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ABSTRACT: 

The application of UAV-based aerial imagery has advanced exponentially in the past two decades. This can be attributed to UAV 

operational flexibility, ultra-high spatial resolution, inexpensiveness, and UAV-based sensors enhancement. Nonetheless, the 

application of multitemporal series of multispectral UAV imagery still suffers significant misregistration errors, and therefore 

becoming a concern for applications such as precision agriculture. Direct image georeferencing and co-registration is commonly done 

using ground control points; this is usually costly and time consuming. This research proposes a novel approach for automatic co-

registration of multitemporal UAV imagery using intensity-based keypoints. The Speeded Up Robust Features (SURF), Binary Robust 
Invariant Scalable Keypoints (BRISK), Maximally Stable Extremal Regions (MSER) and KAZE algorithms, were tested and parameters 
optimized. Image matching performance of these algorithms informed the decision to pursue further experiments with only SURF and 
KAZE. Optimally parametrized SURF and KAZE algorithms obtained co-registration accuracies of 0.1 and 0.3 pixels for intra-epoch 
and inter-epoch images respectively. To obtain better intra-epoch co-registration accuracy, collective band processing is advised 
whereas one-to-one matching strategy is recommended for inter-epoch co-registration. The results were tested using a maize crop 
monitoring case and the; comparison of spectral response of vegetation between the UAV sensors, Parrot Sequoia and Micro MCA 
was performed. Due to the missing incidence sensor, spectral and radiometric calibration of Micro MCA imagery is observed to be key 
in achieving optimal response. Also, the cameras have different specifications and thus differ in the quality of their respective 
photogrammetric outputs.

1. INTRODUCTION

Recently, the application of drone technology in crop monitoring 

has become rife. Nex & Remondino (2014) review the use of 

unmanned aerial vehicles for 3D mapping applications, and 

highlights agriculture as a domain that consumes digital surface 

models (DSM) and orthoimages to extract useful information on 

crop status. In addition, the ultra-high multispectral and 

multitemporal resolution of UAV imagery is undoubtedly an 

enabler of Precision Agriculture to obtain actionable crop 

properties (Elarab et al. 2015).  

UAVs are embraced across domains because they are flexible low-

altitude Remote Sensing (RS) platforms. Thus, they are not 

affected by cloud occlusion, and can achieve ground sampling 

distances (GSD) of up to 3cm or less depending on the flight 

parameters and the aim of the acquisition (Nex & Remondino, 

2014). This is still ten times higher the spatial resolution of the best 

VHR satellite imagery. In addition, UAVs provide an inexpensive 

alternative to satellites and other platforms for aerial image 

acquisition; they increasingly offer tools and inspire innovations 

that seal the gap between terrestrial and aerial (high-altitude) 

platforms (Nex et al. 2015).  

Conversely, UAVs face some drawbacks: regulatory constraints on 

the application of drones and licensing of drone pilots vary from 

country to country; limited areal coverage due to the battery 

endurance per flight; the instability of lightweight platforms; 

atmospheric elements such as strong winds and rain affect drone 

operations; the payload limit; image co-registration complexities, 

and difficulties in radiometric and geometric corrections (Freeman 

et al. 2015;Yang et al. 2017).  

Accurate image co-registration is vital for reliable change detection 

assessment and accurate comparative analysis of crop phenology 

(Fytsilis et al., 2016; Tilly et al., 2014). Several models and 

algorithms that automate the co-registration process have been 

proposed. However, multispectral cameras with several lenses still 

suffer misregistration setbacks as demonstrated in related works of 

Jhan et al. (2017) and Rey et al. (2013). This is partly due to the 

fact that the technology space is dynamic and new camera sensors 

with different specifications and more abilities are continuously 

being engineered.  

On the other hand, co-registration of multitemporal series is vital 

for reliable spatiotemporal analysis of crop’s spectral properties.  

Misclassification of crop growth per pixel, vegetation index 

extraction errors, interpolation errors in values between available 

observations, and harvest index variation prediction are some of 

the inherent errors due to misregistration (Lobell, 2013). 

The aim of this study was to provide a novel approach for accurate 

UAV-based multispectral and multitemporal monitoring of crops 

without repeated establishment of Ground Control Points (GCPs) 

which is laborious during photogrammetric processing. Usually, 

GCPs are meant to minimize systematic errors and deformations 

in images, stabilize bundle solutions, and determine correct 3D 

reconstruction (Nex & Remondino, 2014). However, the lack of 

GCPs did not hamper this study since the acquisition of the first 

epoch was assumed to be the reference epoch, and registration 

assessments of subsequent acquisitions were based on the first 

epoch. 

2. RELATED WORKS

Misregistration of UAV multispectral and multitemporal imagery 

has attracted the need of researchers to propose and develop novel 

methodologies to resolve this problem.  Kelcey & Lucieer (2012) 

suggest procedures to calibrate the six bands Mini MCA camera 

including radiometric correction, noise reduction and affine 

transformation for simultaneous image registration and correction 

of lens distortion. Turner et al. (2014) develop a semi-automated 

workflow for accurate spatial co-registration of a visible camera, 

six – band Micro MCA multispectral sensor, and a thermal infrared 

camera. Using the Scale Invariant Feature Transform (SIFT), a 

mean accuracy of 1.78pixels is achieved. This was deemed 

sufficient for monitoring of Antarctic moss beds.  

Jhan et al. (2016) present a modified projective transformation 

model based on the principles of plane-to-plane projection to 

undertake accurate band-to-band registration (BBR) of RGB and 

Mini MCA 12 multispectral imagery. It is noted that feature 

matching for narrow band multispectral and hyperspectral sensor 

with no overlapping spectral range is difficult. An accuracy of 0.33 

pixels is achieved for the proposed BBR method. However, co-

registration errors of less 0.6 pixels was obtained between Mini 

MCA reference band and the RGB ortho-images. 
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A novel approach to automate the co-registration of UAV-based 

multi-temporal RGB image blocks without the use of GCPs is 

presented by Aicardi et al., (2016). The first acquisition is chosen 

as the reference dataset. The orientation parameters of the anchor 

images are fixed; this constrains the bundle block adjustment of the 

slave images to be aligned with the reference image. An array of 

tests to assess both manual and automatic registration approaches 

for the selected anchor images provides reliable results, which are 

quite comparable to a GCP-based strategy.  

Onyango et. al. (2017) use keypoint descriptors to accurately 

estimate orientation parameters of UAV images through co-

registration of oblique imagery. Using AKAZE, brute force is 

implemented to find putative correspondences and Lowe’s ratio 

test used to discard wrong matches. Multiple homographies are 

computed using the putative correspondences to filter out 

remaining mismatches. 

Recently, Banerjee, Raval, & Cullen (2018) optimize feature 

descriptors techniques to align UAV-hyperspectral images in a 

spectrally complex environment. It is observed that for band-to-

band alignment, keypoint descriptors are inclined to spectral order 

vis a vis temporal order. In addition to spatial invariance, spectrally 

invariant descriptors will go a long way in improving the efficacy 

of the band-to-band alignment process. 

Albeit novel and significant application-wise, the related works fail 

to offer solutions for band-to-band co-registration of multispectral 

UAV-imagery. This research therefore proposes an accurate sub-

pixel co-registration approach for both intra-epoch and inter-epoch 

acquisitions using intensity-features-based algorithms invariant to 

scale, rotation, illumination and viewpoints such as SURF (Bay, 

Tuytelaars, & Van Gool, 2006), KAZE (Alcantarilla, Bartoli, & 

Davison, 2012), BRISK (Leutenegger, Chli, & Siegwart, 2011), 

and MSER (Matas, Chum, Urban, & Pajdla, 2004). 

3. EQUIPMENT AND DATA

This research seeks to accurately co-register and assess the data 

quality of the images acquired by the Micro-MCA Tetracam 

camera mounted on the Matrice 600 UAV, and the Parrot 

Sequoia camera mounted on the Phantom 4 UAV.  

3.1 The Parrot Sequoia and Micro MCA 6 Tetracam 

The Parrot Sequoia (PS) multispectral sensor captures the 

electromagnetic spectrum in four separate parts: green, red, red-

edge and Near Infrared (NIR). It incorporates the Global 

Positioning System (GPS), Inertial Measurement Unit (IMU) and 

magnetometer thus increased accuracy of data capture. The 

Parrot Sequoia also integrates an irradiance sensor to 

continuously record light conditions. Figure 1 shows the Parrot 

Sequoia camera system. 

Fig 1. Parrot Sequoia  

The micro MCA multispectral camera has six separate cameras. 

Each camera is synchronized with the other cameras so that each 

can capture the same scene at the exact same time of exposure. 

During each exposure instant, six separate channels of visible or 

NIR radiation move through each lens and filter to form separate 

monochromatic images on each sensor.  

Figure 2 shows the Micro MCA Tetracam and an illustration of 

the architecture of each spectral sensor. 

Fig 2. Micro MCA Tetracam 

The spectral wavelength range of each UAV is shown in table 1. 

Band Parrot Sequoia Micro MCA 

Blue - 410 - 490nm 

Green 530 - 570nm 510 - 590nm 

Red 640 - 680nm 630 - 710nm 

Red - 660 -740nm 

Red Edge  730 - 740nm 730 -740nm 

Near Infrared 770 - 810nm 760 - 800nm 

Table 1. Wavelength specifications of the UAV sensors 

Further comparison of Parrot Sequoia and Micro MCA is 

presented in table 2.  

 
Table 2. Specifications of the Parrot Sequoia and Micro MCA 

The Parrot Sequoia was mounted on DJI Phantom 3 Pro, and the 

Micro MCA on the DJI Matrice 600 as shown in Figure 3 below. 

The two sensors were mounted on different UAV platforms due 

to their physical properties of size and weight, and the complexity 

of sensor and UAV integration in the case of the Micro MCA.  

Figure 3. Showing sensors mounted on respective UAVs 

3.2 Image Acquisition and Data properties 

The maize field (approximately 25 acres) is located in the 

periphery of Gronau city, Germany (52° 10’N, 6° 55’E). Image 

acquisition was done in three time-steps for the Parrot Sequoia and 

only one acquisition for Micro MCA as shown in table 3. 

Date Camera Flying 

Height 

Forward 

Overlap 

Side 

Overlap 

GSD 

08-08-2017 Sequoia 50m 80% 40% 5.01cm 

70m 80% 40% 6.84cm 

11-08-2017 Sequoia 70m 80% 40% 6.69cm 

19-09-2017 Sequoia 50m 80% 40% 5.02cm 

Micro MCA 100m 80% 40% 4.64cm 

Table 3. Image acquisition details and image properties 

Specifications 

Parrot Sequoia Micro MCA 

RGB Multispectral Multispectral 

Lenses 1 4 6 

Focal Length  4.88mm 3.98mm 9.6mm 

Spectral Range 400 – 700nm 530 – 810nm 450 – 800nm 

Pixel Size  1.34μm 3.75μm 5.2 μm 

Resolution (Pixels) 4608 x 3456 1280 x 960 1280 x 1024 

FOV (H° ×V°) (m) 64.6 × 50.8 62.2 × 48.7 84 x 67 

Camera Weight 135g 530g 

Shutter type Global Rolling 

Camera Size (cm) 6 × 4 × 3 12 x 8 x 7 
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4. METHODOLOGY

This section gives a detailed description of the approaches taken 

and methods used to realize the main aim of co-registration of 

multitemporal series of multispectral UAV imagery. The general 

overview of methods, processes, decisions, intermediate and 

final outputs are captured in the flowchart in Figure 4. 

4.1 Photogrammetric Workflow 

Pix4D software was used for most of the photogrammetric 

workflow involving the Parrot Sequoia images. Aligning the 

Micro MCA images was done using Tetracam’s Pixel Wrench II 

(PW2), based on a calibration file that contains the relative 

orientation between the master and slave bands since the Micro 

MCA images are captured in a RAW file format. The RAW 

format images were converted to multipage TIFs using PW2 and 

subsequently processed in Agisoft Photoscan due to its 

aggressiveness to correct the rolling shutter effect. 

Initial photogrammetric processing includes keypoints detection 

and matching of single images; estimation of interior and exterior 

orientation, aerial triangulation, bundle block adjustment, tie 

point generation, as well as georeferencing. Dense points 

sufficient enough to estimate planes and geometry of the image 

scene are then generated. The point clouds are used as an input to 

generate a Digital Surface Model (DSM), which is thereafter also 

used as an input to generate orthophoto bands for the whole 

scene. Each band therefore had its independent orthophoto.  

Figure 4. Flowchart showing an overview of the methodology 

4.2 Orthophoto Image Co-registration 

4.2.1 Feature Detection: The identification of corresponding 

keypoints between successive overlapping images is an integral 

part of image coregistration. Desirable keypoints must be devoid 

of noise, blurs, illumination variances and geometric differences. 

Experimentation revealed that for SURF, the higher the strongest 

feature threshold, MetricThreshold, the lesser the blobs, and the 

higher the octaves the larger the detected blobs.  

For BRISK, the minimum contrast, MinContrast’, specifies the 

minimum intensity difference between a region and its immediate 

surrounding. It is a scalar in the range of zero (0) and one (1). An 

increase in this value would lead to a decrease in the number of 

blobs detected. Similarly, the minimum quality, ‘MinQuality’, 

ranges between zero (0) and one (1); it denotes the minimum 

accepted quality of detected regions. When the value tends 

towards one (1) erroneous blobs are removed.  

In MSER, the size of the region is a two-element vector denoting 

the minimum and maximum areas of regions in pixels to be 

allowed in the detection process. At varying intensity thresholds, 

the maximum area variation between extremal regions is 

specified by a positive scalar between 0.1 to 1. An increase in this 

value results in detection of more external regions which may be 

less stable.  

Finally, for KAZE, the local extrema is a function of the Hessian 

threshold, which is specified as a scalar greater than or equal to 

zero (0). An increase in this value excludes less significant local 

extrema. The multiscale detection factor and the scale levels are 

scalars in the range of 3 to 10. Larger features are detected by 

increasing the multiscale detection factor whereas smoother scale 

changes and additional intermediate scales between octaves are 

realized by increasing the scale levels. 

4.2.2 Feature Description: Feature description is a function 

of the neighbouring pixels; it is done by extracting the intensity 

gradients of the neighbouring pixels and stored as a vector of 

numbers describing the center pixel. The vector size of the 

neighbourhood can vary between 64 and 128 pixels, and the 

descriptor can be considered rotation invariant if orientation of 

the feature vector is computed.  

4.2.3 Feature Matching: To select strong matches, a 

matching threshold is specified according to different metrics 

(e.g. L1 or L2 norm); it represents a percent of the distance from 

a perfect match. Two feature vectors are a match when the 

distance between them is less than the set threshold. The higher 

the matching threshold, the more matches obtained (not 

necessarily ‘good’ matches).  

4.2.4 Outlier Removal and Transformation matrix 

In this study, the outliers in matched points were excluded using 

the M-estimator Sample Consensus (MSAC), which is a variant 

of the RANSAC (Torr & Zisserman, 2000). RANSAC suffers a 

setback; it is sensitive to the threshold that defines inliers and 

outlier. A very large threshold tends to rank all the hypotheses 

equally and qualify them as good for the fitted model. 

Conversely, a very small threshold tends to be unstable in 

estimating parameters. The MSAC (see equation 1) partially 

compensates for this undesirable effect. It penalizes the outliers 

equally but scores the inliers on how well they fit the data. 

. 𝜌2(𝑒2) = { 𝑒2 𝑒2 < 𝑇2

𝑇2 𝑒2 ≥ 𝑇2 (1)     

Where ρ2 is the robust error term, and T is the threshold for

considering inliers. 

A set of putative matches are taken in, and a random selection picks 
the best set of matches to fit the model, and computes the 
transformation matrix between the inlying points.  

Figure 5. Showing putative matched plus outliers (left), and only 
the correct matches and inliers (right) 
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The outlier matches are defined by a distance threshold between 

features in band ‘A’ and band ‘B’ upon inverting the geometric 

transformation. Only points that meet this threshold were used to 

compute the transformation matrix. Estimation of the 

transformation matrix was done at the image and orthophoto level. 

At both levels, the transformation matrix was compared element 

by element, and quantified as a RMSE for comparison between 

different camera positions. The 2D similarity transformation 

method was used in this study because it retains angles and length 

ratios, and because the orthophotos are planimetric and 

geometrically similar. The Transformation matrix was further 

decomposed to fetch out the band-to-band rotation and translation 

(i.e. relative orientation).  

4.3 Band-to-band Co-registration 

4.3.1 Intra-Epoch registration: To examine misregistration 

within a single acquisition, it was necessary to establish the best 

band to use as the reference. The reference band should have 

sufficient keypoints to be matched with features extracted from 

other bands.  

4.3.2 Inter-Epoch registration: Two approaches were 

evaluated as shown in Figure 6. The ‘many-to-one’ registration 

involved estimating the transformation matrix between all the 

subsequent bands of each acquisition with the red edge band of 

the first acquisition; geometrically transforming them; assessing 

their pairwise registration accuracy; and stacking them together 

per epoch. On the other hand, the ‘one-to-one’ approach involved 

using all bands in the first acquisition as the reference. Bands 

from subsequent acquisitions were considered slaves, and were 

thus aligned to spectrally corresponding bands of the first 

acquisition. 

Figure 6 (a) Many-to-one registration (b) One-to-one registration 

4.4 Co-registration Accuracy Assessment 

The misregistration error between the spectral bands was 

measured by computing the projection distance between inlying 

point pairs. The horizontal positional positions of inliers before 

and after registration were used to assess the co-registration 

accuracy as illustrated in Figure 7. The positional accuracy and 

distance between detected features between bands is expected to 

be less than half a pixel after co-registration. For a perfect 

registration, the differential distance between conjugate pairs 

should be zero. Thus, values tending towards zero are desirable. 

Figure 7 Showing distance between matched features (a) before 

and (b) after co-registration  

The root mean square error (RMSE) of the horizontal 

displacement of the conjugate points was used to evaluate the 

registration accuracy. The RMSE was computed by finding root 

of the average of the set of squared differences between 

coordinate values of inlying slave and master keypoints, where 

the master refers to the first epoch. The positional RMSE was 

computed as shown in equations 2 – 4.  

RMSEx = √∑
(𝑋𝑠𝑙𝑎𝑣𝑒 − 𝑋𝑚𝑎𝑠𝑡𝑒𝑟)2

𝑛𝑖  (2) 

RMSEy      = √∑
(𝑌𝑠𝑙𝑎𝑣𝑒 − 𝑌𝑚𝑎𝑠𝑡𝑒𝑟)2

𝑛𝑖  (3) 

RMSEr      = √𝑅𝑀𝑆𝐸𝑥
2 + 𝑅𝑀𝑆𝐸𝑦

2  (4) 

The RMSEx and RMSEy were used to evaluate systematic 

displacements in either direction. The combined RMSEr was 

used for overall registration accuracy assessment. The closer the 

value is to zero, the more accurate it is. The registration 

threshold was 0.5 of a pixel, therefore RMSEs less than 0.5 were 

considered ‘good’ and acceptable.  
4.5 Vegetation Index and Spectral Analysis 

Spectral indices are designed to give an approximate measure of 

vegetation status. The Normalized Difference Vegetation Index 

(NDVI) was used to characterize crop health in this research. 

NDVI is computed as shown below:-  

𝑁𝐷𝑉𝐼 =
(𝑅𝑁𝐼𝑅− 𝑅𝑅𝑒𝑑)

(𝑅𝑁𝐼𝑅+ 𝑅𝑅𝑒𝑑)
.

  (5) 

To statistically assess and compare spectral variability between 

the two UAV cameras, intra-farm zonation was done. Spectral 

signatures of two classes of crops (photosynthetically active and 

less active) were extracted from corresponding composite images 

of Parrot Sequoia and Micro MCA Tetracam. This was aimed at 

explaining the spectral variability between the sensors. 

5. EXPERIMENTATION, RESULTS AND ANALYSIS

In this section, a series of tests are run to inform coregistration 

decisions including selection of the master band, and the optimal 

parameters to use. All the algorithms are tested using default 

parameters, and further optimized for this particular vegetation 

scene and dataset combination. In addition, the experiments aim 

to compare the performance of the algorithms since they are 

architecturally different; SURF and KAZE use float descriptors, 

while MSER and BRISK use binary descriptors. 

5.1 Master band Selection 

5.1.1 Feature Detection using default parameters 

The results indicated that KAZE outperformed SURF, BRISK 

and MSER by detecting three times the number of points 

detected. Also, the red edge was selected as the master band 

because it had the highest number of detected keypoints thus 

offering a higher chance of correct matches with other bands. The 

performance of the algorithms is shown in Figures 8. 

Figure 8 Showing feature detection per band for Parrot Sequoia 

5.1.2 Feature Matching using default parameters 

KAZE and SURF succeeded in finding correct matches within 

1000 iterations for all the band combinations. Figure 9 shows 

algorithm performance for inter-epoch matching. 
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Figure 9. Illustrating inliers and outliers of matched Keypoints. 

Despite being seen to have more outliers than inliers in the first 

and second band combinations, the overall performance of 

KAZE depicts more inliers than the other algorithms. On the 

other hand, BRISK and MSER failed to converge to find 

sufficient points after 1000 iterations for the master and red band 

combination. Thus, KAZE and SURF were selected for 

subsequent tests in this study. 

5.2 Parameterization for feature detection 

The results show that the higher the octave the more features are 
detected cumulatively. KAZE presents a sharp cumulative 
increase in points detected from the first to the second octave, but 
somewhat plateaus by the third octave. 

Figure 10. Showing the impact of tuning number of octaves 

SURF is no match to KAZE in feature detection but is 
overwhelmingly fast as shown in table 4. SURF recorded a time 
difference per octave of less than one second. Conversely, KAZE 
doubles the time between the first to the second octave. 

Time (Seconds) Time (Seconds) 

Octaves SURF KAZE Levels SURF KAZE 

1 2.15 70.86 3 2.34 82.23 

2 2.60 147.91 4 2.94 145.15 

3 2.80 164.09 5 3.41 175.44 

 4 3.02 177.73 6 3.61 210.62 

Table 4. Time taken per octave and per level for point detection 

It was observed that a stable condition of feature detection is 
reached in scale level five and second octave because the number 
of features detected per band beyond these points are less than 
five percent of the total number of features detected. In addition, 
an increase in scale levels increases the computational time. 

5.3 Parameterization for feature description and matching 

A feature size of 128 provides a higher description accuracy but 
consequently decreased the number of matched and inlying 
features, which were insufficient for MSAC to fit the best model 
to estimate the transformation matrix. Therefore, misregistration 
errors were still evident after registration.  

Band Pairs SURF KAZE 

Inliers Outliers Inliers Outliers 

64' 

Master+NIR 190 1135 431 2420 

Master+RedEdge 661 2594 1822 7568 

Master+Red 25 250 122 234 

Master+Green 187 913 943 2735 

128' 

Master+NIR 22 80 107 401 

Master+RedEdge 75 264 946 2462 

Master+Red 7 5 13 10 

Master+Green 15 51 264 649 

Table 5. Showing number of matches per descriptor size 

On the other hand, with a descriptor size of 64, the number of 

matched and inlying features increased. The descriptor size of 64 

was therefore selected since the number of inliers were enough 

for accurate estimation of the transformation matrix.     

5.4 Intra-epoch band-to-band registration (Parrot Sequoia) 

Using the Red edge as the master, image level analysis revealed 

a systematic displacement attributed to the basis distance of the 

cameras as presented graphically in Figure 11. 

Figure 11. Showing image level systematic displacement 

The red edge and NIR combination exhibited a displacement of 

about 11 pixels in the “Y” direction. The red edge and red showed 

a shift of about 6 pixels in both directions. The last combination, 

red edge and green, unveiled a uniform displacement of about 6 

pixels in the “X” direction.  

At the image level, misregistration is reduced from an average of 

10 pixels to 0.28 pixel. The co-registration results at the image 

level within same epoch are presented in Table 6. 

Stat. RedEdge + NIR RedEdge + Red RedEdge + Green 

Before After Before After Before After 

Max 12.37 0.7 14.06 0.57 8.54 0.89 

Min 10.89 0.01 8.28 0.05 6.95 0.03 

Mean 11.78 0.28 10.49 0.27 7.48 0.28 

Std 0.28 0.15 1.64 0.14 0.33 0.16 

 Table 6. Image point pair distances before and after registration 

On the other hand, misregistration of compositely processed 
orthophotos is at a minimal average of 0.3 pixels. This can be 
attributed to corrections during image level co-registration, 
triangulation, georeferencing, and orthorectification. 

5.4.1 Intra-epoch accuracy assessment 

At the orthophoto level, the results show that the bands are 

aligned to subpixel accuracy. The positional RMSE of the inliers 

is equal for epoch one and three, and decimal differences in epoch 

two, before and after registration. Since the registration 

procedure was intensity-based, the slight differences in epoch 2 

could be attributed to randomness during outlier removal. 

Red edge + NIR Red edge + Red Red edge + Green 

Before After Before After Before After 

Epoch1 0.17 0.17 0.22 0.22 0.18 0.18 

Epoch2 0.18 0.18 0.20 0.16 0.21 0.18 

Epoch3 0.18 0.18 0.21 0.19 0.20 0.20 

Table 7. PS horizontal positional RMSE (pixels) using SURF 

5.5 Inter-epoch band-to-band registration (Parrot Sequoia) 

5.5.1 Many-to-One Registration 

Subpixel accuracies were obtained using projection distance 

thresholds of 0.7 and 0.5 for SURF and KAZE respectively. 

SURF could not find sufficient point pairs to estimate geometric 

transformation between orthophotos of epoch 1 and 2 at a 

projection distance threshold of 0.5. However, the point pair 

distances obtained with SURF and KAZE after registration is 

presented in Figure 13. Misregistration errors in the range of 0.02 

– 1.16 pixels for SURF, against KAZE’s 0.02 – 1.37 pixels for

all band combinations were evident.
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Figure 12. Point pair statistic of many-to-one band registration 

5.5.2 One-to-One Registration 

The displacement between corresponding bands was seen to be 

systematic across all the bands. It was observed that the red band 

combination recorded the lowest number of inliers whereas green 

had the highest. Nonetheless, the inliers allowed for accurate 

estimation of the transformation matrix, and thus subpixel 

accuracies were obtained. From the statistics presented in 

boxplots presented in Figure 13 (b), it is observed that the mean 

registration error is in the range of 0.26 – 0.38.  

Figure 13 (a) Inliers vs outliers (b) Boxplots of paired distances 

5.5.3 Inter-epoch accuracy assessment 

The results presented in this section are those of aligning epochs 

two and three to epoch one using both matching strategies. As 

demonstrated in tables 8 and 9, both SURF and KAZE obtained 

subpixel registration accuracies. SURF however recorded lower 

RMSE values than KAZE.   

Band Combination Epoch 1 and 2 Epoch 1 and 3 
SURF KAZE SURF KAZE 

Master + NIR 0.57 0.52 0.54 0.50 
Master + Red edge 0.49 0.51 0.46 0.40 
Master + Red 0.48 0.64 0.47 0.66 
Master + Green 0.47 0.64 0.44 0.64 

Table 8. Points pair RMSE (pixels) of many-to-one registration 

Band Combination Epoch 1 and 2 Epoch 1 and 3 
SURF KAZE SURF KAZE 

NIR1 + NIR 0.36 0.34 0.39 0.37 
Red edge1+Red edge 0.39 0.36 0.33 0.31 
Red1 + Red 0.28 0.30 0.31 0.31 
Green1 + Green 0.32 0.32 0.34 0.33 

Table 9. Points pair RMSE (pixels) of one-to-one registration 

The one-to-one registration approach yields better results than 

many-to-one approach. The many-to-one approach recorded an 

average RMSE of 0.5 against the one-to-one approach of 0.36 

across all band combinations. The similarity in spectral 

properties per band combination in one-to-one approach is one of 

the possible reasons as to why band pairs are better aligned. 

6. CASE STUDY: MONITORING OF MAIZE CROP

6.1 Parrot Sequoia Versus Micro MCA NDVI Analysis 

Comparative NDVI zonal statistics were computed for both UAV 

images. Zones A, C, D, E, G, H and I are within the maize field 

but with different crop densities as shown in Figure 14.  

Figure 14. NDVI maps of Micro MCA and Parrot Sequoia 

The Vegetation Index (VI) response as extracted with PS and 

Micro MCA are highly correlated; the spatial averages of each 

zone recorded a positive correlation of 0.86. Despite the 

differences in GSD and in image quality between the two 

cameras, the spatial variability of NDVI is highly comparable. 

The average deviation of the mean values between the two 

datasets is 0.16, with the PS registering higher scores than Micro 

MCA. As shown in Figure 15, the highest average deviations are 

seen in zones E and I; Micro MCA depicts comparatively low 

NDVI values than PS. 

Figure 15. Zonal NDVI average for Micro MCA and Sequoia 

6.2 Inter-epoch Analysis of NDVI 

Having established the variations in NDVI from images acquired 

in the same day but with different spatial resolutions, an inter-

epoch comparative analysis of vegetation performance was done 

for all the three epochs. Being a qualitative assessment, the zonal 

statistics presented in Figure 16 illustrate the observed 

spatiotemporal dynamics of NDVI values. 

Figure 16. Statistical comparison of NDVI values (Epoch 1 to 3) 

Spatiotemporal analysis of NDVI depicted a declining trend over 

time; this is possibly due reduced photosynthetic activity 

between fruit development (i.e. Silking) and ripening stages of 

maize. In addition, the heavy storm event experienced between 
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epoch two and three could be a possible reason for lower NDVI 

values in epoch three due to damaged crops (See Figure 17 for 

diminishing greenness of the crop). 

Figure 17. Showing crop greenness between epoch 1 and 3 

6.3 Spectral Variability Analysis 

Both cameras can spectrally distinguish photosynthetically active 

and less active vegetation; the green band reflects more than the 

red which absorbs most reflectance, and a sharp transition is seen 

in the red edge. The average spectral deviation between the 

cameras is by a factor of 1.6 and 1.3 for photosynthetically active 

and less active crops respectively.  

Figure 18. Spectral analysis of Sequoia and Micro MCA 

The observed deviations could be attributed to image quality; 

difference in camera calibration, and spectral band width. More 

significantly, it can be attributed to the missing incidence sensor 

on the Micro MCA thus changes in irradiance during capture are 

not accounted for. Vegetation surfaces do not reflect light evenly 

in all directions i.e. Lambertian properties. The non-uniform 

reflectance hampers pixel-wise comparison and thus zonal 

comparison in this study. 

7. DISCUSSION

The complex nature of vegetation surfaces calls for more 

stringent parameters as far as UAV-based multispectral sensing 

is concerned. In this study, a side overlap of 40% was used for 

image acquisition. This was observed to be insufficient to 

generate a stable photogrammetric block; artificial zonal 

variability corresponding to flight lines was evident on the 

orthophoto as shown on Figure 19 below.    

Figure 19. Per band artificial strips corresponding to flight lines 

Larger overlaps of at least 60% are recommended. However,  for 

UAV-based multispectral image acquisition, Assmann et al., 

(2019), recommend a minimum of 75% for both front and side 

overlap. 

The results show that region detectors that use float descriptors 

are more robust than the ones using binary detectors. SURF and 

KAZE detected and indexed correct matches in all the spectral 

channels while the binary descriptors, MSER and BRISK, failed 

to find enough keypoints to qualify as inliers for all the band 

combinations; binary descriptors compare pixel differences 

whereas float descriptors compute intensity gradients.  

In this study, horizontal positional RMSE of the inlying 

conjugate points was used for accuracy assessment; another 

possible way to assess the co-registration accuracy could be to 

compute the epipolar geometry between band-pairs and compute 

the residual error of the distances of matched points from their 

corresponding epipolar lines (Onyango et al., 2017). It is however 

important to note that accuracy varies depending on the method 

used to estimate geometric transformation. Jhan et al. (2017), 

argue that image planes are not exactly parallel thus the use of 

similarity and affine transformation for band-to-band co-

registration is unsuitable. On the flip side, image blocks in this 

study were orthorectified, thus assumptions of planarity, 

parallelism and similarity were made. As such, the use of 

similarity transformation method to estimate the geometric 

transformation. 

SURF and KAZE obtained subpixel registration accuracies but 

SURF was observed to be faster. KAZE employs the additive 

operator splitting, which has been reported to be quite inefficient 

(Gerke, Nex, & Jende, 2016). On the other hand, KAZE is more 

rigorous in feature detection than SURF. The results of this study 

demonstrated that both KAZE and SURF are effective algorithms 

for co-registration of multispectral images. 

Intra-epoch and inter-epoch coregistration achieved sub-pixel 

accuracy in the range of 0.16 – 0.22 and 0.28 – 0.39 pixels 

respectively, which is adequate for accurate crop monitoring. The 

results of Townshend et al. (1992), demonstrate that to obtain 

NDVI values with a 90% confidence level, intra-epoch co-

registration accuracy of 0.2 pixels or less should be obtained. 

8. CONCLUSION

The main objective of this research was to investigate intra-epoch 

and inter-epoch misregistration of multispectral UAV imagery, 

and to explore the potentials of unmanned aerial systems for crop 

monitoring. This study proposes an intensity-based feature 

detection and description method to automatically co-register 

both intra-epoch and inter-epoch multispectral imagery. SURF 

and KAZE were tested and both detectors demonstrated the 

ability to co-register multispectral imagery to subpixel accuracy. 

In light of the results obtained in this study, SURF is equally 

robust, more efficient, and computationally inexpensive than 

KAZE. On the other hand, KAZE is more vigorous than SURF 

and always detects more keypoints hence increasing the chances 

to get more correct matches per band combination. Both 

algorithms can be used satisfactorily for intra-epoch and inter-

epoch co-registration, although their performance will vary based 

on parameterization and image quality. The presented co-

registration approaches of many-to-one and one-to-one can 

therefore be used but the one-to-one is preferred. 

The analysis of NDVI results between Sequoia and Micro MCA 

demonstrated that due to differences in spectral regimes of 

multispectral UAV imagery, the use of one system throughout 

the monitoring period is prudent. In summation, both Parrot 

Sequoia and Micro MCA are applicable for crop monitoring; they 

both have the spectral bands vital for monitoring photosynthetic 

activities of crops. Although Micro MCA has two more bands 

and can therefore sense more spectral properties, these additional 

spectral features offer a basis for future research. Also, in this 

study, GCPs were not used to scale, georeferenced and estimate 

distortions within the photos. Thus, greater inter-epoch 

displacements. To investigate the misregistration error between 

orthophotos that have been processed using GCPs in all the 

epochs would go a long way in contributing to inter-epoch co-

registration methods.  
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