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ABSTRACT:

Collaborative swarms of robots/UAVs constitute a promising solution for precision agriculture and for automatizing agricultural pro-
cesses. Since agricultural fields have complex topologies and different constraints, the problem of optimized path routing of these
swarms is important to be tackled. Hence, this paper deals with the problem of optimizing path routing for a swarm of ground robots
and UAVs in different popular topologies of agricultural fields. Four algorithms (Nearest Neighbour based on K-means clustering,
Christofides, Ant Colony Optimisation and Bellman-Held-Karp) are applied on various farm types commonly found around Europe.
The results indicate that the problem of path planning and the corresponding algorithm to use, are sensitive to the field topology and to
the number of agents in the swarm.

1. INTRODUCTION

By 2050, nearly 10 billion people will live on the planet. Look-
ing at the population predictions, the first question which comes
to mind is: ”is there enough food for our future?” Unfortunately,
current worldwide crop yields (even with its existing increasing
trends) would not satisfy this increasing food need. Based on the
current crop yields, researchers suggest production of agricultural
yields must be increased by roughly 50% (Article, 2019). In or-
der to close this production gap, using high-tech and automated
precision farming systems, as well as approaches borrowed from
organic farming have seen as the ultimate way which could boost
yields in the existing farming places (Article, 2019). Therefore,
researchers have started to focus on finding the best ways to use
intelligent systems and robotics for overcoming the food security
problem in times of climate change (Balafoutis et al., 2017).
Precision agriculture is nowadays the name given to technologi-
cal developments for assessing and responding to local variations
and emergencies in crop health on farms. It involves collecting,
interpreting and acting on data which has potential to be automa-
tized with robotic systems. A popular metric to learn the vegeta-
tion health is to look at the normalized difference vegetation in-
dex (NDVI) (Weier and Herring, 2000). It is calculated from im-
ages and indicates whether a region contains healthy vegetation
or not. Satellites or robots (especially unmanned aerial vehicles,
called UAVs (Hassler and Baysal-Gurel, 2019)) are used to col-
lect such images over farm lands. A current research area is im-
proving this automation, in particular managing robot swarms for
precision agriculture (Carbone et al., 2018). This includes auto-
matic design of ways that UAVs do exploration, collaboration on
tasks, communicate and find the optimal fleet formations. Since
ground robots have limitation with mobility (not being able to go
over high vegetation and collect images of the area from a larger
viewing point), the most appealing automation solution for agri-
cultural fields have been based on UAVs. Therefore, some remote
sensing researchers have already proposed algorithms for UAV
based crop monitoring (Valente et al., 2019), (Finn et al., 2019),
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(D’Urso et al., 2018), (Honkavaara et al., 2012), (Ok and Ok,
2017). However, usage of multiple UAVs (UAV swarms) is dis-
cussed in very limited number of studies (Goel et al., 2016), espe-
cially in relation to agricultural applications (Hassler and Baysal-
Gurel, 2019). This is mainly because of difficulty of path plan-
ning for multiple robots who are trying to find the optimal paths
for themselves in order to work collaboratively on a field. Since
this multiple-agent path planning field is still open for intelligent
algorithms to guide UAVs on different farm lands, herein we fo-
cus on an aspect of collective exploration, path planning through
agriculture fields. That is, allocating crops and assigning paths
for each UAV (robot) to follow, in order to complete the tasks
in an efficient way as a team. Two main scenarios are consid-
ered. In the first, the goal is to plan paths through the entire
field. In literature, this is known as the coverage path planning
(CPP) problem (Oksanen and Visala, 2009b). The second sce-
nario is to plan paths through only selected points or areas. These
points could be preassigned by the farmer or ground workers,
or from an image from a satellite or a single high altitude UAV.
This scenario is closely related to extensive work on the vehicle
routing problem (VRP) in operations research (Laporte, 1992a),
(Laporte, 1992b), (K. Braekers and Nieuwenhuyse, 2016). These
path planning problems are NP-hard. This means that the solu-
tion space grows very rapidly with the problem size, and there
is no efficient algorithm for finding an exact optimal solution.
Therefore in general it is best to search for an approximate best
solution. The focus then was on investigating algorithms for path
planning. Two models were implemented: a continuous world
model (no obstacles, for UAVs), and a grid world with obstacles
(with obstacles, for ground robots).

2. RELATED WORK

Swarm robotics is the study of controlling multiple autonomous
robots separately but achieving a desired collective behaviour (Bram-
billa et al., 2013). These behaviours include flocking together
while travelling, working together to complete a task, or collec-
tive exploration. The particular task considered in this paper, path
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planning, is part of collective exploration. Swarm robotic is a rel-
atively new possibility for agriculture with much potential (Car-
bone et al., 2018).
The aim of path planning is to explore an entire area as efficiently
as possible (Oksanen and Visala, 2009a). It usually has the ad-
ditional constraints of simple trajectories to simplify control for
autonomous robots. It is a NP-hard problem. Moreover, there
are additional challenges when it is applied to ground vehicles in
agriculture. For example, a common constraint is that large vehi-
cles can only turn in the headland areas (Hameed et al., 2010), i.e.
these are areas on the edges of the field, outside of the main crop
regions. Generally, for covering an entire farm, there is an added
complexity due to the obstacles inside the farm and the irregular
shapes of farms (Machl et al., 2013). We tried to address some of
the aspects during problem modelling (see Section 3.1).
Regarding path planning of multiple field robots, Seyyedhasani
and Dvorak (Seyyedhasani and Dvorak, 2017) converted the path
planning problem to a VRP. Then, they used a modified Clarke-
Wright algorithm to find a non-optimized solution, and 600-700
iterations of a tabu search algorithm to optimise this solution.
Regarding path planning of multiple UAVs in agricultural fields,
there is very limited research, perhaps due to the fact that UAVs
have relatively recently entered the agricultural area. Barrientos
et al. (Barrientos et al., 2011) implemented a path planning for a
small fleet of 3 UAVs in a 6.4ha farm. Their path planning algo-
rithm transformed the farm to a low-resolution two-dimensional
grid, divided the area equally in between the agents, and then
used a search algorithm with backtracking to find paths that min-
imised the number of turns. Ju and Son (Ju and Son, 2018) ap-
plied a distributed swarm control algorithm to suggest that the
performance of the multi-UAV system is significantly superior to
the single-UAV system, considering seven performance metrics:
total time, setup time, flight time, battery consumption, inaccu-
racy of land, haptic control effort, and coverage ratio. Albani et
al. (Albani et al., 2017b), (Albani et al., 2017a) investigated a
multi-agent system for field coverage and weed mapping, based
on a reinforced random walk with inhibition of return, where the
information available from other agents is exploited to bias the
individual motion pattern.
A problem with the aforementioned papers (and the algorithms
used by the authors) is that they provide very constrained solu-
tions. The generated paths cannot navigate around complex ge-
ometries or they require the fields to be rectangular or made out of
simple polygons (Seyyedhasani and Dvorak, 2017), (Ju and Son,
2018), (Albani et al., 2017b), (Albani et al., 2017a). Some of the
single-agent solutions cannot generalize to the multiple-agents
case (Bochtis and Zhou, 2015), (Oksanen and Visala, 2009a),
(Hameed et al., 2010) or the solutions have been tested on a few
agents only (Barrientos et al., 2011), (Ju and Son, 2018) (i.e up
to 3 UAVs). Finally, all aforementioned related work considered
one or two algorithms, but did not try to use and compare a vari-
ety of possible solutions to the problems under study.

3. METHODOLOGY

From this point on, the word agent will represent both ground
robots and UAVs in the modelling of the problem. These words
will be used interchangeably.

3.1 Problem modelling

The goal is to plan paths for multiple agents through interest
points spread over a large area. These agents can either be aerial
or ground vehicles. Two two-dimensional (2D) environments
were created: a polygon-shape structure for the aerial vehicles
and a grid structure for the ground vehicles.

3.1.1 Modelling of agricultural fields The agricultural field
structures for the ground robots and for the UAVs are depicted
in Figures 1 and 2 respectively. For the ground robots, the fields
were designed considering the most popular structures based on
equally popular crops. For example, Figure 1 (left) is represen-
tative of olive trees, citrus fruit trees, almond trees and generally
fruit and nut trees. Figure 1 (middle) is representative of various
vegetables such as pepper, tomatoes, lettuce and also of legumes,
cornfields, cereals, soybeans, cornflower etc. Figure 1 (right)
constitutes another typical example of a field of fruit trees, in
which some obstacles exist (e.g. house, irrigation system, green-
house, storage room etc.).
For the UAV case, a different design logic has been considered.
UAVs usually need to fly above specific regions of the fields
where some abnormality occurs (e.g. water stress, lack of enough
fertilizer, pests have been detected, areas with low NDVI index
etc.). A likely case of such abnormality in some field is illus-
trated in Figure 2 (left). To capture this function of UAVs, which
is currently the most typical and popular one in agri-fields, we
used points randomly distributed in small clusters (see Figure 2,
middle to right). We refer to these points as points of interest
(POIs). There was no need for placing the crops in regular pat-
terns because on one hand the selected regions would be irreg-
ular in real-life situations and, on the other hand, the UAVs are
not constrained by paths on the ground. The number of POIs was
chosen to be 300 for each field for the UAV case.
In the case of the ground robots, obstacles were implemented,
each occupying one or more cells (small and continuous lines in
Figure 1). Obstacles represent crops or areas of the field where
the agent is not allowed to pass. Obstacles are not necessary in
the UAV case, as they fly above the crops. Simulations run until
all POIs are visited, while return journeys back to the basis are
estimated afterwards. In particular, for the fields in Figure 1, we
assume a number of POIs varying from 100 to 150.
Each point at the 2D plane has a unique position (x, y). Agents
are modelled as point particles too. Their state is given by their
current 2D position (x, y) and their linear velocity υ, which is
uniform for all agents. The agents always started at position
(0, 0), where they had to return afterwards. Each iteration of the
algorithms implemented triggers an increment of a time step ∆t.
The next agent state is calculated as:

xt+1 = xt + υ ·∆t

yt+1 = yt + υ ·∆t

(1)

3.1.2 Cost function The cost function used as the optimiza-
tion goal of the path planning algorithms (see Section 3.3 is the
one suggested by Seyyedhasani and Dvorak (Seyyedhasani and
Dvorak, 2017) and it is given below:

cost = z · T + (1− z) · D
m
, 0 ≤ z ≤ 1

D =
∑m

K=1 dk

T = maxk∈[1,m] dk

(2)

where dk is the distance travelled by agent k and m is the total
number of agents. Similar to (Seyyedhasani and Dvorak, 2017),
T is the maximum distance while D is the aggregated distance
travelled by all agents. Thus, the cost function is defined as the
weighted combination of maximum distance travelled and aver-
age distance travelled by each agents. Parameter z defines the
weight of maximum distance vs. average distance, allowing to
balance these two requirements towards an optimal solution that
considers both total efficiency and fairness of individual agents.
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Figure 1: The agricultural field structures used for the ground robot swarms. Black squares represent trees, black round labels represent
crops in a line, while blue labels in the left bottom of the field represent the agents’ initial position.

Figure 2: The agricultural field structures used for the swarms of UAVs. The first picture represents a false colored NDVI map of a
farm where the red areas indicate unhealthy vegetation. Our assumption is that, based on such a map we can create location maps for
UAV swarms. Illustrative scenarios used in our experiments are visualized in the next three pictures.

Cost function has been used mainly for the ant colony optimisa-
tion algorithm (see Section 3.3).

3.1.3 Approximation to real fields In order to approximate
real-world agricultural field areas and distances, the following de-
cisions were made:

• For the UAV case, the velocity υ was set to 10m/s or 36km/h.
This is a realistic speed for real UAVs (Carbone et al., 2018).

• For the ground robots case, velocity υ was set to 0, 83m/s
or 4km/h, which is a realistic speed for ground robots.

Each iteration triggers an increment of a time step of 0.2s. In the
context of this paper, velocities are used to estimate the transition
of a robot/UAV from one grid cell to the next, according to one
time step increment at each algorithm’s iteration.
In theory, maximum distance T of the cost function can be used
as a proxy for time, i.e. the agent that travels the longest distance
will be the slowest agent. By knowing the average speed of the
robot/UAV, one can easily then calculate actual times. This is an
important aspect of future work (see Section 5.1).
Each grid cell on the 2D plain represents an area of 2.25m2.
The total area of each field shown in Figure 1 was around 0.3ha
(hectares). The total area of each field of Figure 2 was around
20ha. These values match real-world agricultural farms.

3.2 Assumptions

The following assumptions were made to further confine the scope
of the problem:

1. Number of agents: One up to five agents can be employed,
either ground robots or UAVs.

2. Agent types: There is only one type of agent.
3. Origin: The agents start at a common location.
4. Destination: All agents must return to their start locations.

5. Scenario: Static, i.e. the field layout and POIs do not change,
which is typical for an agricultural field on a typical day or
even week.

6. Observability: Global, i.e. the field layout and all the POIs
are known in advance.

7. Space: Agents can move freely in the two-dimensional space.
8. Interactions: The time needed for performing agriculture-

related tasks at each interest point (e.g. pruning, spraying,
crop collection, taking photos etc.) is ignored (Hassler and
Baysal-Gurel, 2019). Interactions between agents (i.e. col-
lisions) are also ignored.

3.3 Path planning algorithms

The following path planning algorithms have been implemented
and tested in the agricultural fields as defined in Section 3.1:

1. Nearest Neighbour (NN) algorithm based on K-means clus-
tering (Laporte, 1992a), (Likas et al., 2003).

2. Christofides algorithm (Christofides, 1976).
3. Ant Colony Optimisation (ACO) algorithm (Gambardella et

al., 2003), (Dorigo et al., 1996).
4. Bellman-Held-Karp (BHK) algorithm (Bellman, 1962), (Held

and Karp, 1962) 1.

NN and Christofides constitute approximation algorithms. They
are usually faster, as they have a limited number of iterations
based on heuristics. In particular, NN was chosen for its simplic-
ity and easy implementation. Christofides provides a bounded
worst case solution and it is a very popular benchmark for solv-
ing VRP problems. However, they are not very flexible in their
use generally. ACO is a meta-heuristic algorithm, i.e. it is by de-
sign more flexible (e.g. it can automatically choose the number
of agents to employ), but also more unstable. It therefore requires
careful tuning to produce good results. It is generally slower than

1BHK was used as a comparison baseline for the run time of the other
algorithms (Section 4.2) and it was not tested further on the different agri-
cultural fields (Section 4.3 and 4.4).
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Algorithm Advantages Disadvantages Complexity
Nearest Neighbour + Clustering Simple and fast

Evenly divides fields among the agents
No guarantees on worst/best case

Solutions tend to be worse with more points
Static and deterministic solution

Time: O(n2)

Space: O(n2)

n = number of points
Christofides’Algorithm + Clustering Guarantees worst case solution ≤ 1.5 optimal path

Evenly divides fields among the agents
Popular benchmark in literature

High worst case bound
Static and deterministic solution

Time: O(n4)

Space: O(n2)

ACO Better search process than NN
Solutions closer to the optimal
Fast convergence to a solution

No guarantees on worst/best case
Solutions with chaotic paths for the agents
Often gets stuck in local minima solutions

Time: O(tn2)

Space: O(n2)

t = number of iteration

BHK Finds global optimal solution Very high time complexity
Extremely high space complexity Time: O(n22n)

Space: O(
√
n2n)

Table 1: Comparison of the chosen algorithms.

NN and Christofides, while there is always the risk to get stuck in
local minimum (missing the global, optimal minimum of the op-
timization function). BHK belongs to the family of dynamic pro-
gramming algorithms. It is generally a highly accurate algorithm
that is used mostly on small problem sets because of computa-
tional limitations. BHK has extremely high running complexity
(O(n22n)) and space complexity (O(

√
n2n)). A comparison of

strengths and weaknesses of the chosen algorithm is shown in
Table 1.

4. RESULTS

In this section the results are presented. First, the choice of the
parameters used in the ACO algorithm is discussed in Section
4.1, since ACO required much fine-tuning in order to work in the
most optimal way. Then, the run time of the different algorithms,
introduced in Section 3.3, are presented together with the choice
of the candidate algorithms for the tests on the fields presented in
Figure 1 and 2. Finally, the results obtained by applying the three
proposed algorithms are shown, in Section 3.3. The algorithms
are tested on three different fields using UAVs (see Figure 2) in
Section 4.3 as well as on three different fields using ground robots
(see Figure 1) in Section 4.4. As mentioned in Section 3.2, the
maximum number of agents has been defined as 5, since it is
assumed that 5 ground robots or UAVs are enough to effectively
cover a complete field. The three algorithms are compared in
terms of the following aspects:

1. Maximum distance (solid line) travelled (i.e. by some agent,
D in Equation 2).

2. Average distance (dash line) travelled by all the agents ( D
m

in Equation 2).
3. Minimum/maximum distance travelled by the agents.

Among the candidate algorithms, mainly2 ACO uses the cost
function of Equation 2, thus we selected the metrics described
above for fair comparison of the four algorithms.
In Figures 3, 5 and 6a-11a, total distance is illustrated with a solid
line, average distance with a dash line, while minimum/maximum
distance travelled by agents is depicted by the shaded areas. Ex-
amples of actual solutions are shown in Figures 6b-11b.

4.1 Choice of parameters for ACO

Table 2 summarizes the choice of values for the parameters in-
formation elicitation coefficient α, the expected heuristic coeffi-
cient β and the pheromone evaporation coefficient ρ, since this
combination gave the best results after an exhaustive run of the
algorithm combining all possible combination of values.

2The other three algorithms, due to their nature and specific imple-
mentation in this paper, use an adapted version of the cost function. The
details are not included to the paper due to limited space.

Parameter Value
Information elicitation coefficient α 3

Expected heuristic coefficient β 5
Pheromone evaporation coefficient ρ 0.01

Weight of cost function z 0.5

Table 2: Choice of parameters for ACO.

The second important decision refers to the parameter z in the
cost function (see Section 3.1.2), which allows a trade-off be-
tween the two objectives of the equation. In Figure 3, the to-
tal distance (solid line), the average distance (dash line) and the
min/max distance (shaded area) are shown with respect to the
number of agents while varying the parameter z of the cost func-
tion. For z = 0, the first term of the cost function disappears,
thus the only objective of ACO is to minimize the average dis-
tance (see Figure 3, blue line). This leads to one or more agents
being idle, as can be seen in the figure (blue shaded area). When
z = 1 (see Figure 3, orange line), the workload of each agent
is well balanced leading though to a larger total distance D trav-
elled. Based on these considerations, z = 0.5 (see Figure 3,
green line) has been selected for all the following experiments
because it offers a good trade-off between the minimization of
the total distanceD and the fair spreading of the workload among
the agents.

Figure 3: Choice of the parameter z of the cost function for ACO.

4.2 Algorithms’ run time

Run time of each algorithm is a crucial aspect because it defines
the time of planning required for each field. This planning can
change almost daily in modern precision agriculture scenarios.
We measured the time needed to find an optimal solution with
respect to the number of POIs (see Section 3.1). These tests were
performed using a Intel i7-8550 CPU with 1.80 GHz and 8GB
of RAM. In particular, we compared the following algorithms on
finding the shortest path to visit all the POIs using UAVs:

1. BHK with cost function of Equation 2 and 1 agent.
2. BHK and 3 agents.
3. ACO with cost function of Equation 2 and 3 agents.
4. Christofides algorithm with clustering and 3 agents
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5. NN ranked with 3 agents.

BHK computes the global optimal solution, but at the price of
high computational/time and space complexity (see Section 3.3).
As shown in Figure 4, the optimal solution computed with the
BHK algorithm requires exponential time with respect to the num-
ber of POIs and agents. With approximately 20 POIs, the BHK-
based solutions require more that 8GB of RAM and their run
time is 10 times higher than ACO. Since the number of POIs
was chosen to be 300 for UAVs and 100-150 for ground robots
(see Section 3.), BHK was not used for the experiments presented
in Sections 4.3 and 4.4, due to these expensive computational re-
quirements.
Christofides and NN ranked algorithms (see Figure 4) require the
shortest amount of time, while time does not increase exponen-
tially with the number of points to visit. ACO requires more
time than Christofides and NN ranked algorithms due to its higher
complexity, but it follows a similar trend as the number of points
grows. Eventually, the performance of the algorithms with the
metrics described in Section 4. is shown in Figure 5. Even though
NN has the shortest run time, it achieves the worst performance
in the simple test case, shown in Figure 5 (right). Because of this
reason, NN is excluded for the real experiments presented in Sec-
tion 4.3.
The candidate algorithms that will be presented in the following
section are: Christofides’ algorithm with the different clustering
techniques presented in Section 3.3 and ACO with the parameters
choice described in Section 4.1

Figure 4: Run times of the proposed algorithms.

Figure 5: Comparison of the proposed algorithms

4.3 Results for the UAVs case

For UAVs, we compared ACO, using the cost function defined in
Section 3.1.2 and parameters as shown in Table 2, with two differ-
ent clustering techniques for the Christofides algorithm: sector or
rectangular clustering and K-mean clustering with Cartesian co-
ordinates.
When the field topology is symmetric without constraints (i.e.
obstacles) (see Figures 6b and 8b), Christofides algorithm em-
ploying both clustering techniques outperforms ACO in terms

of minimization of the total and average distance travelled and
also in terms of fair sharing of the workload among the agents
(see Figures 6a and 8a respectively). When symmetry in the field
topology is lacking (see Figure 7b), ACO achieves performance
comparable to the Chistofides algorithm with K-means cluster-
ing, while it performs better than the Chistofides algorithm with
sector/rectangular clustering (see Figure 7a).

4.4 Results for the ground robots case

For the ground robots case, we compared once more ACO, using
the cost function defined in Section 3.1.2 and parameters shown
in Table 2, with different clustering techniques for Christofides
algorithm: sector or rectangular clustering and K-mean cluster-
ing with Cartesian and polar coordinates. In particular, we as-
sumed squared obstacles as in the fields shown in Figure 1 (left
and right), while we assumed line obstacles as in the field in Fig-
ure 1 (middle).
Similarly to the UAVs case, when the field presents symmetry
(see Figures 9 and 11), K-means clustering with polar coordi-
nates outperforms ACO. However, in contrast to the results of the
UAVs case, as soon as the number of agents grows, ACO tends
to improve its performance (see Figures 9a and 11a). In the field
shown in Figure 1 (right), it achieves the best performance among
the compared algorithms (see Figure 11). When the field is not
symmetric and heavily constrained, as in Figure 10, ACO outper-
forms Christofides algorithm with both clustering techniques.

5. DISCUSSION

Our results indicate that different algorithms work differently and
are suitable for specific agricultural scenarios of different topol-
ogy and also of different type of agents (i.e. ground robots vs.
UAVs). Table 3 summarizes our findings on the specific mod-
elling choices we made. No obstacles refers to the setting for
UAVs (see Figure 2), vertical lines and horizontal lines to fields
with vertical/horizontal alignment of crops respectively (see Fig-
ure 1, middle) while squared setting is about fruit/nuts trees (see
Figure 1, left). Vertical/horizontal lines are always defined in re-
spect to the agents’ initial placement.
From Table 3, it seems that ACO works better when minimizing
the total distance needed to be travelled by the agents (i.e. D
in Equation 2) as well when minimizing the maximum distance
that needs to be travelled, which corresponds to total time needed
(i.e. T in Equation 2). This holds both for UAVs and ground
robots. However, when a balanced solution is sought between
distance/time (i.e. z = 0.5 in Equation 2), Christofides algorithm
comes into play as a more efficient one, either together with K-
means for squared and horizontal fields as well as for UAVs with-
out boundaries in the fields, or together with sectors for ground
robots and vertical lines at the fields.
These results show that agricultural fields are sensitive to their
topology and type of robot swarms used, in terms of the best al-
gorithm to be used for path planning. It is also the case that the
number of available agents affects the best algorithm to be used
(see Figures 9a and 11a).
Although the scenarios considered are static in the sense that the
agents know in advance the total plan, this can become dynamic
(especially) in the case of UAVs whose POIs depend on daily
observations made by remote sensing, towards precision agricul-
ture. Thus, the optimal use of path planning algorithms becomes
quite important and their running time affects the practicality of
each solution (see Section 4.2). This is the reason BHK does not
seem to be a good choice in such scenarios.
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(a)
(b)

Figure 6: Results obtained using UAVs (6a). Example of paths planned by Christofides algorithm with K-means clustering with
Cartesian coordinates (6b) with 3 agents.

(a) (b)

Figure 7: Results obtained using UAVs (7a). Example of paths planned by ACO (7b) with 3 agents.

(a) (b)

Figure 8: Results obtained using UAVs (8a). Example of paths planned by Christofides algorithm with K-means with Cartesian
coordinates (8b) with 5 agents.

(a) (b)

Figure 9: Results obtained using ground robots (9a). Example of paths planned by Christofides algorithm with K-means clustering
with polar coordinates (9b) with 3 agents.
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(a) (b)

Figure 10: Results obtained using ground robots (10a). Example of paths planned by ACO (10b) with 3 agents.

(a) (b)

Figure 11: Results obtained using ground robots (11a). Example of paths planned by Christofides’ algorithm with K-means clustering
with polar coordinates field (11b) with 4 agents.

Field type Agent type Priority Best-performing algorithm
No obstacles UAV Minimize distance ACO (z = 0)
No obstacles UAV Minimize time ACO (z = 1)
No obstacles UAV Balanced distance and time K-means (polar) + Christofides
Vertical lines Ground robot Minimize distance ACO (z = 0)
Vertical lines Ground robot Minimize time ACO (z = 1)
Vertical lines Ground robot Balanced distance and time ACO (z = 0.5)

Horizontal lines Ground robot Minimize distance ACO (z = 0)
Horizontal lines Ground robot Minimize time ACO (z = 1)
Horizontal lines Ground robot Balanced distance and time ACO (z = 0.5)
Squared setting Ground robot Minimize distance ACO (z = 0)
Squared setting Ground robot Minimize time ACO (z = 1)
Squared setting Ground robot Balanced distance and time K-means (polar) + Christofides

Table 3: Summary of findings.

5.1 Future work

As a future work, we will spend more time on implementation of
other multi-agent path planning methods in order to make more
fair judgement of our methods. Besides, we will focus on three
mathematical issues of our own method: better optimization of
the parameters (e.g. choice of z), quantitative analysis of the sen-
sitivity of the algorithms to the fields’ topology, testing them on
various scenarios; the generalization of our method for different
farm shapes automation of the progress (from imaging to path
planning and robotic interaction with the crops), we will extract
the target positions from NDVI maps with computer vision al-
gorithms . We would like to develop an intelligent solution that,
provided with the list of POIs to visit and the knowledge of field
topology, automatically chooses the optimal number of agents to
deploy and optimally plans their paths.
Moreover, we will consider actual constraints of UAVs (e.g. max.
flight time) and ground robots (e.g. max. distance travelled in a
number of hours), adapting the cost function and z parameter in
a way to reflect also time limitations. This will require the use of
more realist physical models for UAVs and ground robots.
Finally, a dynamic scenario will be explored, in which the agents
do not have prior knowledge of the field but need to combine their
ad hoc knowledge in order to address the optimization problem
in the best way possible.

6. CONCLUSIONS

This paper has tackled the problem of optimizing path routing
for a swarm of ground robots and UAVs in different topologies
of agricultural fields. Four algorithms (Nearest Neighbour based
on K-means clustering, Christofides, Ant Colony Optimisation
and Bellman-Held-Karp) have been applied on various farm types
which are commonly found around Europe. The results indicate
that the problem of path planning and the corresponding algo-
rithm to use, are sensitive to the field topology and to the number
of agents in the swarm. We believe that the proposed method used
in this paper provides important information towards developing
multi-agent robotics, in order to optimize the time, distance and
energy spent in the farms by the swarms of agents, towards more
precision farming. Further experimentation in this open research
field is still required.
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