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ABSTRACT: 

 

In the field of autonomous navigation for robotics, one of the most challenging issues is to locate the Next-Best-View and to guide 

robotics through a previously unknown environment. Existing methods based on generalized Voronoi graphs (GVGs) have presented 

feasible solutions but require excessive computation to construct GVGs from metric maps, and the GVGs are usually redundant. This 

paper proposes a reduced approximated GVG (RAGVG), which provides a topological representation of the explored space with a 

smaller graph. To be specific, a fast and practical algorithm for constructing RAGVGs from metric maps is presented, and a RAGVG-

based autonomous robotic exploration framework is designed and implemented. The proposed method for constructing RAGVGs is 

validated with two known common maps, while the RAGVG-based autonomous exploration framework is tested on two simulation 

and one real-world museum. The experimental results show that the proposed algorithm is efficient in constructing RAGVGs, and 

indicate that the mobile robot controlled by the RAGVG-based autonomous exploration framework, compared with famous frontiers-

based method, reduced the total time by approximately 20% for the given tasks. 

 

 

1. INTRODUCTION 

One of the most challenging issues in mobile robotics is the 

ability to autonomously explore previously unknown spaces 

(Burgard, Moors, Stachniss, et al, 2005). With the help of an 

exploration strategy, mobile robots can autonomously decide 

where to go and build an environment map of a previously 

unknown space to accomplish a given task, such as map building  

(Stachniss, Burgard, 2003), search and rescue (Calisi, Farinelli, 

Iocchi et al, 2005), and 3D model building (Low, Lastra, 2006; 

Quintana, Prieto, Adán et al, 2016). Hence, a good exploration 

strategy will enable a mobile robot to cover a space completely 

in an acceptable amount of time (Grisetti, Stachniss, Burgard, 

2007). 

 

According to existing research, many clever methods have 

been proposed and successfully implemented, and the most 

common solutions are based on Next-Best-View (NBV) (Kulich, 

Kubalík, Přeučil, 2019; González-Banos, Latombe, 2002). The 

well-known frontier-based methods (Yamauchi, 1997; Visser, 

Van Ittersum, Jaime et al, 2007) are typical NBV-based solutions. 

Nevertheless, due to the complexity of metric maps, frontier-

based methods suffer from low efficiency in evaluating 

candidate points (CPs) (Tsardoulias, Iliakopoulou, Kargakos et 

al, 2017) and planning global paths (Thrun, 1998). To avoid the 

complexity of metric maps, topological maps are employed to 

model the environment. The generalized Voronoi graph (GVG) 

is a kind of topological map, and it performs well as a basis for 

sensor-based path planning in an unknown static environment 

(Choset, 1995). However, it remains difficult because the 

existing algorithms for constructing GVGs are usually complex 

and unstable (Nagatani, Choset, 1999; Choset, 2000). 

 

In this paper, we propose a straightforward and stable method 

 
*  Corresponding author  

for constructing a reduced approximated GVG (RAGVG) from 

an occupancy grid map (OGM) to represent the indoor 

environments and design an autonomous robotic exploration 

system using RAGVGs to accelerate the decision-making 

process.  

 

The remaining content of this paper is structured as follows. 

Section 2 reviews previous research and existing methods 

regarding autonomous robotics exploration and GVGs. Section 3 

provides a detailed explanation of RAGVGs and the proposed 

algorithms for constructing RAGVGs. Section 4 introduces the 

workflow and the other necessary modules in the proposed 

RAGVG-based framework. Section 5 presents the experimental 

design and discusses the results of the simulations and the real-

world experiment. In Section 6, we draw some conclusions about 

our research and discuss the prospects of autonomous robotic 

exploration. 

 

2. RELATED WORKS 

The mainstream approach regards exploration as an 

incremental NBV process. We focus on recent approaches based 

on frontiers and GVGs, respectively, since these have been the 

most successful and are most closely related to the proposed 

method. In addition, the common algorithms for constructing 

GVGs are also discussed. 

 

2.1 Frontier-based Exploration 

The frontier-based methods involve extracting frontiers 

between free space and unexplored space, and the NBV is 

selected from the CPs that are located on the centroids of the 

frontiers (Yamauchi, 1997). The main challenge of the frontier-

based method is how to select the NBV from the CPs. In the 

earliest versions (González-Banos, Latombe, 2002; Visser, Van 
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Ittersum, Jaime et al, 2007), a global utility function that linearly 

combines the distance and the estimation of information gain 

was proposed. Authors (Stachniss, Grisetti, Burgard, 2005) 

presented a decision-theoretic framework that considers the 

uncertainty and expected information gain to evaluate the cost of 

executing an action. Then, improved methods were proposed in 

the next few years. Basilico and Amigoni (Basilico, Amigoni, 

2011) extended the global utility function using a fuzzy measure 

approach that linearly combined several criteria. Carrillo and 

colleagues (Carrillo, Dames, Kumar et al, 2015; Carrillo, Dames, 

Kumar et al, 2018) designed a utility function based on Shannon 

and Rényi entropy theory according to the estimation of potential 

information gain. 

The frontier-based methods enjoy the advantage of easy 

implementation but suffer from low efficiency in evaluating CPs 

and low extensibility to various applications, especially in a 

large-scale space (Thrun, 1998). First, frontier-based methods 

usually generate a great number of CPs from many frontiers. As 

a result, most CPs are too meaningless and redundant so that a 

substantial amount of time is wasted on evaluating them. Second, 

to provide an important feature for evaluating CPs, all the global 

paths from the current location of the robot to each CP must be 

found. The heuristic algorithms (such as A*) can be helpful to 

find a path, but they are too inefficient to satisfy real-time 

requirements and cannot guarantee success when there are many 

scattered pixels in the OGM (Tsardoulias, Iliakopoulou, 

Kargakos et al, 2016; Valero-Gomez, Gomez, Garrido et al, 

2013). 

 

2.2 GVG-based Navigation and Exploration 

In recent years, topological graphs have been the focus of 

robotic navigation studies. In particular, a few studies focus on 

developing navigation algorithms and autonomous robotics 

exploration frameworks on the basis of generalized Voronoi 

diagrams (GVDs) and GVGs. Takahashi and Schilling 

(Takahashi, Schilling, 1989) presented a novel method for 

mobile robotics motion planning in a plane using GVD. Valero-

Gomez et al. (Valero-Gomez, Gomez, Garrido et al, 2013) 

provided a comprehensive view of the Fast Marching algorithm 

and presented an efficient method for planning safer mobile 

robot trajectories using GVD. Tsardoulias et al. (Tsardoulias, 

Iliakopoulou, Kargakos et al, 2016) demonstrated that the path 

planning algorithms based on the GVD are faster and have a 

higher success rate, and the resulting paths are guaranteed to be 

collision-free. Choset and his team (Choset, 1995; Choset, 2000), 

by extending the GVD from one dimension to multi-dimension, 

proposed the GVG and the hierarchical GVG (HGVG) and 

proved them sufficient for motion planning. Nagatani and 

Choset (Nagatani, Choset, 1999) proposed an algorithm to 

reduce the unnecessary edges and nodes of GVGs and presented 

an exploration method using a reduced GVGs (RGVGs). 

Tsardoulias et al. (Tsardoulias, Iliakopoulou, Kargakos et al, 

2017) compared three methods of target selection for full 

exploration of an unknown space based on approximated GVGs 

(AGVGs), and the experiments showed that the AGVGs can 

perform well in autonomous robotic exploration. 

The most crucial step for constructing a GVG from an OGM 

is extracting GVD by means of image thinning algorithms, e.g., 

the brushfire algorithm (Choset, Lynch, Hutchinson et al, 2005; 

Lau, Sprunk, Burgard, 2010), the Zhang-Suen algorithm (Zhang, 

Suen, 1984) and morphology-based algorithms (Saeed, Rybnik, 

Tabedzki, 2001; Saeed, Tabędzki, Rybnik et al, 2010).  

The GVG-based autonomous exploration methods have the 

advantages of high efficiency in decision making and better 

extensibility due to the topological representation of the 

explored space. Nevertheless, the complex steps for constructing 

GVG can be simplified and improved. The main problem of the 

GVG-based methods is that the most of existing algorithms for 

constructing GVGs from OGMs are usually complex and 

unstable (Tsardoulias, Serafi, Panourgia et al, 2014). Because the 

GVDs extracted by existing image thinning algorithms are often 

cracked, redundant and disordered, some post-processing steps 

have to be conducted to eliminate unnecessary nodes and edges 

(Nagatani, Choset, 1999), which potentially leads to information 

loss. In addition, the autonomous exploration system requires 

relatively efficient algorithms to construct GVGs to satisfy real-

time decision making. Thus, a fast and stable method for 

extracting qualified GVDs from OGMs is needed. 

 

3. CONSTRUCTION OF REDUCED APPROXIMATED 

GVGS 

The RAGVGs introduced in this section are exhaustive, non-

redundant and non-interrupted. Therefore, the improvements 

attained are that (I) the resulting RAGVGs can be directly 

regarded as the topological maps of the explored environment, 

without any outlier elimination or other post-processing steps, 

and that (II) the RAGVGs can cover almost every corner of the 

explored spaces with relatively small graphs. 

 

As illustrated in Figure 1, the proposed three-stage method for 

constructing RAGVGs from OGMs can be described as: (I) a few 

image pre-processing steps for extracting a smooth free area map, 

(II) the proposed corner rounding method and image thinning 

algorithm for generating an RAGVD and (III) a flood-fill 

algorithm for constructing the topological graph.  
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Figure 1. Workflow of constructing RAGVGs 

 

3.1 Pre-processing 

The OGM is a map of probabilities, so it cannot be directly 

used for indoor exploration and navigation. The free area map 

(FAM) represents the absolutely passable regions for mobile 

robots in the explored environment, e.g., at least 30 cm away 

from obstacles. An example of extracting the FAM from an OGM 

is shown in Figure 2. First, a grey value threshold 𝑥 ≥ 𝑡1  is 

applied on the OGM; then, the small outliers are removed through 

a connected component analysis; finally, a buffer of the obstacle 

area, which is extracted by a grey value threshold 𝑥 ≤ 𝑡2 , is 

subtracted. 

 

      
Figure 2. The OGM (left); The buffer of obstacle area (mid); 

 (c) The free area map (right).  

 

3.2 Eliminating the Weak Edges 

3.2.1 Preliminary: Choset et al. (Choset, 1995) defined the GVD 

and the GVG by means of a distance function 𝑑𝑖(𝑥)  and a 
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distance gradient 𝛻𝑑𝑖(𝑥). Let two obstacles in the metric map 

be point sets 𝐶𝑖 and 𝐶𝑗, and the Two-Equidistant Face ℱ𝑖𝑗  and 

the Two-Voronoi Set ℱ2  can be termed as Eq.(1) and Eq.(2), 

respectively. 

 

 ℱ𝑖𝑗 = {
𝑥 ∈ ℝ2|𝑑𝑖(𝑥) = 𝑑𝑗(𝑥),𝛻𝑑𝑖(𝑥) ≠ 𝛻𝑑𝑗(𝑥),

∀𝑘 ≠ 𝑖, 𝑗: 𝑑𝑖(𝑥) ≠ 𝑑𝑘(𝑥)
},  (1) 

 

where 𝑑𝑖(𝑥) is the minimum distances among point 𝑥 and all 

points in obstacle set 𝐶𝑖, and gradient 𝛻𝑑𝑖(𝑥) is a unit vector in 

the direction from point 𝑐0 to 𝑥, where 𝑐0 is the nearest point 

to 𝑥 in 𝐶𝑖. 

 

 ℱ2 = ⋃ ⋃ ℱ𝑖𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 .                (2) 

 

As is shown in Figure 3, ℱ𝑖𝑗  is the set of points equidistant to 

𝐶𝑖 and 𝐶𝑗, and ℱ2 is the set of points equidistant to two or more 

obstacles. Hence, ℱ2  can be regarded as the GVD of the 2D 

space that consists of obstacles set {𝐶𝑖}.  

 

  
Figure 3. An example of a GVG. 

 

The GVG is a topological graph constructed from the GVD. 

To define the GVG, the Three-Equidistant Face ℱ𝑖𝑗𝑘 and Three 

Voronoi Set ℱ3 is defined as Eq.(3) and Eq.(4), respectively. In 

Figure 3, ℱ𝑖𝑗𝑘 is the point equidistant to 𝐶𝑖, 𝐶𝑗 and 𝐶𝑘, which 

is also the joint of ℱ𝑖𝑗  , ℱ𝑗𝑘   and ℱ𝑖𝑘 ; then, ℱ3  is the set of 

points equidistant to three or more obstacles. Hence, ℱ3 can be 

regarded as the joints of the GVD. 

 

 ℱ𝑖𝑗𝑘 = ℱ𝑖𝑗 ∩ ℱ𝑖𝑘 ∩ ℱ𝑗𝑘 = ℱ𝑖𝑗 ∩ ℱ𝑖𝑘.          (3) 

 ℱ3 = ⋃ ⋃ ⋃ ℱ𝑖𝑗𝑘
𝑛
𝑘=𝑗+1

𝑛−1
𝑗=𝑖+1

𝑛−2
𝑖=1 .            (4) 

GVG = {ℱ2, ℱ3}.                     (5) 

 

With these definitions above, in a 2D space, the GVG can be 

defined as Eq.(5), where ℱ2  denotes the set of Generalized 

Voronoi Edges and ℱ3  represents the set of Generalized 

Voronoi Vertexes. Having edges and vertexes, the topological 

graph GVG can be constructed after computing its distance 

matrix. 

 

Weak edges

      
     (a)                       (b) 

Figure 4. (a) A GVD; (b) A reduced approximated GVD. 

 

However, the GVGs are usually redundant because weak 

edges exist at some concave walls (e.g., corners), as is depicted 

in Figure 4(a). These weak edges are unnecessary for robotic 

exploration and navigation, and they increase the size of the 

topological graph with information of low value. The RAGVG 

proposed in this paper is a topological graph constructed from a 

reduced approximation of GVD, as depicted in Figure 4(b). 

Without any weak edges, the RAGVGs consist of pivotal nodes 

and edges. Moreover, it is confirmed in our research that the 

RAGVGs can also preserve almost the same connectivity and 

coverage information as the original GVGs. 

 

3.2.2 Corner Rounding Method: A few studies (Nagatani, 

Choset, 1999; Lau, Sprunk, Burgard, 2010; Tsardoulias, Serafi, 

Panourgia et al, 2014) noticed these redundant weak edges and 

designed some post-processing methods to eliminate weak edges 

from original GVGs. We investigate the reason why the weak 

edges occur, and propose a simple method for eliminating the 

weak edges.  

 

1

3

2
4

 
Figure 5. The reason for the occurrence of the weak edges, 

where “1” and “2” refer to rough wall surfaces, and “3” and “4” 

refer to concave wall corners. 

 

We find that there are two conditions where exist weak edges, 

as shown in Figure 5. One is rough wall surface that leads to a 

number of local maximums of distance, and the other one is 

concave wall corner that leads to one local maximum of distance. 

In fact, two conditions can be summarized into one common 

reason, that is, concave areas where concave angles exist. 

 

 
Figure 6. Changing the mitre corner ∠𝐸𝐻𝐺  to a rounded 

corner by adding 𝑅𝐶𝑖𝑗, which is shown by the red pixels. 

 

To eliminate weak edges, we employ image processing 

operations to deal with these concave areas. For rough wall 

surfaces, it is quite easy to employ morphological operations to 

fill the holes and remove the bumps on the rough wall surfaces. 

For concave wall corners, the local maximum of distance can be 

eliminated by changing the mitre corner into rounded corner, and 

an example is shown in Figure 6. 

 

The rounded corner is built by adding an obstacle 𝑅𝐶𝑖𝑗 =

▱𝐸𝐹𝑖𝑗𝑘𝐺𝐻 − 𝐸𝐹𝑖𝑗𝑘𝐺 , where 𝐸𝐹𝑖𝑗𝑘𝐺  is a circular sector of a 

round face 𝑅𝐹 termed as Eq.(6).  

 

 𝑅𝐹 = {𝑃 ∈ ℝ2|‖ℱ𝑖𝑗𝑘 − 𝑃‖ ≤ 𝑑𝑘(ℱ𝑖𝑗𝑘)}.        (6) 

 

It is easy to prove that no two-equidistant faces exist in 𝐸𝐹𝑖𝑗𝑘𝐺 

because the minimum distance 𝑑𝑖𝑗(𝑥)  from any point 𝑥 ∈

𝐸𝐹𝑖𝑗𝑘𝐺  to 𝑅𝐶𝑖𝑗  is unique. Hence, the weak edge ℱ𝑖𝑗   is 

eliminated. Note that this elimination method can be applied to 

the concave wall corners with ∠𝐸𝐻𝐺 < 𝜋. 
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However, it is difficult and time-consuming to locate point 

ℱ𝑖𝑗𝑘  and 𝐻  because of the complexity of the FAM. We thus 

have to look for another practical method to change mitre corners 

into rounded corners. We tested a number of smoothing filters 

and found that the combination of a median filter and an grey 

value threshold can approximately make all corner rounded. 

First, a median filter, whose size 𝑠 can be computed as Eq.(7), 

is applied on the whole FAM; then a threshold 𝑡, which is an 

empirical value, is used to retain the pixels 𝑥 ≤ 𝑡 to obtain a 

smoothed FAM. The local differences between a FAM and its 

smoothed version is shown in Figure 7. 

 

𝑠 = [
3.0

𝑅
] + [

3.0

𝑅
] %2              (7) 

 

where 𝑅, the resolution of the OGM, is defined as one pixel in 

the OGM represents an 𝑅 𝑚 × 𝑅 𝑚 region in the real-world, 

and note that 𝑠  must be odd so there exists an addition item 

[
3.0

𝑅
] %2. 

 

FAM Smoothed FAM

 
Figure 7. Parts of FAM (left) and smoothed FAM (right). 

 

3.3 Constructing RAGVGs 

KMM image thinning algorithm (Saeed, Rybnik, Tabedzki, 

2001) can be applied to obtain an RAGVD from a SFAM without 

any rough wall surfaces or concave wall corners. The resulting 

RAGVDs are “approximated” because they does not strictly 

satisfy the rules about the distance transformation of GVD as 

mentioned above. Nevertheless, the RAGVDs are very close to 

GVDs, and this kind of approximation is provably sufficient for 

robotics navigation (Nagatani, Choset, 1999). 

 

 
Figure 8. Four kinds of elements of an RAGVG. 

 

To represent connectivity and accessibility, an RAGVD 

should be transformed into an RAGVG. An example of an 

RAGVG is shown in Figure 8. Four kinds of elements should be 

extracted: (1) a free endpoint should be transformed into an end, 

the degree of which is 1; (2) an intersection should be 

transformed into a joint, the degree of which is larger than 1; (3) 

an edge connecting an end with a related joint should be 

transformed into a branch and (4) an edge connecting two joints 

should be transformed into a link. 

 

The approach of extracting four elements from the RAGVD is 

modified from the flood-fill algorithm, which is easy to 

determine and implement. Each end is bound to connect with one 

specific joint through a specific branch, and all links can roughly 

represent the primary structure, while all branches play a 

relatively unimportant role. Hence, it is reasonable to divide the 

RAGVG into surrounding network and main network. The set of 

all branches and their related ends and joints is regarded as the 

surrounding network. The sub-graph consisting of all links and 

their related joints is regarded as the main network. In addition, 

the distance matrices DS and DM according to the lengths of the 

branches and links are constructed as Eq.(8) and Eq.(9). 

 

𝐷𝑆
𝑖,𝑗

= {
𝑙𝑒𝑛𝑔𝑡ℎ𝑖,𝑗 , if 𝑖-th end is  connected with 𝑗-th joint

−1, else
, (8) 

𝐷𝑀
𝑖,𝑗

= 𝐷𝑀
𝑗,𝑖

= {
𝑙𝑒𝑛𝑔𝑡ℎ𝑖,𝑗,if 𝑖-th joint connects with 𝑗-th joint

−1, else
,(9) 

 

where lengthi,j is a measure of how long the corresponding 

edge is, e.g., the number of pixel points. 

 

4. FULL-COVERAGE EXPLORATION USING 

RAGVGS 

The RAGVG-based autonomous exploration framework 

presented in this section transforms the problem representation 

from a Euclidean metric map into a topological graph space 𝒢 =
{𝐸, 𝑉}. This framework is expected to make improvements that 

(III) CPs generated from an RAGVG are distinctly small in size, 

which leads to much less time consumption for decision making. 

In addition, (IV) graph-based path planning is extremely fast, and 

the global paths generated from RAGVGs are collision-free. 

Note that our research is for single robot exploration; however, 

the proposed method can be expanded to multi-robot 

collaboration conditions. 

 

The whole workflow of the proposed RAGVG-based 

autonomous exploration framework is presented as Figure 9, and 

the steps are presented as follows: 

Step (1): While the robot is moving, an OGM of the explored area 

is being updated in real time; 

Step (2) An RAGVG is constructed for the current OGM; 

Step (3) CPs are extracted from the nodes of the RAGVG; 

Step (4) The CPs are evaluated by applying a Multi-Criteria 

Decision Making (MCDM) approach on some features to select 

the NBV; 

Step (5) The robot is navigated to the NBV and the exploration 

strategy restarts from step (1) until there is no valid CP left after 

the filtering in step (3). 
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Figure 9. Mobile robot exploration framework. 

 

In the previous section, the solutions of step (1) and (2) have 

already been presented. This section will illustrate the employed 

methods for the remaining steps, including how to select the NBV 

from CPs using the MCDM approach and how to quickly find a 

global path from the location of the robot to the NBV. 

 

4.1 Features of CPs 
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To determine the NBV, each CP piS has to be evaluated 

according to some features. All the features taken into 

consideration constitute the feature set F. The utility uj(pi) is 

calculated with respect to the j-th feature of pi according to 

certain rules, assuming that uj(pi)[0, 1] and that the larger the 

utility is, the better the CP. Thus, naturally, if there are n features 

in F, pi can be measured with a utility vector 𝑈(𝑝𝑖) =

(𝑢1(𝑝𝑖), 𝑢2(𝑝𝑖), . . . , 𝑢𝑛(𝑝𝑖)). 

 

In the proposed exploration strategy, a CP p is evaluated 

according to the following features: (1) A(p): the estimation of 

the unexplored grids that would be sensed from p; (2) D(p): the 

length of the global path from the location of the robot to p; (3) 

T(p): the sum of the turning angles of the global path; (4) C(p): 

the coverage condition of p. 

 

Specifically, A(p) is computed using a casting approach within 

five metres. This approach simulates casting a 5-metre single 

laser ray at intervals of π/180 from p, and estimates the potential 

information gain by counting the sum of unexplored grids that 

can be sensed by these 360 laser rays. D(p) is the length of the 

global path; it is calculated by the sum of Euclidean distances of 

the sampling points of the global path. The other feature T(p) 

describes the complexity of the global path with the sum of the 

turning angles.  

 

C(p) is used to determine whether p has been sensed, which is 

important information for avoiding omission and repetition. The 

estimation of C(p) depends on the specialty of the external sensor, 

which determines the updating on the coverage occupancy map 

(COM). A COM estimates the group of grids that have been 

detected by specific sensors. Figure 10 shows a COM updated 

by a 3D LRF whose field of view is 2π. With a given COM, if 

CG is established as the set of covered grids, then C(p) can be 

computed according to a distance function as Eq.(10). 

 

𝑥𝑢𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∉𝐶𝐺 𝐷𝑖𝑠𝑡 (𝑝, 𝑥),             

𝑥𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐶𝐺 𝐷𝑖𝑠𝑡 (𝑝, 𝑥),             

𝐶(𝑝) = {
−𝐷𝑖𝑠𝑡(𝑝, 𝑥𝑢𝑐), if 𝑝 ∈ 𝐶𝐺

𝐷𝑖𝑠𝑡(𝑝, 𝑥𝑐), if 𝑝 ∉ 𝐶𝐺
 .         (10) 

 

 
Figure 10. Coverage occupancy map. 

 

These four features work together to determine the “best” CP 

as the NBV. The utility of each of these features is computed and 

linearly normalized to [0, 1] as Eq.(11). 

 

𝑢𝐴(𝑝) =
𝐴(𝑝)−𝑚𝑖𝑛𝑞∈𝐶𝑃 𝐴(𝑞)

𝑚𝑎𝑥𝑞∈𝐶𝑃 𝐴(𝑞)−𝑚𝑖𝑛𝑞∈𝐶𝑃 𝐴(𝑞)
,               

𝑢𝐷(𝑝) = 1 −
𝐷(𝑝)−𝑚𝑖𝑛𝑞∈𝐶𝑃 𝐷(𝑞)

𝑚𝑎𝑥𝑞∈𝐶𝑃 𝐷(𝑞)−𝑚𝑖𝑛𝑞∈𝐶𝑃 𝐷(𝑞)
,        (11) 

𝑢𝑇(𝑝) = 1 −
𝑇(𝑝)−𝑚𝑖𝑛𝑞∈𝐶𝑃 𝑇(𝑞)

𝑚𝑎𝑥𝑞∈𝐶𝑃 𝑇(𝑞)−𝑚𝑖𝑛𝑞∈𝐶𝑃 𝑇(𝑞)
,             

𝑢𝐶(𝑝) =
𝐶(𝑝)−𝑚𝑖𝑛𝑞∈𝐶𝑃 𝐶(𝑞)

𝑚𝑎𝑥𝑞∈𝐶𝑃 𝐶(𝑞)−𝑚𝑖𝑛𝑞∈𝐶𝑃 𝐶(𝑞)
.               

 

4.2 MCDM Approach 

An evaluation system must be developed to assign each CP 

pS a score, and then choose the CP with the highest score as 

the NBV. Nevertheless, a multi-dimensional utility vector U(p) 

cannot be directly used to rank CPs. Hence, the MCDM 

approach (Basilico, Amigoni, 2011) is employed to evaluate CPs, 

which provides an aggregation function to define a global utility 

using a Choquet integral, thus yielding a single value score based 

on U(p) and the features set F. 

 

In MCDM approach, the core is the value of the normalized 

fuzzy measure function that is defined for a group of features 

GF. This function is employed to pre-define the overall 

contribution of the group of features to the aggregation function 

according to their dependency relationships. Specifically, the 

overall contribution of G should be less than the simple sum of 

the utilities of G that have redundant relationships and should be 

larger when synergistic relationships exist. Two examples of 

normalized fuzzy measure function can be found in section 5.2.3. 

 

4.3 Global Path Planning 

With the RAGVG, it is easy to find a collision-free path from 

any starting location Ls to any other destination location Ld using 

a slight extension of the Dijkstra algorithm. However, Due to the 

geometrical characteristics of an RAGVD, the global path that 

consists of the edges of the RAGVG is complex and redundant, 

as shown in Figure 11(a). Hence, Douglas-Peucker algorithm 

(Hershberger, Snoeyink, 1992) is employed to simplify the path 

curve. As shown in Figure 11(b), the simplified path is 

represented by a series of critical path points, which is more 

conducive to motion planning instead of continuous pixel chains. 

In addition, it is obvious that the simplified path is more 

straightforward than the naive path in terms of time and energy 

consumption. 

 

        
Figure 11. Naive path (left); Simplified path (right) 

 

5. EXPERIMENTS 

In this section, two categories of experiments will be presented 

to suggest the validity, practicability and advancement of the 

proposed method. In section 5.1 we tested the performance of the 

proposed method for quickly constructing an RAGVG. And in 

section 5.2 and 5.3 we conducted the proposed RAGVG-based 

full-coverage exploration framework, in simulations and real-

world environment, respectively. 

 

5.1 Experiment on RAGVG Construction 

5.1.1 Comparative Algorithms, Data and Metrics: From the 

literature, we found two typical thinning algorithms, including 

the brushfire algorithm (Choset, Lynch, Hutchinson et al, 2005) 

and the Zhang-Suen algorithm (Zhang, Suen, 1984). After some 

minor modifications, their serial and parallel versions are 

compared with the proposed method. 

 

          
(a) ACES3 of Austin         (b) Intel Research Lab 

Figure 12. Famous SLAM maps. 

 

Two famous SLAM maps (see Figure 12) are employed to 
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compare the performance of the thinning algorithms mentioned 

above. All of the OGMs are generated by Gmapping-SLAM 

developed by Cyrill Stachniss et al. (Stachniss, Udo, Grisetti et 

al, 2018) on two common data sets. The first map contains 

connecting rooms, rooms on both sides of a long corridor, 

vertical and parallel corridors, and few clusters. The third map is 

the hardest one because it is a relatively large indoor space with 

plentiful clusters that exist in almost every room. 

 

To measure the performance of all the algorithms, some 

parameters are recorded or computed as metrics, including (1) 

TT, time consumption of the thinning process; (2) TG, time 

consumption of constructing the topological graph; (3) SNG, 

sum of the nodes in the resulting graph; (4) TL, total length of 

the edges in resulting graph and (5) IR, information retention of 

the resulting graph. The information retention, which is 

computed by comparing a constraint buffer of the GVG and the 

original OGM, indicates the completeness of a GVG. 

 

5.1.2 Result and Discussion: Ten groups of valid results are 

collected for each algorithm on each OGM, and the average 

values of the corresponding metrics are shown in Table 1. The 

resultant RAGVGs constructed by the proposed method are 

shown in Figure 13. 

Map Algorithm Version 
TT / 

ms 

TG / 

ms 
SNG TL / p 

IR 

/ % 

1 

Brushfire 
Serial 366 

60 149 7246 99.8 
Parallel 327 

Zhang-

Suen 

Serial 459 
48 108 5964 93.6 

Parallel 151 

Proposed 
Serial 321 

31 76 4509 99.7 
Parallel 130 

2 

Brushfire 
Serial 1127 

396 468 22,781 99.8 
Parallel 912 

Zhang-

Suen 

Serial 1943 
324 383 17,309 91.0 

Parallel 989 

Proposed 
Serial 910 

96 169 12,543 99.8 
Parallel 539 

Table 1. Results for constructing RAGVGs. 

 

From the perspective of the time consumption of the thinning 

process, the proposed algorithm outperforms the other two 

algorithms for both serial and parallel versions. For the 

processing of constructing GVGs, the GVDs generated by the 

brushfire algorithm are extremely redundant, and thus it costs 

more time to construct a larger topological graph. Furthermore, 

the GVDs generated by the Zhang-Suen algorithm tend to be 

fragmented, and thus it costs more time to construct a number of 

interrupted topological graphs. For information retention, the 

GVGs constructed by the brushfire and the proposed algorithms 

covered more than 99% of the area, but the Zhang-Suen 

algorithm missed a portion of the area due to its fragmented 

GVDs. 

 

  
Figure 13. RAGVGs constructed by the proposed algorithm. 

 

It can be clearly seen that the RAGVG constructed by the 

proposed method can simplify the free area in an OGM into a 

topological representation. Thus, this RAGVG is detailed to 

navigate the mobile robot with its nodes and edges. On the one 

hand, the proposed algorithm can address large-scale OGMs 

with much less time consumption than other algorithms. On the 

other hand, the RAGVD generated by the proposed algorithm is 

much less redundant and non-interrupted. 

 

5.2 Simulation on Full-Coverage Exploration 

5.2.1 Comparative Method and Metrics: Two tasks, point 

cloud capture and search and rescue, are used to evaluate the 

performance of the proposed RAGVG-based autonomous 

exploration framework. In addition, another popular exploration 

strategy based on greedily traversing frontiers (Visser, Van 

Ittersum, Jaime et al, 2007) is used to compare our method.  

 

A number of metrics are used to evaluate the frontier-based 

method and the proposed method, including (1) CA, sum of the 

coverage area over time; (2) TT, total time consumption for 

finishing exploring the environment; (3) TN, time consumption 

for selecting the NBV in one single decision-making procedure; 

(4) SC, sum of CPs to be evaluated in one single decision-making 

procedure; and (5) PC, percentage of CPs whose global utility is 

larger than half of the maximum global utility in one single 

decision-making procedure. In addition, for the search and rescue 

task, one more metric is referred to as (6) PF, sum of trapped 

people found by the robot over time. 

 

5.2.2 Scenario: An indoor scenario, whose 3D model is shown in 

Figure 14, is constructed to simulate autonomous exploration. 

This indoor scenario involves a 20 m×20 m office environment 

with small rooms, obstacles and a short corridor. For the point 

cloud capture task, a simulative 3D LRF is employed to collect 

point clouds. In the search and rescue task, trapped people are 

randomly distributed in the rooms and can be detected by a 

simulative biosensor. 

 

 
Figure 14. 3D model of the scenario. 

 

5.2.3 Fuzzy Measure Function of MCDM: The specific values 

of the fuzzy measure function μ for the two tasks are presented in 

Table 2, in which μ1(G) places greater importance on the 

coverage information and μ2(G) places greater importance on the 

potential information gain and distance. 
Group of features G μ1(G) μ2(G) Group of features G μ1(G) μ2(G) 

A 0.25 0.4 C, D 0.8 0.6 

C 0.4 0.15 C, T 0.5 0.3 

D 0.25 0.35 D, T 0.3 0.4 

T 0.1 0.1 A, C, D 0.95 0.95 

A, C 0.75 0.6 A, C, T 0.85 0.8 

A, D 0.6 0.85 A, D, T 0.6 0.9 

A, T 0.4 0.55 C, D, T 0.7 0.7 

Table 2. Values of the fuzzy measure function 

 

5.2.4 Result and Discussion: The results show that all three 

methods are qualified to complete full-coverage exploration tasks 

in this indoor space. And the progression of autonomous 

exploration controlled by MCDM with μ1(G), μ2(G) are exhibited 

in Figure 15, in which the pink pixels represent the coverage area 

and the yellow polyline indicates the trajectory of the mobile 

robot.  

Table 3 presents some comparisons of the key components in 

the three methods. The two proposed methods require 

approximately 20% less time than the frontier-based method for 

full-coverage exploration. One of the improvements of the 

proposed method is that it takes approximately 85% less time 
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than the frontier-based method to select the NBV, which can be 

partly explained by the SC and PC metrics. On the one hand, the 

proposed methods’ time costs are mainly in constructing an 

RAGVG from an OGM, whereas the frontier-based method’s 

time cost is mainly in finding the global path with the A* 

algorithm. On the other hand, the sum of CPs generated from an 

RAGVG is substantially less than that of the frontier-based 

method. Overall, compared with the frontier-based method, 

although the proposed method requires time to construct 

RAGVGs, the proposed method saves much more time in path 

finding. 

 

40 s 133 s

221 s 304 s   

47 s 154 s

238 s  
(a)                     (b) 

Figure 15. Simulation progression controlled by  

(a) MCDM-μ1(G) and (b) MCDM-μ2(G) 

 
Methods  TT / s TN / ms SC PC / % 

MCDM-μ1(G) 

Max 332 182 8 79.3 

Average 320 163 5.1 48.1 

Min 304 138 3 24.8 

MCDM-μ2(G) 

Max 327 171 9 81.7 

Average 319 162 5.4 46.2 

Min 302 125 3 19.7 

Frontier-based 

Max 419 1370 26 38.5 

Average 392 1258 22.0 23.2 

Min 375 943 18 12.1 

Table 3. TT and TN values for the simulations 

 

Coverage in Figure 16 represents the area of the indoor 

space scanned by 3D LRF, and in Figure 17, the trapped people 

found represent how many people the mobile robot found in the 

simulated building. The results clearly show that the task 

processes controlled by the two proposed methods are better than 

that of the frontier-based method. 

 

 
Figure 16. Coverage 

 

 
Figure 17. Trapped people found 

 

5.3 Experiment in a Real-world Museum 

The proposed method was also implemented on a real mobile 

robot, for capturing the point clouds of a real-world museum.  

 

5.3.1 Scenario and Equipments: The real-world scenario is a 45 

m×27 m indoor museum that lies on the left side of the building 

in Figure 18(a). More intuitively, one part of the interior and a 3D 

indoor model of the museum is respectively shown in Figure 18(b) 

and (c). 

 

As is shown in Figure 19, our mobile robot is equipped with 

two 2D LRFs, the scan range of each of them is 30 m, 270˚. The 

fixed LRF is used for SLAM while the rotating LRF is used for 

capturing 3D point clouds. At each step, the mobile robot stops at 

the location of NBV, and it takes 12 seconds to finish capturing 

at this station. 

 

   
Figure 18. 2.5D building model (left); Part of the interior of the 

museum (mid); 3D indoor model of the museum (right) 

  

 
Figure 19. The design of our robot (left); our real robot (right) 

 

5.3.2 Result and Discussion: The progression of the experiment 

of point cloud capture task in the real-world museum is shown in 

Figure 20. It took 576 seconds to finish capturing 15 station point 

clouds, which indicates that the mobile robot stopped more than 

180 seconds. Hence, it only took less than 396 seconds to finish 

full-coverage exploration in this museum. The resulting point 

clouds is shown in Figure 21, and it can be obviously seen that 

there barely exists missing part in the integrated point clouds. 

And it can be claimed that the proposed method also performs 

well for real-world scenario and real robot. 

 

       
164 s         339s          482 s        576 s 

Figure 20. Autonomous exploration controlled by MCDM-μ2(G) 

 

 
Figure 21. The resulting point clouds after removing the roof 

 

6. CONCLUSIONS 

Autonomous exploration is an important ability of mobile 

robotics, and the main aim of research on this topic is to guide a 

robot to explore a previously unknown space while consuming 
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less time. This paper presents a novel autonomous exploration 

system based on an RAGVG, and the discovered improvements 

are as follows: 

-- A fast, robust and parallel algorithm was proposed for 

constructing an RAGVG from an OGM; 

-- The efficiency of selecting the NBV was markedly improved 

by generating more competitive CPs and by using fast graph-

based path planning; 

-- The number of local obstacles that must be avoided was 

reduced by means of a collision-free global path that is 

rapidly generated from an RAGVG. 

 

Simulation and real-world experiments show that the 

proposed algorithm can generate an RAGVD quickly and 

robustly that is one-pixel-wide, non-interrupted and relatively 

non-redundant, and the RAGVG constructed from this RAGVD 

can represent almost all the connectivity of an indoor space with 

fewer edges and nodes. Selecting the NBV based on an RAGVG 

takes 85% less time than the frontier-based method. Combining 

the improvements mentioned above, the total time consumption 

for a full-coverage exploration by the proposed method is 

approximately 20% less than that by the frontier-based method. 

 

However, some factors still exist that affect the efficiency of 

autonomous exploration. From the perspective of graph theory, 

the RAGVGs are still redundant and can be further simplified. 

In terms of the MCDM approach, the values of the fuzzy 

measure function are empirical. These topics should be explored 

further. 
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