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ABSTRACT: 

 

The systematic error analysis of the mobile LiDAR system (MLS) is always a challenging task in real-world situations. This challenge 

is mainly due to the mixture of systematic errors with non-systematic errors. To tackle this issue, in this paper, we introduce a conceptual 

model of an MLS simulator. The main advantage of the simulation-based approach is the full control over the erroneous systematic 

and non-systematic parameters that affect an MLS’s output. In the proposed simulation approach, we only take into account systematic 

errors that affect the simulated georeferenced point cloud. These systematic errors are as follows, POS-LiDAR boresight angles, POS-

LiDAR leverarms, range offset, and scan angle offset. To simplify our analysis, we concentrate only on modeling the effects of 

systematic errors on planar targets and we focus solely on the terrestrial platform. Based on an independent analysis performed on each 

of the eight systematic errors of an MLS, to obtain strong visibility over systematic errors of an MLS, we suggest two planar targets of 

1m x 1m dimensions with vertical and inclined orientations and a five-line pattern for MLS, two parallel and three side-looking 

passages. The proposed configuration generates an ideal input point cloud for the detection of systematic errors (except for the Z-

Leverarm error) and ultimately it will lead to the proper input data for calibration of a terrestrial MLS. To validate our methodology, 

with an in-house assembled terrestrial MLS, we scanned a set of planar targets with three different orientations (vertical, inclined, and 

horizontal). This real-data validation test illustrated that with only two out of three planar targets (vertical and inclined) and with five 

out of six passages (two parallel to the planar targets and three side-looking passages), we will obtain expected visibility over the 

systematic errors of a terrestrial MLS, which approves the results with the simulation data. 

 

 

1. INTRODUCTION 

In the last four decades, mobile LiDAR systems (MLS) have 

evolved from a cutting-edge, expensive, and unreachable 

geomatics technology into a more user-friendly and accessible 

surveying technique for the acquisition of georeferenced point 

clouds. We categorize them based on their platforms as 

terrestrial, marine, and aerial MLS. MLS has enabled geomatics 

professionals to generate millions of georeferenced points 

rapidly and at a lower cost than other surveying techniques. The 

product of these systems can be used in various fields and 

applications, such as 3D city modeling, autonomous vehicle, and 

virtual reality (Vosselman and Maas, 2010; Shan and Toth, 

2009).  

 

An MLS consists of two main components: a position and 

orientation system (POS) and a LiDAR scanner (Ackermann, 

1999; Wehr and Lohr, 1999; Shan and Toth, 2009; Vosselman 

and Maas, 2010). The POS combines a GNSS antenna with an 

inertial measurement unit (IMU). However, the interconnection 

between these components can be affected by systematic and 

non-systematic errors degrading the quality of the final 

georeferenced points.  

 

The main systematic errors are POS-LiDAR boresight angles, 

POS-LiDAR leverarms, range offset, and scan angle offset. 

These errors have a systematic, repetitive, and constant effect on 

the data. The non-systematic errors consist of two categories; 

blunders or gross errors, such as GNSS multipath error, which 

affects the platform trajectory, and random errors such as noise 

originated from the sensors (LiDAR or POS) that affects the 

point cloud. It is relatively difficult to separate these two kinds 
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of errors to study them independently without the influence of one 

on the other. For example, to generate an accurate and precise 

point cloud, we have to acquire trajectory data to be able to 

georeference the points. Thus, the georeferenced points will 

inevitably influence the trajectory errors and as a result, the 

impact of other systematic errors will not be really clear on the 

georeferenced points, and therefore, the analysis of such errors 

will be complex. 

 

In recent years, in the geomatics world, there are two major 

tendencies in MLS simulation-based approach. The first type is a 

radiometric simulation approach based on radiometric and 

spectral interaction of LiDAR photons with environmental 

complex scenes like forest canopy (Brown et al., 2005; Cifuentes 

et al. 2018; Kukko and Hyyppä, 2007). The second type is a 

geometric simulation approach in which a direct georeferencing 

mathematical model constitutes the base of the simulator (Friess, 

2006; Lohani et al., 2006; Kim et al., 2009; Heinz et al., 2015). 

Lohani (2006) introduced simulation of aerial altimetry MLS to 

generate specific terrain surface with objects on top of that 

surface. In Friess (2006), simulated data are used as input data to 

test the proposed boresight angles estimation algorithms without 

any discussion on the details of the simulated data production 

(Skaloud and Lichti, 2006). Kim (2009) proposed a geometric 

model of the LiDAR sensor to simulate aerial mobile LiDAR data 

of a ray-tracing algorithm and to facilitate the assessment of data 

quality and the development of the data processing algorithms. 

Heinz (2015) generates simulated planar targets with a robotic 

simulation toolbox called (V-REP). Most of the geometric-based 

simulation approaches produce simulated data from airborne 

MLS with a nadir look on scenes (Friess, 2006; Kim et al., 2009). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2020-253-2020 | © Authors 2020. CC BY 4.0 License.

 
253



 

Moreover, as we can see, the most popular geometric feature in 

the geometric-based simulation approach is a planar target. 

Indeed, a planar target shows a simple mathematical model and 

can be used to demonstrate the effect of MLS systematic errors 

very well (Filin, 2003). In various MLS systematic error 

estimation approaches, for geometric features of their 

algorithms, they consider in-situ planar targets like building 

roofs and facades (Glennie et al., 2016; Skaloud and Lichti, 

2006; Zeng et al., 2018; Heinz et al., 2015). 

 

In this paper, the objective is to analyze the effects of the 

systematic errors of an MLS on simulated planar targets. For this 

purpose, we introduce in detail, the concept of an MLS simulator 

that generates simulated point clouds on a pre-defined 

hypothetical planar target. The simulator is designed in such a 

way that we can choose to have the impact of each of the 

systematic errors of an MLS of the simulated point cloud or not. 

This ability allows us to study the systematic errors separately 

and independently without the influence of other systematic and 

non-systematic errors. After the generation of various simulated 

point clouds, we present the systematic-error visibility criteria 

that enable us to find out the best configuration in terms of planar 

target orientation and also MLS passages for each systematic 

error separately. 

 

The subsequent sections of the paper are organized as follows. 

In section 2, the conceptual model of the proposed simulator and 

the visibility criteria index are presented. In section 3, the results 

of the analysis of the systematic errors for the simulated data are 

discussed. In section 4, the validation procedure with the real-

data point clouds is presented. Finally, conclusions and future 

works are recommended in section 5. 

 

2. METHODOLOGY 

This section introduces the conceptual model of the simulator 

that enables us to study the effect of systematic errors of an MLS 

in a simulated environment. Figure 1 illustrates this conceptual 

model and different parts of the methodology that generates an 

MLS simulated point cloud. As we can see in Figure 1, two kinds 

of input data enter the direct georeferencing module function: the 

positioning and orientation system (POS) as observations and 

LiDAR range with systematic error effects as the result of 

LiDAR range estimation function. In section 2.1, we describe the 

mathematical model of direct georeferencing and its 

components. 

 

2.1 Direct Georeferencing Mathematical Model 

Equation (1) presents the mathematical model of the direct 

georeferencing of an MLS (Ackermann, 1999; Wehr and Lohr, 

1999; Shan and Toth, 2009; Vosselman and Maas, 2010). The 

output of the Equation (1) model, (𝑋 𝑌 𝑍)𝐿𝐺𝐹
′ , is the 3D 

position vector of the georeferenced point in a relative 

coordinate system such as the Local Geodetic Frame (LGF). 

 

In Equation (1), we have two transformations between three 

frames, from the LiDAR frame to the POS frame and from the 

POS frame to the LGF frame. Here also, for simplifying our 

simulation design, we consider that both the GNSS antenna 

phase center and the IMU gravity center are located at the POS 

reference center. 

 

 

Figure 1 – Flowchart of the methodology for the production 

of a simulated point cloud with inserted systematic errors. 

Red boxes represent the functions. Green boxes are the 

results of the functions. The blue box is for simulated 

observations 
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The reason why we choose to georeference the data in a relative 

coordinate system such as LGF instead of a projection system like 

UTM is that the survey and the area that we consider for the 

analysis of systematic errors such as boresight angles normally 

covers a small area. Thus, for the sake of simplifying calculations, 

we avoid the use of a projection coordinate system and remain in 

a relative local coordinate frame.  

 

The following sections explain each part of the direct 

georeferencing mathematical model by taking into account their 

respective contribution to the proposed simulation design and 

concept. 

 

2.1.1 Trajectory Position vector (𝑷𝑳𝑮𝑭) 

 

In the simulator design, the positions of the trajectory, 
(𝑃𝑥 𝑃𝑦 𝑃𝑧)𝐿𝐺𝐹

′  which is a 3D position vector for each point of 

the trajectory in the Local Geodetic Frame (LGF) system are 

represented by a sequence of points. Figure 2 shows a sample of 

trajectory points (in black) and simulated LiDAR points (in red) 

on a hypothetical planar target. We consider that the trajectory 

follows a straight line at a fixed height from the ground.  
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Figure 2 -Trajectory points (large black points) and LiDAR 

points (small red points) 

 

For trajectory lines parallel to the planar target and the X-Z 

plane, the values of ‘y’ are zero, the values of ‘z’ are constant 

and the values of ‘x’ gradually increase as illustrated in Figure 

2. 

 

2.1.2 Attitude Angles Transformation Matrix (𝑹𝑷𝑶𝑺
𝑳𝑮𝑭 ) 

 

The 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹 transformation matrix consists of three attitudes angles 

roll (r), pitch (p), and heading(h) that form the rotation matrix 

between the gravity center in the POS frame and the reference 

point of the LGF system. In the proposed simulator design, we 

consider that roll and pitch angles are zero, and solely, the 

heading angle determines the orientation of the platform. For 

example, for having round-trip trajectories parallel to the planar 

target, we consider that in the first passage, the heading angle is 

0°, and in the second passage, the heading angle is 180°. In our 

simulation, we can change the heading angle to produce non-

parallel points w.r.t the planar target, for example, 45°, 225°, 

315°, and 135° heading. Figure 3 illustrates the simulated 

trajectory of the six passages w.r.t the planar target.  

 

 

Figure 3 – Simulated trajectory of the six passages w.r.t the 

planar target 

 

In this paper, we consider only these trajectories to simplify the 

analysis of systematic errors. Our objective is to consider a 

simple platform (vehicle) motion scenario and analyze the effect 

of the systematic error on the planar targets based on the 

proposed configurations.  

 

2.1.3 Target Point Position Vector (𝒓𝑳𝒊𝑫𝑨𝑹) 

 

The vector 𝑟𝐿𝑖𝐷𝐴𝑅 describes the position of the target point w.r.t 

the optical center of the LiDAR scanner. This vector consists of 

two parameters, the 𝝆 (range) distance from the optical center of 

the LiDAR scanner to the target point and 𝜶 (scan angle), which 

can be between 0° and 360°. The direct georeferencing 

mathematical model uses the polar coordinates representation 

for the 𝑟𝐿𝑖𝐷𝐴𝑅 vector. In the proposed simulation design, we 

directly insert systematic errors such as the boresight angle, 

leverarm errors, range offset, and scan angle offset, inside the 

range estimation function. In section 2.2, we will describe in 

detail how we insert systematic errors into the range estimation 

function. In Figure 4, a schematic LiDAR scanner in the 

simulation design is illustrated with its corresponding spherical 

representation. 

  

 

 

Figure 4 – Local LiDAR frame with spherical parameters 

representation 

 

2.1.4 POS-LiDAR Leverarm Vector (𝒂𝑳𝒊𝑫𝑨𝑹
𝑷𝑶𝑺 )  

 

In the proposed simulator, to simplify the design, we consider the 

POS-LiDAR leverarm vector, (𝑎𝑥 𝑎𝑦 𝑎𝑧)𝐿𝐺𝐹
′  , as a translation 

vector between the LiDAR frame and the POS frame. Thus, the 

value for the leverarm vector is zero, and we only consider the 

leverarm components to have errors in X, Y, and Z directions.  

 

2.1.5 Boresight Angles Transformation Matrix (𝑹𝑳𝒊𝑫𝑨𝑹
𝑷𝑶𝑺 ) 

 

The 𝑅𝐿𝑖𝐷𝐴𝑅
𝑃𝑂𝑆  transformation matrix consists of three boresight 

angles (dr, dp, dh) between LiDAR and POS frames. These 

imposed boresight angles affect the calculated range of LiDAR 

scanner w.r.t a specific target. Due to the effect of these 

parameters on the range of georeferenced data, we expect that 

generated point clouds with imposed POS-LiDAR boresight 

angles will be placed at a wrong location or may even be placed 

outside the hypothetical planar surface. 

 

2.2 LiDAR Range Estimation Function 

Among the presented direct georeferencing parameters of 

Equation (1), as described in section 2.1.3, the range (𝝆) which is 

one of the parameters of 𝑟𝐿𝑖𝐷𝐴𝑅 vector has a significant role in 

modeling POS-LiDAR systematic errors of an MLS. By taking 

into account the misaligned MLS due to systematic errors such as 

boresight angles and leverarms, we calculate the range of the 

LiDAR point (Morin and El-Sheimy, 2002). To generate a 

simulated point cloud with inserted systematic errors to the 

system, we have to be able to implicitly introduce systematic 

errors such as POS-LiDAR boresight angles, POS-LiDAR 

leverarms, LiDAR range offset, and LiDAR scan angle offset to 

the simulator algorithm and produce data affected by these 

misalignments created by the MLS systematic errors.  

 

In the first step, as shown in Equation (2), we calculate the 

georeferenced point without considering any of the systematic 

errors, 

 

[
𝑋
𝑌
𝑍

]

𝐿𝐺𝐹

= [

𝑃𝑥

𝑃𝑦

𝑃𝑧

]

𝐿𝐺𝐹

+ 𝑅𝑃𝑂𝑆
𝐿𝐺𝐹 × (𝝆 × [

0
cos (𝛼)
sin (𝛼)

]) (2) 

 

In a second step, we introduce a function that calculates explicitly 

the range (𝝆) of the emitted point from an MLS with imposed 

systematic errors. The concept of the MLS systematic errors is 

exactly like in a real-world situation where we do not have any a 
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priori knowledge about these systematic errors. Hence, we can 

generate misaligned points by adding systematic errors to 

boresight angles, leverarm vectors, range, and scan angle. After 

georeferencing the point cloud, we can observe a data 

misalignment coming from these POS-LiDAR systematic errors. 

Figure 5 illustrates the procedure to calculate the LiDAR range 

in the simulation model. 

 

 

Figure 5 – Flowchart of the range estimation function 

 

As mentioned before, the geometric feature that we use in our 

analysis is a planar target. Thus, we study how systematic errors 

of an MLS impact points constrained to lie over a planar target. 

Equation (3) represents the mathematical model for the planar 

target. 

 

𝐴𝑋𝐿𝐺𝐹 + 𝐵𝑌𝐿𝐺𝐹 + 𝐶𝑍𝐿𝐺𝐹 + 𝐷 = 0 (3) 

 

In Equation (3), the (𝑋𝐿𝐺𝐹 , 𝑌𝐿𝐺𝐹 , 𝑍𝐿𝐺𝐹) are the coordinates of the 

georeferenced point obtained with Equation (1). The plane 

parameters (𝐴, 𝐵, 𝐶, 𝐷) define the hypothetical planar target 

where parameters 𝐴, 𝐵, and 𝐶 are the normalized (unit length) 

normal vector of the planar target and the parameter 𝐷 is the 

negative orthogonal distance of the planar target w.r.t the origin 

of the LGF coordinate system (Skaloud and Lichti, 2006). 

 

Thus, each georeferenced point generated by the simulator is 

constrained to lie on the hypothetical planar target. Based on this 

assumption, we calculate the range of each point defined as the 

distance between the mobile LiDAR system and the planar 

target. This range variable is part of the 𝑟𝐿𝑖𝐷𝐴𝑅 vector of the 

direct georeferencing model in Equation (1). 

 

To define the explicit function for range based on the 

georeferencing mathematical model, we use the symbolic 

language. In this paper, to generate the explicit function of the 

range, we have used the MATLAB symbolic toolbox. 

 

Thus, the explicit range function will be a function of all input 

parameters described in Figure 5 (blue cases), as follows: 

 

• Position and Orientation System (POS) parameters 

• Inserted systematic errors: POS-LiDAR boresight 

angles, leverarm vectors, Range offset and Scan 

angle offset 

• Planar target constraint 

2.3 Point to Plane Belonging Function  

One of the crucial parts of the simulator design is to verify if a 

georeferenced point belongs to a planar surface or not. Using a 

mathematical model that defines an infinite plane, we first have 

to define four corner points of our planar target w.r.t. the system 

frame. In our proposed method as illustrated in Figure 6, if a point 

is inside a rectangle, the summation of the areas of the four 

triangles that the point makes with the four vertices of the 

rectangle must be equal to the area of the rectangle (Toma, 2012). 

  

 

Figure 6 – Point M inside the rectangle M1-M2-M3-M4 

 

Thus, the point “M” belongs to the rectangle “𝑀1 𝑀2 𝑀3 𝑀4" 

because the summation of the areas of the following four 

triangles: ∆𝑀1 𝑀 𝑀2, ∆𝑀2 𝑀 𝑀3, ∆𝑀3 𝑀 𝑀4 and ∆𝑀4 𝑀 𝑀1 

is equal to the area of the rectangle "𝑀1 𝑀2 𝑀3 𝑀4". If the point 

is outside the rectangle, the above summation will produce a 

larger value than the area of the rectangle, and the algorithm will 

reject it. 

 

2.4 Systematic-Error Visibility Criteria Function 

Until now, we explained how to generate a point cloud, which lies 

on a planar target using an MLS with inserted systematic errors. 

With this capability, we can produce various simulated point 

clouds with their specific configurations. We define the term 

“Configuration” as the setup that leads to the final point cloud 

which is as follows, 

 

1. The orientation of the planar target 

2. The passage of the MLS  

3. The dimension of the planar target 

4. The height difference between MLS and planar target 

In this research, we consider parameters (1) and (2) of the 

configuration as variables and parameters (3) and (4) as constants.  

 

Based on various configurations, we will have simulated point 

clouds on the planar target. To quantify the impact of systematic 

errors on the plane’s point cloud, we introduce two types of 

“systematic-error visibility criteria”. Type I, which makes a raw 

selection from the configurations, is a quantitative value based on 

two parameters, planarity and centroidal distance, and Type II, 

which makes a fine selection from the retained configurations, 

consists of two parameters; angular deviation and signed 

orthogonal distance. 

 

2.4.1 Type I – Planarity and Centroidal Distance 

 

As mentioned beforehand, Type (I) systematic-error visibility 

criterion consists of two parameters, planarity and centroidal 

distance which makes a raw selection from all the available 

configurations. We consider the eigenvalues of the covariance 

matrix of the simulated point cloud to calculate the planarity 

parameters (West et al., 2004; Pauly et al., 2003; Blomley et al., 

2016; Gross et al., 2007). On the other hand, the centroidal 

distance calculates the distance between the centroid of the 
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hypothetical planar target and the centroid of the simulated 

planar target and is considered as a dispersion indicator. The 

combination of these two parameters into one quantitative value 

gives us the Type (I) systematic-error visibility criteria, as we 

can see in Equation (4), 

 

𝑇𝑦𝑝𝑒 𝐼 = 𝑃𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 × (1 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑎𝑙𝐷𝑖𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  (4) 

 

In Equation 4, the Centroidal_Dist is normalized between [0, 1]. 

The more the point cloud geometric form is near a plane shape 

(planarity) and at the same time it is near the hypothetical plane 

(𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑎𝑙𝐷𝑖𝑠𝑡 near zero), the more the value of Type (I) criteria 

is near 1. In our raw analysis, these selected configurations (Type 

(I) criteria near 1) will be kept for a finer selection. In Figure 7, 

two samples for strong (near 1) and weak (near 0) Type (I) 

systematic-error visibility criterion are introduced.  

 

 
 

(a) (b) 

Figure 7 – (a) Strong configuration Type (I) systematic-error 

visibility criterion (b) Weak configuration Type (I) 

systematic-error visibility criterion  

 

As we can see schematically in Figure 7(a), the Type (I) 

systematic-error visibility criterion is strong. Thus, we keep this 

configuration for further analysis with Type (II) criteria. On the 

other hand, in Figure 7(b), the Type (I) systematic-error visibility 

criterion is weak and we eliminate this configuration. 

 

2.4.2 Type II – Angular Deviation and Signed Orthogonal 

Distance 

 

In this section, we consider Type (II) systematic-error visibility 

criteria, which make a finer selection from the retained 

configurations. The normal vector between the planar surfaces is 

a very strong and simple indicator that shows the angular 

deviation between the hypothetical plane and the plane 

generated by the simulator. The signed orthogonal distance also 

shows the shortest distance between the centroid of the simulated 

planar surface point cloud and the hypothetical planar target. As 

shown in Figure 8, a systematic error of the roll boresight angle 

in parallel round-trip passages w.r.t the planar target has an 

impact on the generated point clouds when compared to the 

hypothetical planar surface in terms of (a) angular deviation and 

(b) orthogonal distance drift. For Type (II) criteria, we have to 

make a comparison between various passages and then choose 

the configuration which has a bigger angular deviation 

difference and also higher orthogonal distance. 

 

Thus, Type (I) and Type (II) systematic-error visibility criteria 

make a raw and a fine selection respectively from configurations 

that ultimately generate the simulated point clouds. 

Configurations that there Type (I) and Type (II) criteria value 

attain the expected threshold will be considered as an ideal input 

for the detection of systematic errors and consequently chosen 

for calibration of an MLS. In the next section, these two types of 

systematic-error visibility criteria will be used as an indicator to 

select the best planar target configurations.  

  

(a) (b) 

Figure 8 – Type (II) systematic-error visibility criteria for roll 

systematic error analysis (a) angular deviation (b) signed 

orthogonal distance  

 

3. RESULTS AND DISCUSSIONS 

In the analysis of systematic errors of an MLS, the objective is to 

find out the best configuration (which in this paper is considered 

the combination of Plane orientation and MLS passage) to obtain 

Type (I) and (II) systematic-error visibility criteria for each of the 

eight MLS systematic errors in the expected threshold. In the 

terrestrial MLS simulator, we consider that the height of the 

system is fixed and is ‘h = 2.5 m’ from the ground and the planar 

target is on the ground at a lower height (less than h). We consider 

19 orientations of the planar target w.r.t the terrestrial MLS 

simulator which varies between -90o and 90o with 10o intervals as 

illustrated in Figure 9. 

 
Figure 9 – All the 19 planar target orientations versus a 

terrestrial MLS  

 

3.1 Line Pattern 

As previously shown in Figure 3, the line pattern consists of six 

passages with 0°, 180°, 45°, 225°, 315°, and 135° azimuth 

(heading) directions. 

 

3.2 Systematic-Error Visibility Criteria Analysis 

In this section, we analyze each of the eight systematic errors. 

With the Type (I) criteria analysis, we keep only the 

configurations within the expected threshold of [0.8, 1]. This 

expected threshold includes the configurations that produce point 

clouds with acceptable planar shape (planarity value near 1) and 

with proximity to the hypothetical plane (the centroidal distance 

around 0). Once we have selected the configurations with Type 

(I) criterion, we then use the Type (II) criteria, which will make a 

finer selection from retained configurations and will result in a 

single plane’s orientation with a combination of all the necessary 

MLS passages. The result of Type (II) criteria of each terrestrial 

MLS systematic error represents the best possible configuration 

to generate point cloud with the best visibility for that specific 

error. In the following, a complete analysis is performed on the 

pitch systematic error. Based on the same procedure, we analyze 

the other seven MLS systematic errors and we summarize the best 

configurations for each of them. 
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To demonstrate the procedure, we take into account the impact 

of the pitch boresight angle of 2° inserted to the MLS on the 

hypothetical planar target. Figure 10 presents the values for the 

Type (I) criterion and Figure 11 the values for the Type (II) 

criteria for all the six MLS passages and the 19 plane 

orientations. The blue box in these two figures is considered the 

plane’s orientation that the Type (I) and Type (II) criteria are 

within the expected threshold. 

 

 
Passage 0° 180° 45° 225° 315° 135° 

Color       
 

 

Figure 10 – Pitch boresight angle Type (I) systematic-error 

visibility criterion (vertical axis in meter) of all the possible 

orientations (horizontal axis in degree) 

 

Based on the Type (I) criterion, Table 1 represents all the 

possible configurations that result in the expected visibility of 

the pitch boresight angle systematic error. 

 

Configurations 

MLS 

Passage 

Possibilities 

(0°, 45°, 225°) (0°, 135°, 225°) 

(0°, 45°, 315°) (0°, 135°, 315°) 

(180°, 45°, 225°) (180°, 135°, 225°) 

(180°, 45°, 315°) (180°, 135°, 315°) 

 From To 

Possible 

Plane 

Orientations 

-90° 20° 

 

Table 1 – Possible configurations for pitch boresight angle 

systematic error  

 

Based on the possible configurations presented in Table 1, we 

perform the fine selection with the Type (II) criteria. As shown 

in Figure 11, the best visibility configuration for the pitch 

boresight angle systematic error is one of the eight passage 

possibilities introduced in Table 1, like (180° - Orange color, 

135° - Green color, 315° - Light blue color) passages and 0° 

orientation (vertical plane). This configuration produces the 

maximum value of both the signed orthogonal distance and the 

angular deviation when using a vertical plane (0° orientation) 

which accordingly results in better visibility of pitch boresight 

angle systematic error.   

 

Table 2 summarizes the best configurations for all the eight 

systematic errors. 

 

Systematic 

Error 
Value 

Best Configuration 

MLS Passages 
Plane 

Orientation 

Roll 2° (0°, 180°, 45°, 225°) -40° 

Pitch 2° (0°, 45°, 225°) 0° 

Heading 2° (0°, 45°, 315°) 0° 

X-Leverarm 10 cm (0°, 45°, 225°) 0° 

Y-Leverarm 10 cm (0°, 180°, 45°, 225°) 0° 

Z-Leverarm 10 cm - - 

Range Offset 10 cm (180°, 225°) -60° 

Scan Angle 

Offset 
2° (0°, 180°, 45°, 225°) -50° 

 

Table 2 – Best configurations for all systematic errors 

 

While analysing all MLS systematic errors, we recognized that 

there is a correlation between the scan angle offset error and the 

roll boresight angle systematic error. This is due to the same 

rotational effect of two systematic errors on the planar target. 

Also, we did not suggest any possible configuration for the Z-

Leverarm systematic error. Due to the nature of the Z-Leverarm 

error, which is a translation and shift in the Z direction in a similar 

fashion for all the points of all passages. Thus, it is impossible to 

observe the Z-Leverarm error with our actual planar target 

configurations (Leslar et al. 2014; Skaloud and Lichti, 2006). 

Therefore, we suggest the measurement of the Z-Leverarm with 

precise and accurate technique, like the total station method, then 

enter the measured value in the georeferencing model like a 

constant. 

 

 
 

(a) 

 
(b) 

Passage 0° 180° 45° 225° 315° 135° 

Color       
 

 

Figure 11 – Pitch boresight angle systematic error Type (II) 

criteria (a) Signed orthogonal distance (vertical axis in 

meter) and (b) Angular deviation (vertical axis in degree) of 

possible orientations (horizontal axis in degree) 

 

Based on our analysis results, the majority of systematic errors 

can be assessed with a planar target of 0° orientations, which 

represents a vertical plane and the remaining systematic errors 

with an inclined planar target between -60° and -40°. For the line 

pattern passages, we have to choose the combination of necessary 

passages that covers all the systematic errors. Table 3 is our 
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suggestion for the best configuration (the combination of planes 

orientations and MLS passages) to obtain expected visibility for 

all the terrestrial MLS systematic errors. 

 

Best Configurations 

MLS Passage 

Possibilities 

(1) (0°, 180°, 45°, 225°, 135°) 

(2) (0°, 180°, 45°, 225°, 315°) 

(3) (0°, 180°, 315°, 135°, 45°) 

(4) (0°, 180°, 315°, 135°, 225°) 

 

Possible Plane 

Orientations 

1 inclined plane (between -40° and -60°) 

and  

1 vertical plane (0°) 

 

Table 3 – Best configurations for all systematic errors 

 

4. EXPERIMENTS AND VALIDATION 

To validate the proposed methodology, we implemented a real-

world test with a mobile LiDAR system composed of a LiDAR 

scanner (Z+F 9012 profiler), an IMU (iXBlue ATLANS-C) and 

GNSS antenna (Septentrio) and a structure made of three planar 

targets as seen in Figure 12. 

 

 
(a) 

 
(b) 

Figure 12 – (a) Terrestrial MLS for validation test (b) 

Location of the validation test on OpenStreetMap with the 

line pattern and the location of the three planar targets 

 

The validation test was carried out on a parking lot where we 

installed the three planar (horizontal, vertical, and inclined) 

target assembly and collected data by following our proposed 

six-line pattern.  The dimension of each planar target is 1m x 1m. 

To be able to compare the results of this real-data validation test 

with those of the simulated data from section 3, we consider that 

the vertical planar target has an orientation between [-10°, 10°], 

the inclined planar target has an orientation between [-60°, -40°], 

and orientation between [70°, 90°] is considered a horizontal 

target. Also, we tried to follow the same line pattern presented in 

Figure 3 for the simulation. Based on the Type (I) criterion 

analysis, five out of six passages were within the accepted 

threshold of 0.8. Only passage P4, one of the side-looking 

passages, was removed because its Type (I) value was below the 

0.8 thresholds. On the other hand, as the horizontal plane does not 

satisfy the Type (I) criterion for most of the passages, it was not 

used. Thus, we finally consider only the vertical and inclined 

planar targets and the five passages (P1, P2, P3, P5, and P6) in 

our experiment. 

 

In the next step, we analyze the Type (II) criteria based on these 

selected configurations. For the orthogonal distance criteria with 

the vertical plane, the difference between the maximum value, 

obtained in passage P6 and the minimum value, obtained in 

passage P3 is 9.4 mm.  With the inclined plane, the difference 

between the maximum value, obtained in passage P3 and the 

minimum value obtained in passage P2 is 49.6 mm. Thus, the 

inclined plane generates point clouds with the highest orthogonal 

distances, which demonstrates strong visibility for some of the 

systematic errors of the selected MLS. Based on the angular 

distance criteria, for the vertical plane, the difference between the 

maximum (P3) and minimum (P2) is 1.0892° and for the inclined 

plane, the difference between the maximum (P5) and the 

minimum (P3) is 0.3863°. Thus, the vertical plane generates point 

clouds with the highest angular deviations, which demonstrates 

strong visibility for some of the systematic errors of the selected 

MLS. We conclude that both planar targets (vertical and inclined) 

are essential to satisfy the Type (II) criteria and as a result to 

obtain strong visibility of all systematic errors of a terrestrial 

MLS.  

 

Even though we tried as much as we could to reproduce in the 

real-data validation test the same configurations recommended in 

the simulation analysis, there are still significant differences 

between the real and simulation configurations which leads to 

different values for Type (II) criteria, especially for the 

orthogonal distance. However, these configurations produce 

point cloud data with the necessary deviation and drift to generate 

strong visibility of all systematic errors of a mobile LiDAR 

system. 

 

5. CONCLUSIONS AND FUTURE WORKS 

In this paper, we analyze eight systematic errors of a terrestrial 

MLS with a simulation approach. We introduced the concept, 

design, and methodology of the MLS simulator. The advantage 

of adopting this simulation approach is to be able to study each 

systematic error independent from other errors (e.g., trajectory-

based errors and sensor noises). On the other hand, the simulator 

can generate point clouds on hypothetical planar targets with 

various configurations without any limitation. The term 

configuration in this paper mainly refers to the orientation of the 

planar target and the set of passages, known as a line pattern 

followed by an MLS. To detect the best configuration of the 

systematic errors of an MLS, we introduced two types of 

systematic-error visibility criteria, which implement a raw and a 

fine selection on the existing configurations. The results show 

that to have strong visibility on the systematic errors of a 

terrestrial MLS, we need to have two planar targets of 1m x 1m 

size with vertical and inclined orientations combine with a five 

passages line pattern. This result was confirmed with a real data 

acquisition test. The proposed configuration in this research will 

lead to relevant information for the calibration of a terrestrial 

MLS. Furthermore, the approach adopted in this paper shows that 

we can study the behavior (here, systematic errors) of a mobile 

LiDAR system (here, a terrestrial MLS), merely with a 
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conceptual mathematical model, without the need to invest in 

expensive and time-consuming field tests.  

 

In future works, we will consider more variables for the 

configuration parameters like the dimension of planar targets 

and also various platforms (aerial or marine) with multiple 

motion scenarios (position and orientation). Consequently, we 

will generate a lot of more possible configurations that will not 

be easy to analyze by using the approach proposed in this paper. 

Thus, we will adopt machine learning techniques to optimize the 

selection of the best configuration with strong visibility of the 

systematic errors of a mobile LiDAR system.  
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