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ABSTRACT:

Lightweight unmanned aerial vehicles (UAVs) have been widely used in image acquisition for 3D reconstruction. With the avail-
ability of compact and high-end imaging sensors, UAVs can be the platform for precise photogrammetric reconstruction. However,
the completeness and precision of complex environment or targets highly rely on the flight planning due to the self-occlusion of
structures. Flight paths with back-and-forth pattern and nadir views will result in incompleteness and precision loss of the 3D re-
construction. Therefore, multiple views from different directions are preferred in order to eliminate the occlusion. We propose a 3D
path planning method for multirotor UAVs aiming at capturing images for complete and precise photogrammetric 3D reconstruc-
tions. This method takes the coarse model from an initial flight as prior knowledge and estimates its completeness and precision.
New imaging positions are then planned taking photogrammetric constraints into account. The real-world experiment on a ship lock
shows that the proposed method can acquire a more complete result with similar precision compared with an existing 3D planning
method.

1. INTRODUCTION

With the availability of lightweight unmanned aerial vehicles
(UAVs) and compact imaging sensors, UAVs are being widely
used in remote sensing and photogrammetry. The flexibility
and mobility of lightweight UAVs have made it possible to cap-
ture close-up images for complex urban structures, and gen-
erate a realistic model of high-accuracy with the aid of state-
of-the-art photogrammetric and structure from motion (SfM)
– multi-view stereo (MVS) software, like Pix4DMapper and
Agisoft Metashape (Pix4D SA, 2019, Agisoft LLC, 2019).
These high-quality 3D models are of great use in the field
of cultural heritage documentation and structural inspection
(Rodrı́guez-Moreno et al., 2018, Chen et al., 2019). However,
complex structures are often concave and have the nature of
self-occlusion. Mapping them with nadir images often result
in incompleteness and the precision loses additionally. There-
fore, considering the specification of the UAV platform, plan-
ning viewpoints in three-dimensional space would be the best
solution for lightweight UAVs mapping complex structures.

General research into path 3D planning for UAV mapping has
mainly two categories: model-free and model-based. The main
difference between these two categories is whether prior know-
ledge, i.e. a coarse model, is required. The model-free meth-
ods aim at exploring unknown environments while updating
the reconstructed model iteratively based on information gain
and volumetric occupancy maps (Palazzolo, Stachniss, 2018,
Bircher et al., 2018). However, the goal of these methods is to
create a map for the guidance of robots, they do not focus on
completeness or precision of the 3D reconstruction. The other
category, model-based methods, takes an initial 3D model as in-
put, additional viewpoints are then planned to refine the model.
The explore-and-exploit procedure focuses on the completeness
of the 3D model, which fulfills the need of photogrammetric
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3D reconstruction. Model-based methods do not require on-
line calculation or the determination of next-best-view, they aim
at reaching a global optimum of completeness (Roberts et al.,
2017, Hepp et al., 2018). The initial model can be acquired
and reconstructed from the image of a regular flight or extrac-
ted from a heightmap (Smith et al., 2018). An optimal subset
of viewpoints is selected from candidates with different criteria.
For example the angle between the viewpoint look-at direction
and the normal of the surface (Hoppe et al., 2012), parallax
angle and distance (Hepp et al., 2018, Smith et al., 2018), or
other quality indices (Roberts et al., 2017, Peng, Isler, 2019).
The selected viewpoints are finally connected to build actual
flight paths for UAV considering the limitation of flying time
or path length. Even though the completeness of the refined
model is increased by considering the overlap between images,
the precision is not guaranteed. Photogrammetric camera net-
work design is not only model-based, but it also takes the preci-
sion of the acquired model into account as well. Photogrammet-
ric quality indices are introduced to guide the planning, which
contains the contribution of redundancy and the baseline/depth
ratio (Alsadik et al., 2014), or the ‘limited error propagation’
which approximates the covariance matrix of the object point
(Olague, Dunn, 2007). However, these methods are limited
within small-scaled and highly-controlled scenes with several
viewpoints, the convergence is not guaranteed either. The error
ellipsoid of the observed point is only used for validation. Fur-
thermore, they are not efficient enough to be applied in outdoor-
scaled scenes and plan the path for UAVs imaging for 3D recon-
struction.

Recent studies of model-based methods have inspired this work.
Roberts et al. and Hepp et al. build the framework of
information-driven path planning (Roberts et al., 2017, Hepp et
al., 2018). The framework is based on the observation that the
mutual information obtained by all viewpoints never decreases
and the objective function related to information is submodu-
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lar (Krause, Golovin, 2014). This allows adding viewpoints
iteratively while considering global optimization, which sig-
nificantly reduces the amount of computation. Therefore, the
problem can be formulated as an orienteering problem or be
solved using mixed-integer programming, downhill simplex, or
genetic algorithm (Smith et al., 2018, Martin et al., 2016). Re-
cently, Agisoft announced the 3D mission planning functional-
ity in their Metashape software system which aims at obtaining
optimal sets of camera positions based on a rough model and
creating mission plans using these optimal sets (Agisoft LLC,
2019). Its aim is the same as ours and we will take it for com-
parison in this paper.

In this study, we introduce the photogrammetric constraints into
the framework of model-based view planning, to plan a path
for multirotor UAVs imaging for complete photogrammetric 3D
reconstruction. The completeness and precision of the coarse
input model are firstly analyzed and additional viewpoints are
then planned to increase the quality of the 3D model. Cam-
era geometry constraints like the baseline and observing angle
are considered while the error ellipsoid of each observed point
guides the view planning as well. The viewpoint planning takes
the advantages of the submodularity but the exteriors of each
viewpoint are optimized separately to achieve better complete-
ness and precision.

2. METHOD

In this section, we discuss the 3D path planning method guided
by point cloud analysis and photogrammetric constraints. The
proposed method is inspired by the framework of model-based
view planning (Scott, 2009), but with a two-phase’s viewpoint
addition (see Figure 1). The input of the method is the dense
image matching (DIM) point cloud, reconstructed triangulated
mesh and corresponding camera network from a prior flight.
We firstly analyze the completeness of the point cloud. To ana-
lyze the completeness of the DIM point cloud, it should be
compared with a ‘complete’ object. The triangulated mesh is
reconstructed considering the visibility and with small gaps or
holes completed (Vu, 2011). The incomplete part is marked
out by point cloud index calculation and filtering. Then we
do a two-phase viewpoint addition. The first phase is adding
viewpoints to make the point cloud complete, which results in a
‘strengthened camera network’. After that, the theoretical pre-
cision of each point is estimated, and the second phase is to in-
crease the photogrammetric precision and an ‘optimized camera
network’ is finally acquired.

2.1 Completeness and precision estimation of point cloud

In order to get a complete 3D reconstruction, the incomplete
area of the initial flight should be detected beforehand. Con-
sidering the characteristics of the DIM point cloud, the main
reason for incompleteness is occlusion. There are other causes
like moving objects and the lack of texture though, we currently
ignore them for simplification. So, the target of the complete-
ness analysis is to locate the holes in the dense point cloud.

To find and locate the incompleteness (holes), the input DIM
point cloud is compared with corresponding triangulated mesh.
To make it easier when comparing point cloud with mesh, a
Poisson Disk Sampling method is used to extract sample points
s from the mesh surface, the radius of Poisson disks equals
to the ground sampling distance (GSD). These sample points
are compared with the DIM point cloud p. Some indices are

Figure 1. Flowchart of the proposed path planning method.

then calculated to indicate the completeness of the point cloud.
Finally, the incomplete area is marked out within the sample
points.

The first index is the hole index, which indicates the likelihood
of holes existing in the input dense point cloud Given Poisson
Disk Sample point s, we firstly search for all DIM point p in
the k-nearest neighbor of s. Vector ~np and ~ns are normals of
corresponding points. The hole index fh is related to the dot
product of ~np and ~ns, which is shown in Equation 1. If the
mesh surface is consistent with the DIM point cloud, the dot
product will result in a larger value. Otherwise, the result in the
neighborhood varies where holes exist, which leads to a smaller
fh.

fh =
∑

p∈{Knn}s

w(d) · e−
(1− ~np· ~ns)2

σs , where w(d) = e
− 4dps
dm

(1)

Note that w(d) is a distance weighting function, dps is the dis-
tance between point p and s, dm is the largest distance in the
k-nearest neighbor of s. σs is an indicator that controls the
false positive rate of hole detection, its value is empirically set
to 0.018 (Wu et al., 2014).

The curvature index fc represents the local curvature around
the sample point s. It sums up the normal change rate rp of the
DIM point cloud within theR radius neighbor of s (Equation 2).
The radius R equals to the radius of the Poisson disk. A larger
fc indicates a higher local normal change rate, which should be
considered as unreconstructable vegetation and filtered out. The
parameter k indicates the threshold of the curvature, its value is
empirically set to 8.

fc =
∑

p∈{Rn}s

(1− e−krp) (2)
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By combining the hole index and the curvature index, a filter
is created to filter the sample point cloud and the incomplete
area is then marked out. It is worth noting that the noise of
the DIM point cloud is inevitable though, it does not have a
significant effect on the filtering result. Theoretically, the nor-
mal of the noise is randomly distributed, which may result in
a larger hole index and curvature index. The distance weight-
ing function w(d) in Equation 1 can assign a lower weight to
the distant noise. Moreover, the radius in the curvature index
is fixed, which can filter the majority of the noise. Practically,
the reconstruction of the corresponding triangulated mesh has
minimized the noise.

On the other hand, the inner precision of all target sample point
s should be estimated as well to plan more viewpoints to in-
crease the precision. The inner precision is estimated by com-
puting the error ellipsoid of each point, using the multi-view
intersection. The calculation is based on the linearization of the
collinearity equations and bundle adjustment (Förstner, Wrobel,
2016). The error ellipsoid of each point is then extracted from
the eigenvalues λi, i = 1, 2, 3 and eigenvectors of the covari-
ance matrix (Equation 3).

x2

λ2
1

+
y2

λ2
2

+
x2

λ2
3

= s2 (3)

The largest eigenvector stands for the direction of the axis.
For a 0.95 confidence level, the scale s of the ellipsoid
can be obtained from a three-degree chi-square distribution,
χ2(0.95, 3) = 2.796 (Spruyt, 2015).

2.2 Camera viewpoint generation

This section discusses the camera viewpoint generation to cap-
ture more images to increase the completeness and precision
of 3D reconstruction. The viewpoint generation splits into two
parts: viewpoint addition for completeness and for precision,
see Figure 1.

The viewpoint addition for completeness is a select-and-
optimize process of generating an optimal set of viewpoints to
maximize the completeness of 3D reconstruction. Viewpoints
are selected from the initialization set and their position and ori-
entation are then optimized. Candidate viewpoints are initial-
ized for optimal photogrammetric reconstruction – they are loc-
ated along the normal of each point in the incomplete area, with
their viewing directions pointing towards corresponding points.
The viewpoint candidate who observes the largest number of
sample points is selected iteratively for optimization. Note that
the overall number of observed sample points by all selected
viewpoints never decreases and the marginal benefit decreases
when adding new viewpoints. Therefore, the process of view-
point selection is submodular. It can be solved with a greedy
algorithm with a guarantee of at least a 0.63 approximation ra-
tio, relative to the optimal set (Krause, Golovin, 2014).

Following the selection of each viewpoint, the location and
viewing direction are then optimized, to achieve better preci-
sion. The viewpoint look-at direction should be as perpendicu-
lar to the major axis of the existing error ellipsoid as possible.
The objective function (Equation 4) takes the improvement of
visibility as well as precision into account, denote that view-
point C contains its position pc and viewing direction nc.

C{pc, nc} = argmaxfp(C) + Ψ(C) (4)

Figure 2. The geometry illustration of viewpoint addition for
completeness.

where fp(C) is the count of visible points of the viewpoint and
Ψ(C) =

∑
i
sin ψi is the sum of the angle between viewpoint

look-at direction and the maximal dimension of error ellipsoid
of existing visible points.

The photogrammetric constraints are as follows and also illus-
trated in Figure 2

1. GSD constraint – the distance between the planned view-
point and target point should be within a certain threshold
dg

2. Point normal constraint – the angle between the new
camera-point vector mc and point normal nu should be
within a threshold θp

3. Baseline constraint – the shortest baseline b between the
new viewpoint and any existing viewpoint should be larger
than the baseline constraint bc

4. Parallax angle constraint – the parallax angle between the
new viewpoint and any existing viewpoint targeting the
same point should be larger than 15◦ (Förstner, Wrobel,
2016)

5. Target point-on-image constraint – the target point should
be within the FoV of the new viewpoint.

6. Safety altitude constraint – the z value of the new camera
location should be larger than a certain threshold zs

After the previous step of viewpoint addition, a strengthened
camera network is obtained, which expands the coverage of im-
ages. However, more viewpoints have to be planned to optimize
the geometry of the entire camera network. After the estimation
of the inner precision, we then find some points with lower or
unacceptable precision, which have bad-shaped error ellipsoids,
to be the target of refinement. Next, for each target points, one
viewpoint is added to increase the precision of the forward in-
tersection. The viewpoint addition is under several geometry
constraints related to point normal, the direction of error ellips-
oid and baseline, as illustrated in Figure 3. The details are the
same as viewpoint addition for completeness. The objective is
that the viewpoint should be as perpendicular to the major axis
of the error ellipsoid as possible. So the objective function is
similar to equation 4, while the last term here is Ψ(C) = cos ψi.

Combining those generated viewpoints from two view planning
steps, a set of new waypoints is obtained. The 3D flight path
of UAV can be generated by connecting the waypoints in se-
quence. The total length of the flight path mainly contributes

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2020-325-2020 | © Authors 2020. CC BY 4.0 License.

 
327



Figure 3. The geometry illustration of viewpoint addition for
precision.

to energy consumption (Liu et al., 2018), therefore, waypoints
should be connected to achieve the shortest path. We assume
that the UAV takes off and returns at the same position and the
flight path consists of all waypoints. The shortest flight path can
be generated by solving a traveling salesman problem (TSP).

3. EXPERIMENT AND RESULTS

The objective of the experiment is to evaluate the proposed 3D
path planning method in the matter of accuracy, precision, and
completeness. We compare the result of aerial triangulation
as well as the reconstructed DIM point cloud form different
modes of flight planning, including nadir flight and its combin-
ation with the 3D path from the proposed method and Agisoft
Metashape (Agisoft LLC, 2019)). Although there exist a vari-
ety of drone planning software focusing on 3D modeling, e.g.
Pix4DCapture, Hangar, or Litchi, they mainly plan circulating
or façade scanning path. Agisoft Metashape can plan 3D mis-
sions through analyzing a pre-captured model, its goal is similar
to ours.

3.1 EXPERIMENT SET UP

The test area was the ship lock on Neckar River at Hessigheim,
Baden Württemberg, Germany. The dimension was about
55× 206 m. Four control points and thirteen checkpoints were
available in this experiment (Figure 4). The platform was a DJI
Phantom 4 quadcopter. A manually refined mesh model was
chosen as the ground truth. The model was reconstructed from
oblique aerial images, it had 0.87 cm GSD and 2.70 cm overall
accuracy.

Flight paths were designed based on the comparison between
our 3D planning method, Metashape’s method and a baseline
Nadir path. All flight paths were designed with 1.29 cm GSD.
The Nadir flight had a 70% overlap and 70% sidelap, proposed
3D path (3D) and Metashape’s path (MS) are showed in Fig-
ure 5. The number of images of Nadir, 3D and MS paths was 64,
29 and 30, separately. Since the purpose of the flight planning
was to complete and optimize the survey, images from 3D and
MS paths were combined with Nadir’s. Agisoft Metashape was
used to perform aerial triangulation and generate a DIM point
cloud. Control points and checkpoints were semi-automatically
marked to ensure accuracy. All the parameters stayed default
except ‘image matching preselection’ was turned off in the pro-
cess of image alignment, to make sure Metashape could find
enough image pairs.

3.2 RESULTS

In this section, we compare the flight planning between ours
and Metashape’s quantitatively. The comparison will be in the

Figure 4. Test area and all reference points. The green circle
stands for ground control points and red rectangles are

checkpoints.

matter of accuracy, precision as well as completeness. We eval-
uated the accuracy of all flights after aerial triangulation with
checkpoints. Moreover, the maximum dimension of the error
ellipsoid was calculated from the covariance matrix of each tie
point. The geometry configuration of the flight planning was
compared by counting tie points whose theoretical uncertain-
ties are within a certain threshold. The precision and complete-
ness comparison was based on the DIM point cloud visually
and quantitatively.

3.2.1 Tie point accuracy and uncertainty evaluation
Since accuracy is the basis in the matter of mapping and 3D
reconstruction, we firstly evaluated the accuracy with thirteen
checkpoints. Figure 6 demonstrates the total error of each
checkpoint. The total error is the square sum of errors in X,
Y and Z direction. A 3GSD threshold is marked in this figure
with a red dash line, which indicates the commonly accepted
error in mapping. In Figure 6, the total errors in the Nadir flight
are within the 3GSD threshold except the point 3007, which is
at the corner of the target area and further away from the con-
trolled area. The error arises with the distance to control points.
The errors from two 3D paths are nearly half of that from the
Nadir flight, they are consistent and all within the threshold as
well.

Concerning tie point uncertainties, we counted the maximum
dimension of the error ellipsoid of tie points and plot them in
histograms (Figure 7). The peak values of two 3D planning
paths (Figure 7b and c) are lower than that of Nadir’s, which
means for both 3D planning paths, a larger amount of tie points
had lower uncertainties.

3.2.2 Completeness evaluation of DIM point cloud In this
section, we compare the completeness of the 3D reconstruction
from all paths. The DIM point cloud was taken in the com-
parison. The ground truth of the incomplete area was firstly
generated by comparing the result from the baseline Nadir path
with the ground truth model. Then, the completeness was eval-
uated using the method by (Hepp et al., 2018) and the coverage
of the incomplete area.

Table 1 shows the quantitative comparison of the DIM point
cloud. Similar to (Hepp et al., 2018), we introduced precision
P , recall R for evaluating the quality of the DIM point cloud.
The precision quantifies how many reconstructed points are
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(a)

(b)

Figure 5. 3D flight paths. (a) proposed (3D); (b) Metashape’s
(MS).

Figure 6. The total error of each checkpoint. The horizontal red
dash line marks the 3GSD error, 3.87 cm.

close to a ground truth point. The recall quantifies how many
ground truth points are close to a reconstructed point, which
can be recognized as completeness. The distance threshold was
set to 3GSD as well. Moreover, the incomplete area coverage
and the precision in the incomplete area were evaluated as well
to test the performance of two 3D planning methods specific-
ally for incomplete area. As can be seen from Table 1, the DIM
point cloud precision of all 3D methods was significantly higher
than the Nadir flight. The 3D configuration of flight paths may
reduce noisy DIM points. The recall of 3D planning methods
was higher as well, as adding more oblique images covered
more structures. Compared with the MS path, the 3D path had a
2.6% higher recall but doubled coverage of the incomplete area.
Its precision in the incomplete area was higher than MS as well.

To demonstrate a detailed visualization, Figure 8 shows the
overview and zoomed snapshot of DIM point clouds from all
paths. The first row of Figure 8 is the overview, in which yel-

Name Precision Recall Incomplete
area cover-
age

Precision in
incomplete
area

Nadir 66.0% 40.0% 0% -
3D 75.2% 60.1% 37.7% 53.6%
MS 76.0% 57.5% 16.1% 48.0%

Table 1. Quantitative comparison of the DIM cloud from all
flight paths

(a)

(b) (c)

Figure 7. Histogram of the maximum dimension of the error
ellipsoid of tie points. (a) Nadir, (b) 3D, (c) MS.

low rectangles represent zoom in areas in the following rows. In
Zoom #1, the façade of the center ship lock building was well-
reconstructed in the flight 3D, however, the result from flight
MS was as incomplete as the Nadir one. Zoom #2 was a small
building on the ship lock. The result from Nadir and MS was
barely the same while there were some points on the façade in
our result. In Zoom #3, the result from Nadir and MS were lack
of information underneath the road, while our method success-
fully captured the data there.

4. CONCLUSIONS

We proposed a novel 3D path planning method for UAVs ima-
ging for complete and precise photogrammetric 3D reconstruc-
tion. This method takes the model from an initial flight as prior
knowledge. The incompleteness area of the model is marked
firstly. Two steps of viewpoint addition are then performed
targeting the completeness and precision with the constraints
of photogrammetry. The result from the in-field experiment
suggested that compared with an existing 3D planning method
from Agisoft Metashape, the proposed flight planning method
could achieve a more complete 3D reconstruction with fewer
images. Meanwhile, the accuracy of the proposed method was
as good as Metashape’s and the precision of the DIM point
cloud from our method was better in the incomplete area. Since
the framework of the proposed method is finding an optimal
subset of viewpoint, it can be applied before the alignment of a
large image dataset, to reduce redundancy before dense image
matching.

However, during the implementation of the 3D path, more en-
ergy is required than traditional flight modes of aerial mapping,
since it contains more turning and change in altitude. Our future
work may introduce trajectory optimization or multi-drone col-
laboration method to reduce the energy or time cost. Moreover,
the method of completeness analysis can be refined as well, by
introducing semantic information to better detect objects that
are inappropriate to be reconstructed.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2020-325-2020 | © Authors 2020. CC BY 4.0 License.

 
329



Figure 8. Overview and detailed comparison of DIM point cloud from different flights.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2020-325-2020 | © Authors 2020. CC BY 4.0 License.

 
330



ACKNOWLEDGEMENTS

Parts of the research in this paper were supported by the Na-
tional Key Research and Development Program of China (Grant
No. 2016YFB0502102). Parts of the research presented in
this paper were funded within a project granted by the Ger-
man Federal Institute of Hydrology (BfG) in Koblenz. This
research was also supported by the China Scholarship Council
(No. 201806260225).

REFERENCES

Agisoft LLC, 2019. Mission planning & redundant im-
age detection in Agisoft Metashape Professional. ht-
tps://www.agisoft.com/index.php?id=70.

Alsadik, B., Gerke, M., Vosselman, G., Daham, A., Jasim, L.,
2014. Minimal camera networks for 3D image based modeling
of cultural heritage objects. Sensors, 14(4), 5785–5804.

Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart,
R., 2018. Receding horizon path planning for 3D exploration
and surface inspection. Autonomous Robots, 42(2), 291–306.

Chen, S., Laefer, D. F., Mangina, E., Zolanvari, S. I., Byrne,
J., 2019. UAV Bridge Inspection through Evaluated 3D Recon-
structions. Journal of Bridge Engineering, 24(4), 05019001.

Förstner, W., Wrobel, B. P., 2016. Photogrammetric computer
vision. Springer.

Hepp, B., Nießner, M., Hilliges, O., 2018. Plan3d: Viewpoint
and trajectory optimization for aerial multi-view stereo recon-
struction. ACM Transactions on Graphics (TOG), 38(1), 4.

Hoppe, C., Wendel, A., Zollmann, S., Pirker, K., Irschara, A.,
Bischof, H., Kluckner, S., 2012. Photogrammetric camera net-
work design for micro aerial vehicles. Computer vision winter
workshop (CVWW), 8, 1–3.

Krause, A., Golovin, D., 2014. Submodular function maximiz-
ation.

Liu, C., Akbar, A., Wu, H., 2018. Dynamic model constrained
optimal flight speed determination of surveying uav under wind
condition. 2018 26th International Conference on Geoinform-
atics, IEEE, 1–5.

Martin, R., Rojas, I., Franke, K., Hedengren, J., 2016. Evolu-
tionary view planning for optimized uav terrain modeling in a
simulated environment. Remote Sensing, 8(1), 26.

Olague, G., Dunn, E., 2007. Development of a practical photo-
grammetric network design using evolutionary computing. The
Photogrammetric Record, 22(117), 22–38.

Palazzolo, E., Stachniss, C., 2018. Effective exploration for
MAVs based on the expected information gain. Drones, 2(1),
9.

Peng, C., Isler, V., 2019. Adaptive view planning for aerial 3d
reconstruction. 2019 International Conference on Robotics and
Automation (ICRA), IEEE, 2981–2987.

Pix4D SA, 2019. Pix4dmapper: The leading photogrammetry
software for professional drone mapping.

Roberts, M., Dey, D., Truong, A., Sinha, S., Shah, S., Kapoor,
A., Hanrahan, P., Joshi, N., 2017. Submodular trajectory optim-
ization for aerial 3d scanning. Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 5324–5333.

Rodrı́guez-Moreno, C., Reinoso-Gordo, J. F., Rivas-López, E.,
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