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ABSTRACT:

Objects follow designated path on maps, such as vehicles travelling on a road. This observation signifies topological representation
of objects’ motion on the map. Considering the position of object is unknown initially, as it traverses the map by moving and
turning, the spatial uncertainty of its whereabouts reduces to a single location as the motion trajectory would fit only to a certain
map trajectory. Inspired by this observation, we propose a novel end-to-end localization approach based on topological maps that
exploits the object motion and learning the map using an recurrent neural network (RNN) model. The core of the proposed method
is to learn potential motion patterns from the map and perform trajectory classification in the map’s edge-space. Two different
trajectory representations, namely angle representation and augmented angle representation (incorporates distance traversed) are
considered and an RNN is trained from the map for each representation to compare their performances. The localization accuracy
in the tested map for the angle and augmented angle representations are 90.43% and 96.22% respectively. The results from the
actual visual-inertial odometry have shown that the proposed approach is able to learn the map and localize objects based on their

motion.

1. INTRODUCTION

Without the loss of generality, object localization can be defined
as finding where an object is on a map given sensory data. Ob-
ject localization is important and necessary for not only core
applications, like robotics and autonomous vehicles, but also
tracking of pedestrians for surveillance or health reasons. Des-
pite advances in the field, localization is still a challenging prob-
lem especially when Global Positioning System (GPS) data is
contested, such as degraded or not available.

The most popular localization technology for the outdoor envir-
onment is GPS, which utilizes georeferenced satellite constel-
lation to estimate the object’s location (Hofmann-Wellenhof et
al., 2012). However, the limitations are also notable: GPS is not
accurate for especially civilian and consumer applications, and
the signal may be unavailable or unreliable in serveral areas,
such as underground, in tunnels, indoors and urban canyons.
To resolve these limitations, researchers have proposed Indoor
Positioning Systems (IPS) (Mautz, 2012) to localize objects us-
ing installed infrastructure, such as WiFi, Bluetooth, Ultra Wide
Band (UWB), etc. Despite being a fast growing research area,
IPS technology using external signals requires large investment
and has high maintenance cost.

In addition to the GPS and IPS methods, other alternatives have
also been developed in the past few years (Sattler et al., 2011,
Gupta et al., 2016). One typical alternative approach is Sim-
ultaneous Localization and Mapping (SLAM) (Cadena et al.,
2016), which constructs the map of an unknown environment
while simultaneously keeping track of the object’s location on
the map that is being generated. Many research groups have de-
veloped SLAM variations using different sensors, such as laser-
altimetry (Hess et al., 2016), vision-based (Mur-Artal et al.,

*Corresponding author

2015) or their combinations (Qin et al., 2018). Despite the de-
velopments in the literature, there is still no viable solution for
mapping and localization problem due to dead reckoning that
causes constant drift and has a high computational costs.

A major category of work in literature is dedicated to the use
of images which can be classified into: photogrammetric local-
ization (Sattler et al., 2011) and image-matching based local-
ization (Walch et al., 2017). Photogrammetric localization as-
sumes the scene is represented by a texture mapped 3D model
(potentially generated from structure-from-motion). The model
is used to estimate the extrinsic camera parameters from the
query image (position and orientation). Essentially, this method
uses a photogrammetric pipeline to match 2D and 3D features
to triangulate camera parameters. Despite their performance,
photogrammetric pipeline is both computationally expensive —
especially to perform matching 2D and 3D features when initial
posi-tion is unknown— and generate and access texture mapped
3D point clouds. Image-matching based localization uses large-
scale geotagged image collection which converts localization
task to image retrieval task (Li et al., 2014). Given an input
image, this method returns latitude and longitude of matched
images which can be used for triangulating position of input im-
age. Image-matching based approaches require large databases
of images, and building, maintaining and matching against such
a large image database can be very hard.

Recently, a number of studies started to use deep learning (DL)
(Engel et al., 2019) or OpenStreetMap (OSM) (Brubaker et al.,
2015) to deal with self-localization problem. These methods,
however, either formulate localization as pose regression prob-
lem using DL or exploit an existing map to pre-build a probab-
ilistic graph structure.

In this paper, we introduce a novel approach that introduces the
concept of learning maps for object localization. Our approach
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uses map transport layer, in particular the OSM, and object mo-
tion trajectory. Unlike SLAM methods that incrementally build
and update the map, our approach utilizes an existing map in
the form of a graph and estimate the object position swiftly and
efficiently matching the motion trajectory to the learned map.

The remainder of the paper is organized as follows. In the Sec-
tion 1.1, we introduce the motivation of the proposed method.
Some related works are summarized in the Section 2. In Sec-
tion 3, the localization methodology is discussed in detail. The
experiments and results are provided in Section 4. Last but not
least, we conclude the paper in the Section 5.

1.1 Motivation

Humans are exceptionally good at finding where they are based
on observations and a simple mind-map (Sargolini et al., 2006).
A typical approach humans use to achieve this goal is to match
a landmark to known landmarks we learned when we were in
the same location before. Moreover, other stimuli also helps us
to achieve this goal, for instance a blind person can find his loc-
ation based on the distance he traversed and corners he turned.
Another example would be getting directions for an unknown
location from others, e.g. “to get to the grocery, go straight
until you see the hospital and turn left”. Based on these obser-
vations, we hypothesize that one can 1) develop an algorithm
to learn a map, and 2) based on the motion patterns localize
the object. We illustrate this in the Figure 1, the left image is
map with a transport layer containing as many trajectories as
one can traverse (one sample is below the map) and the right
image shows the only location that the object can be in from
among many candidates. This localization treatment can be
considered as graph isomorphism where a subgraph is matched
to a graph. Another localization treatment, yet a simpler one,
has been explored in the navigation literature (map-matching)
where a noisy GPS input is matched to a road on a map. We
should note however that both these methods have limitations
and shortcomings. The graph isomorphism is an NP complete
problem and the map matching only works when external GPS
input is provided. In this paper, we take a different approach
and exploit neural networks to learn the map by considering
potential traverses one can make on the map.

A4

Localization
Sequential turnings

Figure 1. The concept of localization using a map and a
trajectory. The motion generating the observed trajectory can
only have one matching location if the shape of the trajectory is
unique and matches the map road network. A trajectory can be
unique if it is long enough (the map shown is from OSM).

2. RELATED WORK

Algorithmic approaches for localization have been long re-
searched and is still open problem especially when there is lack
of external information about the object’s location. Below, we

summarize several methods that are representative and are re-
lated to ours.

Probabilistic Localization Probabilistic localization is cur-
rently an active field of research. These methods are designed
to estimate the position of an object with associated uncertainty.
In an earlier work, (Fox et al., 1999) presented a Markovian
method to model the posterior distribution of an object’s posi-
tion given its pose. Their method would work only in a small
map and cannot be scaled to larger maps. For interested readers,
a more comprehensive reference about probabilistic approaches
is given in (Thrun et al., 2005). In contrast to the cited and
many other methods in this category, our approach is scalable
from small to large maps.

Visual Odometry & SLAM Visual Odometry (VO) (Scara-
muzza, Fraundorfer, (Scaramuzza et al., 2011)) is a dead-
reckoning approach where the position is incrementally estim-
ated by using the object’s past position and its relative motion
generated from an image sequence. These methods have typic-
ally good performance on public datasets, such as KITTI; how-
ever, they suffer from drift problem which accumulates over
time due to unknown scale unless a geo-tagged features are
used to correct the drift. In order to mitigate the drift prob-
lem, most methods integrate other sensory data observed from,
for instance, inertial sensors, magnetometers and range sensors
(Li et al., 2014). We should note that VO based methods do
not provide geolocation unless initial position and direction of
motion are known. Different from VO, SLAM based methods
jointly optimize relatively known landmark positions and ob-
jects position and may require loop closures during traverse to
overcome drift problem (Cadena et al., 2016). In our approach,
we use VO integrated with inertial sensor data to generate ob-
ject trajectory and do not require initial position or heading dir-
ection. Using this as input, our approach predicts the location of
the object on the map without loop closure requirements. Our
approach can mitigate drift problems due to the trajectory rep-
resentation used which will be discussed later.

Visual Localization & Deep Localization The visual local-
ization problem is to estimate the six degrees of freedom (DoF)
of an object by matching an image against a 3D scene model
(Sattler et al., 2011). A variation to this approach uses land-
mark recognition (Zamir et al., 2014). The main step in these
approaches is to efficiently represent a database and then match
a query image to this database. Although these methods have
good performances, building and maintaining a large georefer-
enced image database is neither trivial nor scalable. Further-
more, image matching is an expensive operation for real-time
localization applications. Recently, deep learning has been ap-
plied in localization problem which is referred to as deep local-
ization. (Chen et al., 2019) proposed a behavioral approach to
localization and navigation using several deep neural networks.
The behavior in their approach refers to actions taken at a node,
such as turn left, turn right and go straight. (Amini et al., 2019)
defined a variational network to conduct vehicle localization
and navigation which integrated probabilistic uncertainty and
deterministic control.

Map Matching Most methods, including the commercial
solutions, use map matching to map an external position sig-
nal, such as GPS or UWB, to aroad network (Newson, Krumm,
2009). The methods in this category are typically based on Hid-
den Markov Models (HMM) and are able to localize the object
by matching the GPS trajectory to the road graph. They ex-
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Figure 2. The pipeline for generating a sequence of motion features that is used in learning the map and retrieving the object location.
The last box in the figure is the learned map using RNN which provides object location.

plicitly require external signal and cannot be scalable to cases
when these signals are not available.

Others Our work is closely related to another body of work
(Brubaker et al., 2015, Gupta et al., 2016, Zha et al., 2019)
which use a map and a trajectory to perform the geolocaliz-
atoin. (Brubaker et al., 2015) developed a probabilistic localiz-
ation method using OSM and VO. (Gupta et al., 2016) presen-
ted an object localization approach based on stochastic traject-
ory matching using a brute-force location search which is time
consuming in large maps. In (Wei et al., 2019), a sequence to
sequence labeling method for trajectory matching using neural
machine translation network is proposed. This approach, how-
ever, was shown to work well on synthetic scenarios where the
input trajectory had no errors, while in reality all dead reck-
oning methods suffer from drift problems. In another paper,
authors of (Zha et al., 2019) used similar ideas to (Wei et al.,
2019) and showed their performance on synthetic trajectories.
In this study, we propose an RNN based map learning approach
that is resilient to errors in object trajectory that are generated
from visual and inertial sensors.

3. RECURRENT NEURAL NETWORK
LOCALIZATION

The proposed approach performs localization based on motion
trajectory learned using an RNN. The pipeline for the pro-
posed system consists of several key components, including
map representation, trajectory generation, trajectory represent-
ation, neural network architecture and map learning. We repres-
ent the map as a graph with nodes and edges. In our application,
the map is obtained from OSM. An object moving the scene is
assumed to be either moving on an edge or has arrived to a
node: this information is used to generate a sequence of motion
features as shown in Figure 2. The nodes in this representation
relate to making turns or moving a straight direction. The ob-
ject location can be determined from this sequence by running
it through the RNN which generates position candidates on the
topological map. In the following discussion, we describe each
of these components in more detail.

3.1 Problem Statement

Let a map be represented as a graph G with nodes V' and edges
E, where the nodes and edges have unique IDs. Given an ob-
ject trajectory —we use fusion of visual and inertial sensors to
generate the trajectory—, a motion feature sequence can be gen-
erated by quantizing turning angles and the distances traversed.
Using this sequence, the position of the object is defined as the
edge connected to the last node visited. Therefore, the object

localization problem becomes a variable-length sequential data
classification problem:

f:X oY (1

e Input feature sequence: X = (¢1,%2, ..., ¥n), ¥; €
R, (i =1,2,...,n), nis the length of sequence and v;
is it" angle;

e Output position label: Y = e;, e; € E, where £ =
{e1,e2,...,ex} is the output label space, k is the number
of edges in the topological map;

e Function: f is the trained RNN that learns the map.

3.2 OSM and Map Representation

OSM is a crowdsourced geographic database that provides free
and editable map data under the Open Database License. The
OSM data as shown in the Figure 3a consists of three basic ele-
ments: nodes, ways which we refer to as series of edges and
relations. Each node contains its GPS coordinates (latitude and
longitude) as meta data and a unique ID. The way is format-
ted as a collection of connected nodes forming edges and also
has a unique ID. Relations are used to represent relationships
between nodes and ways.

(b) Topological road map

Figure 3. The OSM data and the graph based road representation
used in our approach. Each node contains latitude and longitude
meta data.

We convert the OSM data to an undirected graph as shown in
the Figure 3b where the nodes copy the meta data from the
OSM nodes and the edges define linear road segments. Using
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Figure 4. Local coordinate system for angle computation and
quantization into discrete angle representation. The illustrated
figure uses 20 bins.

the node position data, we assign each edge the length informa-
tion which will be used to generate the augmented angle based
trajectory representation as discussed in Section 3.3. We use
this representation to generate a large number of training tra-
jectories with varying lengths. Note that, the OSM data used in
our paper contains the route type that specifies the a way as a
“walkable” or a “drivable” way. Without the loss of generality,
we only demonstrate our results on the “walkable” routes.

3.3 Trajectory Representation

The motion trajectory plays a critical role in our method.
In this section, we will describe two sensor and scale inde-
pendent trajectory representations that exploit turning angles:
{t1,...,%n}. We should note that the synthetic trajector-
ies used for training the RNN and the real trajectory acquired
from a mobile platform are not the same due to noisy data.
Therefore, we also introduce an augmented representation in
the form of an augmented angle sequence which resolves the
problems related to noisy data. The augmented trajectory is
generated by inserting virtual nodes in a uniform sample dis-
tance into a road segment between two nodes that have signi-
ficant turns computed from the edges connected to them. These
virtual nodes introduce additional turning angles, 3; = 180°.
In this new formation, the augmented representation becomes

{¢1»51»¢2762:537 .. 7¢n}

The turning angles are encoded in a local coordinate system
centered at the node as shown in the Figure 4. In order to
uniquely define the angles, a local coordinate system is gen-
erated at the entry direction of the node pointing in the turn-
ing direction. This representation guarantees turning 30° left
from turning 30° right are unique. Given a sequence of tra-
versed augmented nodes, {n;—1,ni,nit+1}, the turning angle
is computed by 6 = arccos I:IT where a = n; — n;—1 and
b = n;+1 — n;. Note that, the basis vectors of the coordinate
system are (a, ¢) : a L c¢. Using the basis vectors and projecting
b onto the basis vectors:

projy =b- a, (2)
projz =b-c,

provide the sign of the turning angle. Using this formula-
tion, a trajectory with n points results in n — 2 turning angles
{t1,...,%n—2} as shown in the left illustration in Figure 5a
where seven angles are computed from a randomly generated
trajectory with nine nodes. These turning angles are then
quantized into 20 bins, such that the representation becomes

o bean

oo £ 100 150

13
The position X (m)

(a) Synthetic trajectory (for training) and real trajectory
from VO (for testing).

~100 EY 100 1350 ~loo 50

o EY © B
The Position X (m) The Position X (m)

(b) Respective trajectory representations for the
trajectories above.

Figure 5. Illustrated trajectory representation, including
synthetic trajectory and real trajectories and respective
representations generated for the synthetic and real trajectory.

{91, ..., _s}. Note that, the choice of 20 bins is dependent
on the complexity of the road network and noise present in the
motion trajectory.

The approach for generating the two representations described
above works only with the map data because the nodes on the
map are known; and the synthetic trajectories generated from
the map can be used training the RNN. Real trajectory (right
illustration in Figure 5a), however, does not contain nodes. In
a real trajectory, we conjecture that the nodes occur at turning
angles. In order to overcome this, we estimate large turning
angles (see left illustration in Figure 5b) and use them as nodes
for the given trajectory. The sequence of angles at these nodes
can be used to represent the trajectory. For augmented angle
representation of real trajectory, the same pipeline can still be
applied due to the property of visual inertial odometry trajectory
which contains absolute metric information.

3.4 RNN based Localization

Both proposed trajectory representations contain a discrete se-
quence that enable us to use a deep sequential model in the form
of an RNN (Elman, 1990) as shown in Figure 6. RNN is com-
posed of layers of neurons that have feedback loops and have
the ability to process transient sequences. In our problem, this
architecture models the dependencies between the map nodes,
hence preserves the transition of state between consecutive time
steps. In the most general form, the RNN is the function of time
t that takes the current input x;, the previous hidden state h;_;
and produces a new state through a non-linear activation func-
tion f and g:

hi = f(W -2¢+U - hi—1+ br),

ye = g(V - b+ by). ®
where, U, V, W are weight matrices. h; and y; are hidden out-
put and final output, and by, and b, are bias terms. RNN pro-
cesses the input sequence one instance at a time and the out-
put sequence generated at each time instant would depend on
all previous inputs. This characteristics also has an important
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Figure 6. RNN with multiple outputs.
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implication that is suitable for our object localization problem:
RNN is capable of approximating arbitrary sizes of sequences
(Hammer, 2000).
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Figure 7. Structure of an RNN Cell and an LSTM Cell noting
the differences between the two.

As illustrated in Figure 6, RNN network is not only cyclic
but deep which makes training a difficult problem as it causes
gradient vanishing and gradient explosion, even when special
algorithms such as backpropogation through time (BPTT) are
used (Werbos et al., 1990). One solution that overcomes these
shortcomings is the Long Short-Term Memory (LSTM) net-
work (Hochreiter, Schmidhuber, 1997) which uses internal cyc-
lic mechanisms called gates that overcome gradient vanishing
problem. These gates illustrated in Figure 7 include forget gate
ft, input gate i, and output gate o; by using

o(Wy - [he—1, @] + by)
it = o(Wi - [he—1, 2] + bi)
oc(Wo - [hi—1,x¢] + bo)
¢t = tanh(We - [he—1, x¢] + be)
ct=ftOc—1+1it O
ht = or © tanh(ct).

“

where, x; is the input in time ¢. W and b represent weight
matrices and bias terms for each gate. ¢; and h; are the LSTM
cell output. ® denotes element-wise product. In this paper, due
to their improved performance we adopt LSTM to learn maps
and localize objects.

Trajectory localization problem can be thought of having three
DoF (z,y, z). In our approach this complexity is reduced into
one DoF due to the use of a sequence of turning angles at
nodes. Each angle in the sequence generated by the prepro-
cessing phase is fed into the LSTM network one by one as
shown in Figure 6. An embedding layer is attached to input
layer as a high-dimensional representation of discrete scalar in-
put. The output in each time step generates the edge on which
the object makes the last significant turn. We employ a softmax
function:

P(Y =i|z) = softmax(z) = Zkeizez ®)
3=0

“’:f i ““T

Figure 8. Localization example. The highlighted edge is the
estimated position with the highest probability.

to calculate the probability of each output class which corres-
ponds to unique edge id in a given map graph, where, z is the
final linear output. Y = 4 represents the edge ID which is equal
to 7. This equation shows the probability of the each edge with
the final output. Figure 8 illustrates an example output sequence
where the largest probability is observed at edge with ID 64
when the entire trajectory is used as input. This edge corres-
ponds to the final estimated location.

4. EXPERIMENTS

In this section, we evaluate the performance of our approach us-
ing real trajectory data generated by visual-inertial sensors on a
mobile phone. First, we describe how the synthetic training set
is generated and then present the details of the network training
step.

4.1 Training Dataset

For supervised approaches, training dataset inarguably the most
important piece in learning the parameters of a neural net-
work. A large-scale, balanced and high-quality training data
will provide a robust network that can generalize well to the
testing data. In our problem, the input trajectory and output
location labels of the training dataset need be generated simul-
taneously. For generating trajectories with location labels from
the map that is represented as a graph, we use a modified depth-
first search algorithm (Robert, 2002). Given a source node
and target node, depth-first search generates all paths with no
repeated edges. For limiting combinatorial explosion in data-
set generation, we limit maximum number of nodes between
source and destination to ten nodes. Given the node sequence,
algorithm first generates trajectory and then the angle sequence
computed using the trajectory. In Figure 9, we show the num-
ber of trajectories in the training set as a function of target node
id first by filtering trajectories with small number of nodes and
after inserting virtual nodes. We should note that before insert-
ing virtual nodes the lengths of filtered trajectory are between
2 and 8 and after augmenting the trajectory the length can be
up to 48. To balance the training set, we only select 34 output
classes where each class contains 1000 trajectory samples in the
training set as shown in the Figure 10. More detailed statistics
of training set is given in the Table 1.

Data Statistics
Topological Map 91 nodes, 155 edges
Trajectory Length 10 nodes

All Trajectories 576847

All Classes 153

Input Feature Space 20
Training Trajectories 34000
Training Output Classes 34

Table 1. The original dataset statistics.
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(a) Filtered angle case (b) Augmented angle case

Figure 9. Number of angles in the original trajectory after
filtering small angles and the augmented trajectory after
inserting virtual nodes.
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(a) Original dataset (b) Training dataset
Figure 10. Number of trajectories with different output edge id
in original and training dataset.

4.2 Training the Network

The training process for the proposed LSTM model using the
synthetic data discussed above is performed on NVIDIA TI-
TAN V GPU. Considering that learning map is a multi-class
classification problem, the cross-entropy function is used as the
objective function for measuring the training performance. The
optimization algorithm is chosen as the stochastic gradient des-
cent.

The hyperparameter settings are as follows: we used only one
layer LSTM connecting a linear layer. The size of hidden state
is set to 128 and learning factor is set to 0.01. The weights
are initialized as zero. We used batch size of one trajectory,
and the total number of iterations is set to 10 times the size of
training data. At each iteration the batch is generated randomly.
The benefit of using batch size of one is to eliminate padding
operation and have the ability to learn from variable length tra-
jectories. For comparing the different motion representations,
namely angle and augmented angle, we generated two separate
training sets (the augmented-angle sequence replaces the angle
sequence and all else is the same) and trained two identical net-
works, one for each representation. The convergence of training
phase for the angle representation are shown in the Figure 11
and Figure 12. The loss in the augmented angle representation,
as shown in the Figure 11b, is decreasing faster and is closer to
zero. Correspondingly, the confusion matrix in the second case
shows that the augmented angle representation is more accur-
ate. The classification accuracy for the two cases are given as
90.43% and 96.22% respectively.

4.3 Testing Dataset

The validation of our approach is performed using real traject-
ories generated by visual inertial odometry (VIO) applied on
data captured by a mobile phone. We should note that VIO per-
forms dead-reckoning and does not only produce a trajectory
with the right scale, in addition, the areas with relatively poor
texture introduces more noise to the trajectory.

o 100 200 300 400 500 600 700 [ 100 200 300 400 500 600 700
teration x500 Iteration x500

(a) Angle case (b) Augmented angle case

Figure 11. Number of angles in original and augmented angle
representation.

True edge id

2 3 51 6l 8 95 105
1000
800
600
400
200
0

(b) Augmented case
(96.22%)

predicted edge id
Predicted edge id

(a) Filtered case
(90.43%)

Figure 12. Confusion matrix

4.3.1 VIO Trajectory Generation Visual inertial odo-
metry is the process of estimating the pose (position and orient-
ation) of the object using both a camera and an inertial measure-
ment unit (IMU). For data collection, we used the open-source
MARS Logger (Hua et al., 2019) which is a mobile smart-
phone application developed for collecting synchronized video
and IMU (3 acceleration and 3 angular velocity) data from mo-
bile device. As the Figure 13 shows, an iPhone device is used
for collecting the data. The sensor fusion is performed by open-
source VINS-Mono approach (Qin et al., 2018) that provides
high-accuracy visual-inertial odometry in the form of three ro-
tation and three position data with absolute scale information.
The starting position for all collected trajectories are set to zero.
In Figure 14, five different trajectories with different number of
significant turning angles ranging from two to six are collected
by different people.

- —

Figure 13. VIO data collection and process.

4.3.2 Turning Angle Detection The generated motion tra-
jectory is simply a sequence of 3d points which is different
from the synthetic trajectories (sequence of nodes) used in train-
ing. Therefore, using the proposed representations, we first
identify the nodes where the object turns significantly. This
will provide the angle representation. For augmented angle
representation, the algorithm inserts auxiliary nodes at defined
sampling distance on the edge between the two nodes with sig-
nificant turns. In our approach, Douglas-Peucker algorithm
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(Douglas, Peucker, 1973) is used to convert the curvilinear seg-
ments to line segments. This algorithm can fit piecewise lines
to a curvilinear segment while minimizing the number of nodes
and as a by product, detects significant turning points. The Fig-
ure 5b is the line segment simplification example from real VIO
trajectory.

4.4 Localization Results and Analysis

We show five VIO trajectories in the Figure 14 as testing data.
Most trajectories are successfully located on the map. In case
(a) (b) and (e) (f), the results show the augmented angle repres-
entation is located, and angle only representation has failed. For
those failed cases, there are two main reasons. One is related
to the training dataset which does not have the noise present
in these trajectories. The other reason is related to identifying
the turning nodes from the noisy trajectory. In our experiments,
despite limited test examples, we observe that the augmented
trajectory representation obtained more robust localization per-
formance than pure significant turning angle based on the train-
ing loss, confusion matrix and test results.

5. CONCLUSION

In this paper, we introduce a map learning approach and pro-
pose a motion based localization using recurrent neural network
that can be employed in GPS contested environments and is in-
dependent of the sensors used to generate motion trajectories.
The localization problem has been formulated as a sequence
classification problem in a novel way that can easily be gen-
eralized to other topological maps. The training of the same
network structure with two different representations is shown
to provide different performances. The proposed method is val-
idated with real visual-inertial odometry data that shows objects
can be localized in a given map without assistance of external
signals. In the future, we will explore encoding localization
uncertainty and explore other map learning schemes using dif-
ferent neural network structures.
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