑟𝑏

𝑚(𝑡)) + 𝜃[3]

√𝜃[0]
2 + 𝜃[1]

2 + 𝜃[2]
2

 (13) 

 

where, 𝜉𝑝𝑙 is the plane fitting error obtained from PCA.  

Due to the fact that there are a lot of outliers in the selected 

matches merely according to the distance (5m), we added a 

robust kernel function, Huber loss (Welsch, 1977), to every laser 

matching factor when building the DN. 

2.4.6 Differential equations 

Besides the sensor observation equations listed above, 

differential equations of the system states are also important and 

are listed below. As for angular velocity presented in the 

mapping frame 𝑤𝑚𝑏
𝑏 (𝑡) at time 𝑡, it is obtained as follow: 

 

𝑤𝑚𝑏
𝑏 (𝑡) = [

𝑅𝑏
𝑚(𝑡 −∆𝑡)𝑇 𝑅𝑏

𝑚(𝑡)

∆𝑡
]

∨

 (14) 

 

where ∆𝑡 is the time interval between the two adjacent states 

(0.005s in this study). As for acceleration presented in mapping 

frame �̇�𝑏
𝑚(𝑡) at time 𝑡, it is obtained as follow: 

 

�̇�𝑏
𝑚(𝑡) =

−𝑣𝑏
𝑚(𝑡 − ∆𝑡) + 𝑣𝑏

𝑚(𝑡)

∆𝑡
 (15) 

 

As for velocity presented in mapping frame 𝑣𝑏
𝑚(𝑡) at time 𝑡, it 

is obtained as follow: 

 

𝑣𝑏
𝑚(𝑡) =

−𝑟𝑏
𝑚(𝑡 − ∆𝑡) + 𝑟𝑏

𝑚(𝑡)

∆𝑡
 (16) 

 

2.4.7 Solving 

To summarize, all the unknowns, observations, and differential 

equations involved in the proposed method are included in a DN 

as illustrated in Fig.3. Circles in Fig.3 represent the unknowns to 

be estimated. Rectangles in Fig.3 represents the observations 

detailed above. 

 

Because the DN is the non-linear system, the initialization of the 

system is a key factor for the final result. As for the laser-IMU 

boresight angles, we use the values obtained by the design 

drawings as the initial values. As for the initial values of the 

system states, we first perform a loosely coupled GNSS/IMU 

integration via Inertial Explorer. Then the initial values of the 

system states are set according to the results of the integration 

results. 

 

 

 
Fig.3 Dynamic Networks of the unknowns and observations involved in the proposed method. 
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3. EXPERIMENTAL ANALYSIS AND DISCUSSION 

3.1 Data Collection 

To calibrate the parameters for the low-cost ULS, AT point 

clouds and ULS data were collected in a calibration field in 

Wuhan, China as shown in Fig.4 (a). The calibration field mainly 

consisted of planar structures. We collected images using a UAV, 

DJI Inspire 15, as shown in Fig.4 (d). The flight height was about 

200 m. The forward overlap and the side overlap were all set to 

80% to ensure the data quality. The camera used in this UAV 

system is DJI zenmuse-x36 with a 4096x2160 image resolution. 

The approximate ground resolution of the images was 3 cm. The 

images were then processed using Pix4dmapper7 to generate the 

AT point clouds, which was illustrated in Fig.4 (b).  

 

The ULS point cloud was shown in Fig.4(c). The flight of the 

ULS was planned using DJI Ground Station Pro (GSP)8 . The 

flight height and flight speed of the low-cost ULS were 120 m 

and 5m/s, respectively. The calibration field was collected with 

four strips of ULS. The laser point cloud density was over 150 

points/m2. The laser point clouds rendered by collecting time 

were illustrated in Fig.5. 

 

3.2 Results of planar voxel extraction 

The AT point clouds were used as the reference data. As the AT 

point clouds usually contain a lot of noise as shown in Fig.6 (a), 

only the planar points in the raw AT point clouds were exracted 

and used for the following processing. The voxelization of the 

AT point clouds with planarity was illustrated in Fig.6 (b). The 

voxels, whose planarity is over 0.8, are selected for the following 

processing. 

 
5 www.dji.com/cn/inspire-1-pro-and-raw 
6 www.dji.com/cn/zenmuse-x3 

 
 

7 www.pix4d.com/product/pix4dmapper-photogrammetry-

software 
8 www.dji.com/cn/ground-station-pro 

 
Fig.4 Data collection. (a) Orthophoto of the calibration field. (b) Aerial-triangulated point clouds. (c) ULS point clouds. (d) UAV for 

image collection. (e) Low-cost UAV-LiDAR system: KylinCloud-II. 

 

 
Fig.5 ULS points rendered by collecting time. 
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3.3 Results of calibration 

The proposed method was performed to estimate the laser-IMU 

boresight values for the low-cost ULS system. The initial values 

and the correction values of the laser-IMU boresight were listed 

in Table.1. To evaluate the result of the calibration results, we 

computed the distance between the laser point and the 

corresponding nearest point in the AT point clouds as shown in 

Fig.7. As for the laser point clouds calculated using initial values 

[Fig.7(a)], the average distance is 2.560 m (RMSE = 3.88 m). 

After applying the values obtained by the proposed method, the 

average distance is reduced to 0.08 m (RMSE = 0.99 m). The 

resulted laser point clouds and the AT point clouds were aligned 

accurately as shown in Fig.8, which demonstrated the 

effectiveness of the proposed method. 

 
 

 
 

 

 

Fig.6 Planar voxel extraction from AT point clouds. (a) AT point clouds of the calibration field rendered by image color. 

(b) AT point clouds rendered by planarity for each voxel.  

 

Laser 

ID 

Initial values (deg) Correction values (deg) 

𝛼 𝛽 𝛾 ∆𝛼 ∆𝛽 ∆𝛾 

0 0 180 -105 1.728 0.272 -0.446 

1 0 180 -107 1.651 0.188 -0.706 

2 0 180 -109 1.737 0.116 -0.738 

3 0 180 -111 1.618 0.134 -0.884 

4 0 180 -113 1.743 0.038 -0.783 

5 0 180 -115 1.715 0.111 -0.725 

6 0 180 -117 1.761 0.106 -0.599 

7 0 180 -119 1.645 0.168 -0.787 

8 0 180 -121 1.783 0.143 -0.463 

9 0 180 -123 1.741 0.189 -0.459 

10 0 180 -125 1.738 0.176 -0.343 

11 0 180 -127 1.631 0.203 -0.526 

12 0 180 -129 1.615 0.190 -0.280 

13 0 180 -131 1.437 0.227 -0.385 

14 0 180 -133 1.352 0.223 -0.433 

15 0 180 -135 1.300 0.287 -0.653 

Table 1. Initial laser-IMU boresight angles and the corrections. 

 

 
Fig.7. Distance between resulted laser points and AT points. (a) Laser points calculated using initial values. (b) Laser points 

calculated using values obtained by DN. 
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3.4 Comparison with other methods 

 

The proposed aerial-triangulation aided boresight calibration is 

focusing on the calibration problem of the the low-cost ULS 

equipped with low-end POS. Compared with the exisiting 

calibration methods (Radhika and Tamer, 2018; Ravi et al., 

2018a), which mainly rely on selecting corresponding features 

from different strips, the proposed method needs additional 

control information from the aerial-triangulated images. 

However, the existing methods mainly based on the assumption 

that the error of the trajectory from the high-end POS could be 

ignored. As illustrated in Fig.9, we compared LiDAR point 

clouds geo-referenced using different strategies. The first one, 

Fig.9(a), is direct geo-referencing using calibrated boresight 

parameters and trajectory from low-end GNSS/IMU integration. 

The second one, Fig.9(b), is direct geo-referencing using 

calibrated boresight parameters and trajectory from the DN. 

Obviusly, the data quality of the second one is higher than the 

first one, which is mainly resulted by poor trajectory from the 

low-end POS. Thus, the existing boresight calibration methods 

are not suitable for the low-cost ULS. 

 

4. CONCLUSION 

In this work, we proposed an aerial-triangulation aided boresight 

calibration method to calibrate the laser-IMU boresight 

parameters for a low-cost ULS. Based on the DN framework, the 

proposed method simultaneously estimates the boresight 

parameters and system states (e.g., trajectory) with the reference 

of a pre-processed AT point clouds. The experiment was carried 

out to evaluate the proposed method in a calibration field. The 

calibration results showed that the average distance between the 

laser point clouds and the referenced AT point clouds is reduced 

from 2.560m (RMSE = 3.88m) to 0.08m (RMSE = 0.99m), 

which demonstrated that the accuracy and effectiveness of the 

proposed method. 

 
Fig.8. Accurate alignment between the laser point clouds and AT point clouds. The ULS point cloud is rendered by height. The AT 

point cloud is rendered by true color. (a) Top view of the whole study site. (b), (c), and (d) Details of the alignment. 

 
Fig.9 LiDAR point clouds geo-referenced using different strategies. 

(a) Direct geo-referencing using calibrated boresight parameters 

and trajectory from low-end GNSS/IMU integration. (b) Direct 

geo-referencing using calibrated boresight parameters and 

trajectory from the DN. 
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System calibration is the first and primary step of integrating a 

low-cost ULS. In the future, we will explore the data quality 

refinement of the KylinCloud-II based on the calibration results 

obtained by the proposed method. 
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