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ABSTRACT: 

 

Change detection has been widely used in many flood-mapping algorithms using pairs of Synthetic Aperture Radar (SAR) intensity 

images as floodwater often leads to a substantial decrease of backscatter. However, limitations still exist in many areas, such as shadow, 

layover, urban areas and densely vegetated areas, where the SAR backscatter is not sufficiently impacted by floodwater-related surface 

changes. This study focuses on these so-called exclusion areas, i.e. areas where SAR does not allow detecting water based on change 

detection. Our approach considers both pixel-based time series analyses and object-based spatial analyses using 20m Sentinel-1 

Interferometric Wide Swath data, including 922 Sentinel-1 tiles covering the River Severn basin (UK) and the Lake Maggiore area 

(Italy). The results show that our exclusion map presents a good agreement (~63%) with reference data derived from different data 

sources and indicate that it may complement SAR-derived flood extent maps. Allowing to accurately identify potential 

misclassifications in flood extent mapping, our exclusion map provides valuable information for flood management and, in particular, 

flood forecasting and prediction.  

 

 

1. INTRODUCTION 

Flooding is a major hazard in both rural and urban areas 

worldwide, leading to significant human and economic losses. In 

order to reduce property damages and save people’s lives, near 

real-time flood mapping is needed as it plays a central role in 

flood risk management in all dimensions, such as emergency 

response, flood forecasting, post-disaster reconstruction. In 

addition, flood maps derived from historical and up-to-date data 

can be employed for the (re-)calibration and validation of 

hydraulic models (Di Baldassarre et al., 2009). Moreover, such 

maps can be assimilated into flood forecasting systems in order 

to improve near real-time model-based predictions (Hostache et 

al., 2018).  

 

Over the past decades, flood mapping using SAR data has gained 

considerable attention since the SAR systems can operate 

independently of sun illumination and weather conditions. 

Among a variety of flood mapping algorithms, change detection 

is widely used (Chini et al., 2017; Li et al., 2018; Schlaffer et al., 

2015; Zhao et al., 2019) as the appearance of floodwater results 

most of the time in a drop of SAR backscattering. Generally, 

open calm water has low backscatter compared with surrounding 

land surfaces in a SAR intensity image. Change detection can, 

therefore, detect and map the presence of floodwater in a given 

SAR image by exploiting the changes with respect to a dryer 

reference image. This allows not only classifying water bodies 

but also distinguishing transient floodwater from permanent 

water bodies. However, the underlying assumption that 

floodwater leads to a decrease of the SAR intensity has some 

limits, especially in areas where the SAR signal does not reach 

the ground. For example, SAR cannot measure any flooding-

related changes in so-called shadow areas caused by prominent 

topography or obstacles on the ground (e.g. buildings). 

Moreover, the SAR signal cannot reach the ground in densely 

vegetated forests because of the low capability of SAR C-band 
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wavelength to penetrate canopies (Tsyganskaya et al., 2018). It is 

noteworthy, in the latter case, L-band is more suitable given the 

higher capability of longer wavelengths to penetrate canopies. 

Additionally, there are some land cover classes where SAR can 

sense the surface but scattering variation caused by the presence 

of water is negligible when compared to the normal “unflooded” 

condition. Examples of such land cover classes are layover areas, 

dry sand, streets and building areas. In such cases, conventional 

change detection approaches fail in detecting floodwater.  

 

However, it is surprising that only a handful of studies 

investigated the so-called exclusion areas. For instance, 

(Benoudjit and Guida, 2019) masked out shadow/layover areas 

from SAR images before generating flood maps with the help of 

a free Digital Elevation Model (DEM). When it comes to global 

scale flood mapping, high resolution DEMs are not always 

available and therefore, DEM-based shadow/layover maps may 

not be accurate enough in comparison with the SAR spatial 

resolution. Moreover, modelling shadow and layover caused by 

buildings and tall vegetation requires DEMs with metric spatial 

resolutions. It is of high importance to note that in built-up areas 

precise and timely information about the flood impact is required 

in order to save human lives. Change detection methods 

(Benoudjit and Guida, 2019; Zhao et al., 2019), which are 

designed for bare soil or scarcely vegetated scenarios, usually 

under-detect floodwater in urban areas since the backscattering 

decreasing assumption is no longer valid. Instead, the floodwater 

presence in urban areas often results in a backscattering increase 

(Mason et al., 2014). However, this phenomenon only exists up 

to a limited extent and, in this case, approaches exploiting multi-

temporal InSAR coherence may be more adequate for detecting 

urban floodwater (Chini et al., 2019). The case of dense forests 

where SAR signals cannot penetrate the canopy and reach the 

ground has been considered in (Bauer-Marschallinger et al., 

2019). In their study, a sensitivity mask has been generated in 

order to identify regions with unreliable Sentinel-1-based surface 
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soil moisture (SSM). The mask includes densely forested areas 

as well as urban areas. However, since this sensitivity mask was 

designed for 500 m resolution SSM products, it may not be 

suitable for masking high to median-resolution SAR-based flood 

extent maps such as those derived from 20 m resolution Sentinel-

1 images. In order to deal with water-lookalike areas such as arid 

areas, (Martinis, 2018; Martinis et al., 2018) generated a Sand 

Exclusion Layer (SEL) using time-series of Sentinel-1 data for 

improving flood map accuracy.  

 

In the above-mentioned studies, different masks for specific 

exclusion layers were generated for specific use cases. However, 

a comprehensive map/mask including all of the above-mentioned 

scenarios and tailored for SAR-based change detection 

approaches designed for flood mapping over bare soils and 

scarcely vegetated areas does not currently exist. With this aim, 

we propose an algorithm able to extract an “exclusion” map (EX-

map), which is composed of all the pixels that cannot be 

classified as flooded or not using SAR-based change detection 

algorithms designed for bare soil and scarcely vegetated areas. 

The EX-map is extracted from time series of SAR data obtained 

from the same orbit. We argue that the availability of such an 

accompanying layer is important in any flood mapping exercise 

as it provides critical information for enabling a correct use of the 

data. For example, exclusion maps are required when EO-derived 

flood maps are assimilated into flood prediction models as any 

error in an assimilated flood map would have negative 

consequences. The proposed method is tested on stacks of 

Sentinel-1 intensity data at 20m resolution acquired over 

different AOIs in the United Kingdom and Italy. In the 

considered test cases, the exclusion map is composed of the 

following classes: topographic shadow/layover, permanent water 

bodies, building shadow/double-bounce and densely vegetated 

forests. Due to the uniqueness of the proposed exclusion map, a 

similar and independent map/mask for cross-comparison is 

currently not available. In order to close this gap, an independent 

cross-comparison map is obtained by combining different 

products including 1) topographic shadow/layover map 

generated using a 25m-resolution DEM and the geometric 

acquisition parameters of the SAR data; 2) permanent water map; 

3) imperviousness map; 4) tree cover density (TCD) map. The 

last three classes have a spatial resolution of 20 meters and are 

provided in the framework of the Copernicus programme.  

 

The paper is organized as follows: the following section 

introduces two case studies and the associated datasets. The 

multi-temporal and spatial indices employed for deriving the 

exclusion map and the proposed algorithm are described in 

section 3. The results are presented, discussed and validated in 

section 4. Finally, a conclusion and an outlook on ongoing studies 

are provided in the final section.  

 

2. STUDY SITE AND DATASETS 

2.1 Study sites 

Our first study site is located in the River Severn basin (UK) and 

the second one covers the Lake Maggiore area (Italy) as shown 

in Fig. 1. The two areas have been selected due to their different 

land cover classes and different topography, which are of high 

interest for the exclusion map identification.  

 

 
Figure 1 Study sites 

 

2.2 SAR datasets 

The multi-temporal SAR datasets are composed of Sentinel-1 

Interferometric Wide Swath (IW) data with VV polarization 

provided by TU Wien Data Cube (Ali et al., 2017). The latter is 

managed and processed on the Earth Observation Data Centre 

(EODC) for Water Resources Monitoring. The EODC uses the 

high-performance computing platform provided by the third 

generation of the Vienna Scientific Cluster (VSC-3), preparing 

easy access to EO data (Naeimi et al., 2016). In addition, EODC 

users can process EO data with their own algorithms and extract 

the results (Mathieu and Aubrecht, 2018). The Sentinel-1 data 

cube from TU Wien is derived by geocoding the SAR backscatter 

imagery using the python-based SAR Geophysical Retrieval 

Toolbox (SGRT) and the Sentinel-1 time-series from this data 

cube can be analysed directly in our study. The SAR datasets use 

the Equi7Grid basic framework (Bauer-Marschallinger et al., 

2014) and all Sentinel-1 SAR data have been divided into 100km 

×100km tiles as is shown in Fig. 1. 

 

Study 

site 
Equi7Grid Track Orbit 

Number of 

images 

1 
E040N023T1 30 Ascending 215 

E040N023T1 154 Descending 282 

2 
E046N014T1  15 Ascending 167 

E046N014T1  66 Descending 258 

Table 1 Information details of the employed Sentinel-1 IW 

datasets 

 

In this paper, we use a total of 922 Sentinel-1 IW tiles with 20m 

spatial resolution from four different tracks (Table 1). The 

acquisition time is between 2016 and 2018.  
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2.3 Reference datasets 

For the evaluation, different data sources have been combined for 

producing a map to compare with the unique exclusion map. The 

reference map is composed of the following classes:  

 

(1) shadow and layover map from mountainous areas generated 

using a 25m resolution DEM 

(https://land.copernicus.eu/imagery-in-situ/eu-dem) and by 

considering  the SAR geometry acquisition parameters for each 

particular Sentinel-1 orbit; 

 

(2) 20m resolution imperviousness map representative of urban 

areas, provided by Copernicus and derived from high resolution 

optical satellite images (IRS-P6/Resourcesat-2 LISS-III, SPOT 5 

and Landsat 8) (https://land.copernicus.eu/pan-european/high-

resolution-layers/imperviousness); 

 

(3) 20m resolution tree cover density (TCD) map representative 

of densely vegetated areas, derived from high resolution optical 

satellite data (https://land.copernicus.eu/pan-european/high-

resolution-layers/forests);  

 

(4) 20m resolution permanent water map derived from a 

multitude of SAR and optical EO data, provided in the Water & 

Wetness 2015 Copernicus product. 

(https://land.copernicus.eu/pan-european/high-resolution-

layers/water-wetness).  

 

3. METHODOLOGY 

In this study, we define the exclusion map based on multi-

temporal stack of SAR images from the same orbit. We assume 

that all pixels presenting a stable backscatter over time shall be 

included in the mask. Such behaviour would prevent the 

detection of floodwater. Thus, our hypothesis is that some of the 

areas where floodwater cannot be detected using change 

detection approaches correspond to areas with markedly low 

SAR backscatter variations over time. Moreover, we assume that 

the targeted exclusion layer includes: (1) areas with extremely 

low backscatter over time (e.g. shadow areas, arid regions and 

permanent water bodies), (2) areas with extremely high 

backscatter over time (e.g. layover areas), (3) urban areas and (4) 

densely vegetated regions with moderate backscatter. 

 

In this context, it is worth noting that each land cover class has 

its own speckle distribution and different spatial patterns. 

Consequently, the definition of a unique and general 

rule/parameter to extract the desired exclusion map and to 

characterize the temporal stability of the backscattering for 

different land cover classes is not straightforward. For this 

reason, we argue that the characteristics of different land cover 

classes need to be analysed separately.  

 

In this study, time series Sentinel-1 data are analysed and five 

parameters are employed in our method: multi-temporal standard 

deviation (MSD), the multi-temporal median (MM), the multi-

temporal minima (Mm), local Getis-Ord 𝐺𝑖 and data range. The 

latter two texture parameters are calculated from  MM. Fig.1 and 

Fig 2 show examples for different parameters derived from time-

series Sentinel-1 data covering Lake Maggiore areas in Italy and 

River Severn basin (UK) with corresponding optical images from 

Google Earth.  

 

When it comes to areas with extremely low backscatter over time 

(e.g. shadow areas, arid regions and permanent water bodies), we 

propose to use a texture index, i.e. local Getis-Ord 𝐺𝑖 (Gamba et 

al., 2011; Getis and Ord, 1992) since such areas are considered 

to be homogeneous with extremely low backscatter over time. 

The local Getis-Ord 𝐺𝑖 is defined as: 

 

                𝐺𝑖 =
∑ 𝑤𝑖𝑗𝑥𝑗𝑗

∑ 𝑥𝑗𝑗
, 𝑗 ≠ 𝑖                                      (1) 

 

where  𝑤𝑖𝑗 = the weight between i and j that represents their 

spatial relationship  

  𝑥𝑗  = the value of variable x at location j 

 

As is shown in equation (1), local Getis-Ord 𝐺𝑖 can be used to 

identify “outliers”, i.e. values that are very different from the 

surrounding pixels. The high concentration of such values leads 

to high 𝐺𝑖  while a low concentration gives low 𝐺𝑖.  

 

Meanwhile, the layover areas are supposed to be homogenous but 

with very high backscatter over time. Because of this 

characteristic, the local Getis-Ord 𝐺𝑖  can also be used for the 

extraction of layover in an analogous manner. As illustrated in 

Fig. 1d, permanent water bodies and shadow are associated with 

low 𝐺𝑖 values and are shown in black and dark blue while layover 

areas have high 𝐺𝑖  values and are shown in red. Hence, the 

identification of permanent water bodies, shadow and layover 

can be effectively performed by thresholding the local Getis-Ord 

𝐺𝑖  values. In this preliminary study, thresholds have been 

selected by trial and error and visual inspection. 

 

When considering urban areas, the double bounce effect between 

the buildings’ facades and the ground occurs locally. 

Consequently, urban areas are very heterogeneous regions when 

compared to most other land cover classes in SAR images. To 

identify strongly heterogeneous areas, the texture parameter data 

range (Anys et al., 1998) based on MM is employed. This 

parameter is defined as the difference between the maximum 

value and minimum values within a sliding window. The strongly 

heterogeneous backscatter leads to high data range value while 

homogeneous areas result in low data range value. As is shown 

in Fig. 2e, the urban areas illustrated in red correspond to high 

data range values, which can be identified by thresholding.  

 

For the densely vegetated regions with moderate backscatter 

variations, different indices, enabling the characterization of their 

temporal pixel backscatter stabilities or their relative higher or 

lower values with respect to pixels from other land cover classes, 

have been considered. In particular, three pixel-based multi-

temporal indexes (see Fig. 2a, b, c and Fig 3a, b, c) have been 

calculated, namely MSD, MM and Mm. Looking at the MSD 

map in Fig. 3a, MM map in Fig. 3b, Mm map in Fig. 3c and the 

optical image in Fig. 3d, they show that low MSD values, 

relatively high MM and relatively high Mm correspond to 

densely vegetated areas.  Sparsely vegetated areas have higher 

MSD, relatively low MM and relatively low Mm. Therefore, the 

densely vegetated areas can be distinguished from sparsely 

vegetated areas using thresholding on MSD, MM and Mm. It is 

important to notice that the identification of densely vegetated 

areas is carried out after removing  areas with extremely low/high 

backscatter over time and urban areas. 
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(a) Multitemporal Standard deviation (b) Multitemporal Median (c) Multitemporal Minimum 

   
(d) Getis-Ord Gi (e) Data Range (f) Google Satellite Imagery 

Figure 2 Example of multi-temporal parameters and indexes derived from time series Sentinel-1 image (E046N014T1, Track 15) 

  

   
(a) Multitemporal Standard deviation (b) Multitemporal Median (c) Multitemporal Minimum 

   
(d) Getis-Ord Gi (e) Data Range (f) Google Satellite Imagery 

Figure 3 Examples of parameters derived from time series Sentinel-1 image (E040N023T1, track 30) for densely vegetated areas 

identification. Densely vegetated areas and sparsely vegetated areas are shown in the red box.  
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4. EXPERIMENTAL RESULTS 

Fig. 4 shows four exclusion maps (a-d) derived from four tracks 

and their corresponding reference maps (e-h) derived as 

explained in section 3.3. Based on visual inspection, we notice 

that our exclusion maps have a good agreement with the 

reference maps. Furthermore, we have performed a statistical 

comparison between the SAR derived and reference exclusion 

maps by computing the overall percent agreement. The overall 

agreement (Table 2) values ranging from 63% to 77% indicate 

that the SAR and reference exclusion maps present a relatively 

high percentage of similarities. The remaining disagreement can 

be explained in part by the diverse characteristics of the reference 

maps, using different data sources (e.g. SAR, optical data) of 

different spatial resolutions. Moreover, it is worth considering 

that classes composing the reference map are not representing 

exactly the same information content as the proposed exclusion 

map. Considering only urban areas, our approach identifies pixels 

associated with buildings double-bounce and associated shadow, 

while in the independent product used for comparison urban area 

class includes more classes such as parking lots, roads, small 

parks, etc. Furthermore, regarding densely vegetated areas, we 

can notice from Fig. 5 that the TCD class is absent in some areas, 

while a visual inspection of very high-resolution optical data 

(Google Satellite Imagery) over the same areas indicates the 

presence of dense vegetation. 

 

 OA 

Track 30 76.7% 

Track 154 77.9% 

Track15 63.2% 

Track 66 63.7% 

Table 2 Sensitivity of exclusion maps derived from four study 

data tracks 

 

By assessing the statistical comparison, we may also notice that 

the overall accuracy varies depending on the different test cases. 

As is shown in Table 2, the OA for track 30 and track 154 are 

76.7 % and 77.9 % respectively while the OA for track 15 and 

track 66 are 63.2% and 63.7% respectively. This is due to the fact 

that the two study sites are composed of different land cover 

classes. In the study site in the UK, the vegetated areas contain 

sparsely vegetated areas such as grassland, pasture and orchards 

and densely vegetated areas such as dense forests. While in the 

second study site the Lake Maggiore area, most of the vegetated 

areas are dense forests and agriculture fields. We consider this as 

a preliminary analysis and evaluation of our exclusion map. 

Further tests performed for other AOIs are necessary in order to 

prove robustness of the method. 

 

 
E040N023T1 

Track 30 

E040N023T1 

Track 154 

E046N014T1  

Track15 

E046N014T1  

Track 66 

SAR 

generated 

exclusion 

map 

    
 (a) (b) (c) (d) 

Reference 

mask 

    
 (e) (f) (g) (h) 

  
Figure 4 Generated exclusion maps from four tracks over two study sites  

 

   

 

(a) Google Satellite Imagery (b) 20m resolution Exclusion Map (c) 20m resolution Reference  

Figure 5 Example of disagreement between the exclusion map derived from time series Sentinel-1 image (E040N023T1, track 30) 

and the reference map 
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5. CONCLUSION 

In this study, an exclusion map for flood extent maps has been 

generated by using 20m resolution time-series Sentinel-1 

intensity data over Severn River, UK and Maggiore Lake, Italy. 

The results show that our exclusion map has a good agreement 

with a reference map extracted from different data sources.  

 

Improvements of the method are already foreseen for what it 

concerns the evaluation of the proposed method for additional 

different test cases. The automation of the method will also be 

improved by testing automatic and adaptive thresholding 

approaches. Alternative classification methods will be also 

tested. The impact of the SAR-based exclusion map on real flood 

scenarios will be evaluated, in terms of under detection of the 

maximum floodwater extent. Strategies to classify pixels from 

exclusion maps using other approaches and information will be 

envisaged. The benefit of this new type of information for what 

it concerns the calibration, validation and regular updating of 

hydraulic models using SAR-derived flood extent maps will be 

considered as well.  
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