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ABSTRACT:

Recent constellations of small satellites, such as Planet’s SkySats, offer new acquisition modes where very short videos or bursts of
images are acquired instead of a single still image. Compared to sequences of multi-date images, these sequences of consecutive
video frames yield a large redundancy of information within the range of seconds. This redundancy enables to increase the spatial
resolution using multi-frame super-resolution algorithms. In this paper, we propose a novel super-resolution method based on a
high-order spline interpolation model that combines multiple low-resolution frames to produce a high-resolution image. Moreover
this method can be implemented efficiently on GPU to process entire images from real satellite acquisitions. Synthetic and real
experiments show that the proposed method is able to recover fine details, and measurements of the resulting resolution indicate a
gain of 10 cm / pixel with respect to Planet’s SkySat standard imagery products.

1. INTRODUCTION

Satellites play a big role in the observation of the Earth: from
environmental monitoring to meteorology and even industry
monitoring. Earth monitoring applications require a good
ground resolution. For example, fine detection and analysis of
human activity requires a resolution in the range of 30 cm to
1 m / pixel (Murthy et al., 2014).

Earth observation missions were historically owned by national
organisations, constructing high-cost long-term satellites. Start-
ing in the late 90’s, a similar model was also adopted by act-
ors from the private sector (e.g. IKONOS, EROS, QuickBird,
WorldView). But in recent years, some companies have star-
ted to offer low-cost imagery thanks to new satellite designs.
The current trend is to launch many smaller satellites with a
shorter lifespan, providing a wider coverage at lower cost. For
example, Planet provides a daily revisit time on some products.
However, low-cost satellite means that quality of each indi-
vidual image is lower, with higher noise or worse GSD for ex-
ample. This means that instead of trying to obtain a 50 cm GSD
from the physical design of the satellite, such resolution has to
be reached using computational photography techniques and in
particular multi-frame super-resolution.

This small satellite trend can be compared to the case of
smartphone cameras: smartphones have lower grade optics
and sensor compared to DSLR, but computational photography
techniques improve the images to a satisfying quality. Indeed,
smartphone manufacturers have been pushing the limits of the
sensors by acquiring bursts of images and fusing them for joint
denoising, demosaicing, and super-resolution.

The acquisition model for satellite images differs from regular
cameras. Since the satellite is far enough from the ground, we
can consider that the observed scene u lies on a plane at infin-
ity. Then the projective camera model can be assumed to be an
affinity denoted by A. The whole image formation process for
the image vi can therefore be summarized in a single equation:
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Figure 1. Examples of reconstruction on a real ground fan target
from 35 low-resolution SkySat L1A frames. From left to right:
reference low-resolution L1A frame, L1B product provided by

Planet (×1.25), proposed method (×2).

vi = Σ1((u ◦Ai) ∗ k) + ni, (1)

where k is the Point Spread Function (PSF) modeling jointly
optical blur and pixel integration, the operator Σ1 is the bi-
dimensional ideal sampling operator due to the sensor array,
and ni models the image noise. Since the satellite moves dur-
ing the acquisition, small exposure times are necessary to avoid
blur, thus the images are noisy. The resulting digital image v is
encoded in a linear intensity scale, as is frequent in remote sens-
ing applications. In the specific case of affine transforms, as-
suming that k is an isotropic kernel, A and k commute. Hence,
it is possible to first estimate u ∗ k, then invert k on the high-
resolution image; this property allows for an efficient super-
resolution method.

Note that in absence of noise, if the kernel k introduces a
cutoff below the critical sampling frequency, then the image v
is said to be well sampled. Therefore, by the Nyquist–Shannon
sampling theorem (Shannon, 1948) the continuous signal u ∗ k
could be reconstructed from the samples in v. In this scenario,
there would be no gain in applying multi-frame super-resolution
on this system, except for denoising. The interesting case is

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2020-57-2020 | © Authors 2020. CC BY 4.0 License.

 
57



when the system is designed to have the frequency cutoff of k
above the critical sampling frequency. The resulting image v is
then said to be aliased. Aliasing is the phenomenon of replica-
tion of higher frequencies onto lower frequencies. Supermode
(Latry, Rougé, 2000) for SPOT5 used this information to pro-
duce a higher resolution image from two images acquired sim-
ultaneously with a half-pixel shift. The objective of multi-frame
super-resolution is to collect samples from multiple different
images to estimate a de-aliased u ∗ k.

The design of the SkySat-1 satellite (Murthy et al., 2014)
from Planet participates in the trend towards small but high-
resolution satellites. Super-resolution played an important role
in the design of the satellite and influenced the optics design.
Indeed, the low-level images are not only aliased, they are also
acquired in bursts. Compared to the traditional push-broom
cameras, SkySat-1 contains a full-frame sensor and is able to
capture high-definition videos. This means that higher quality
images can be computed directly by combining frames from a
single SkySat acquisition. Figure 1 shows an individual frame
(L1A) and the provided super-resolved product (L1B).

In this paper we present a novel super-resolution method based
on a robust registration followed by a non-uniform sampling
fusion step. We use an inverse compositional technique for
the registration and a fast GPU implementation of the ACT al-
gorithm (Feichtinger et al., 1995) adapted to use a spline im-
age model for the fusion. We also show the improvements on
SkySat images over the commercial product currently proposed
by Planet.

In the rest of the paper, we first review related works on multi-
image super-resolution, in particular for remote sensing. We
then describe the method, comprised mainly of a registration
and a fusion step. Finally, experiments are carried out on syn-
thetic and real images, highlighting the performance of our
method with respect to existing super-resolution methods.

2. RELATED WORKS

Super-resolution is an important problem of image processing.
There have already been many reviews presenting the problem
in detail such as the recent (Nasrollahi, Moeslund, 2014, Yue et
al., 2016). These reviews classify methods into two major cat-
egories: the methods that do super-resolution using only the ref-
erence image (single image super-resolution) and multi-image
super-resolution (for example from bursts or videos). Here, we
only focus on the case of multi-image super-resolution. In-
deed these reviews have shown that having multiple input im-
ages actually increases the quality of the reconstruction. It
is also important to note that pan-sharpening (Garzelli, 2016)
is not super-resolution. Indeed, for pan-sharpening a higher-
resolution guide is available, which is not the case in our ap-
plication.

Four classic categories of multi-image super-resolution meth-
ods can be identified: kernel regression, shift-and-add, vari-
ational, and spectral methods.

In kernel regression methods (Takeda et al., 2007, Takeda et al.,
2009), the pixels of the high-resolution image are computed by
solving a weighted linear least squares problem. The contribu-
tion of the samples (expressed in a common coordinate system
after registration) are limited to a small spatial neighborhood
and are adjusted by weights derived from a kernel. Usually

the weights only take into account the spatial distance of the
samples to the estimated pixel. However, more recent methods
try also to take into account the radiometric information or the
local structure (Wronski et al., 2019).

Shift-and-add methods produce a high resolution image by
registering several low resolution images and integrating the
pixels of the low resolution frames onto the high resolution one.
For some methods, a low resolution pixel affects only one high
resolution pixel at its nearest neighboring location (Keren et
al., 1988, Farsiu et al., 2004, Murthy et al., 2014), while for
others it affects the area of high resolution pixels covered by
the low resolution pixel (Merino, Nunez, 2007). The samples
are usually averaged (using weights or not), or obtained by ro-
bust aggregation (such as the median) to remove outliers (Farsiu
et al., 2004, Murthy et al., 2014). Earlier methods assumed
that enough images were aggregated so that the result had no
holes (Keren et al., 1988). To fill-in holes and also to remove
outliers, regularizers based on the Total Variation (TV) (Farsiu
et al., 2004) are frequently used within an energy minimization
post-process. Once the high resolution image is produced, the
methods usually have a last step to remove the blur introduced
by the PSF (Murthy et al., 2014). Shift-and-add methods can
be seen as simple variational methods.

Variational methods (Tom, Katsaggelos, 1995, Marquina,
Osher, 2008) solve the super-resolution problem by minimiz-
ing a cost function. The low resolution images are usually first
registered. However, the registration can also be refined during
the minimization process (Tom, Katsaggelos, 1995, Peng et al.,
2012). The cost function integrates a data term and a prior term.
The data term is typically the distance between the samples and
simulation of the low-resolution images from the current estim-
ated high-resolution image using the camera model (blur, down-
sampling, motion). A frequent prior used for these methods is
TV (Marquina, Osher, 2008). In addition to having registration
refined during the minimization process (such as alternating one
step of minimization and one step of refinement of the registra-
tion), other parameters like the blur kernel can be refined the
same way. For variational methods, the cost function is usually
justified by a Bayesian model (Tom, Katsaggelos, 1995). Pro-
jection onto convex sets (POCS) (Tekalp et al., 1992) can be
considered as a variational method.

Contrary to the previous methods, spectral methods combine
the images in a transformed domain, such as Fourier. Kim et
al. (Kim et al., 1990) proposed a recursive method based on a
weighted least squares optimization problem expressed in the
Fourier domain. While Fourier is the most used, other bases
have also been used with success. For example, Nguyen and
Milanfar (Nguyen, Milanfar, 2000) proposed an iterative re-
construction in the wavelet domain to minimize a Tikhonov-
regularized least squares problem. A limitation of such meth-
ods is that the reconstruction task can be significantly ill-
conditioned when the sampling is degenerate. This can impact
the entire image depending on the basis used (such as Fourier)
even if the problem is only very local.

More recently, many methods based on neural networks have
been proposed for natural image and video super-resolution.
These methods, such as (Lim et al., 2017, Dai et al., 2019, Shi
et al., 2016, Wang et al., 2019), have been shown to work very
well on natural images. Recently the European Space Agency
also organized a challenge (Märtens et al., 2019) with the ob-
jective of super-resolving images coming from the PROBA-V
satellites. For this contest, the winning method (Molini et al.,
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Figure 2. Pipeline of the super-resolution method. Each input image is registered onto a reference image to create an irregularly
sampled signal. The uniformly sampled image at the requested resolution is then produced by combining the samples.

2019) is a neural network. The specificity of this challenge is
the availability of ground truth images. Indeed, there are two
different generations of the PROBA-V satellite with different
sensor resolutions, therefore it is possible to train networks to
produce images similar to high-resolution acquisitions from the
low-resolution ones. For most satellites, such ground truth data
is not available.

In general, however, it is difficult to apply neural networks for
remote sensing super-resolution. As it was shown in (Wang et
al., 2019), having the correct training data for neural networks
is very important; otherwise, the networks suffer from dataset
bias. This means that the usual training datasets cannot be used
for remote sensing. Simulating data is also very difficult as the
down-sampling kernel is usually unknown. For example, the
problem usually considered with neural networks is a down-
sampling by a factor of four with a bicubic kernel which is un-
realistic because it neglects the optical system and sensor integ-
ration. Moreover, since no information is available to restore
such high frequencies, the evaluation criterion is often the per-
ceptual quality. However, it is very important to not introduce
any bias into the estimation (such bias is usually called ”hallu-
cinations”). In particular, hallucinating can be very problematic
in critical applications such as defense. This is why neural net-
works are usually avoided for restoring remote sensing data.

3. PROPOSED METHOD

As most multi-frame super-resolution algorithms, our method
is based on two main steps: registration and fusion. The re-
gistration step estimates a subpixel accurate affine deformation
between the low-resolution frames. Using this precise inform-
ation, our fusion step produces a high-resolution image using
a 2D spline model. These two steps are illustrated in Figure 2
and are described in detail in the following sections. Addition-
ally, depending on the characteristics of the optical system, a
sharpening step can be applied as post-processing.

3.1 Registration

The first step of the pipeline estimates an affine transformation
between each frame and a given reference frame. While the
popular option to align two images usually relies on dense op-
tical flow, it is not the most adapted for aligning satellite images.
Indeed, as all elements are considered to be in the same plane
at infinity, the movement between two satellite images can be
assumed to be an affinity. Using such parametrization allows
for a more robust and precise alignment than using an optical
flow since only six coefficients per image are estimated instead
of two per pixel for a dense optical flow.

The affinity between two images is estimated using the in-
verse compositional algorithm (Baker, Matthews, 2001), which
has been shown to be very precise as well as being robust to
noise (Sánchez, 2016). More details about the method can be
found in (Briand et al., 2018). As a minor modification, we re-
placed the bicubic interpolation by a spline interpolator of order
3, which slightly reduces the computational cost.

Since the images are aliased, it is important to first apply a low-
pass filter (a simple Gaussian blur in our case) before registra-
tion. It has been shown (Vandewalle, 2006) that aliasing could
lead to misregistration, causing a loss of resolution down the
pipeline.

Due to the motion of the satellite during the acquisition of a
burst, there may remain little overlap between the first (or last)
image of the sequence and the reference one, and we found
that the estimation of a global transform in these cases is prone
to errors. Instead, by computing the expected overlap using a
prior of the satellite motion, we detect frames with less than
80% overlap with the reference frame and use intermediate
frames to register them by composing the estimated transforms.
While this composition could result in error accumulation, we
found that estimating the displacement between images with
little overlap was prone to larger errors and instabilities.

The result of the registration process is one affinity per input
frame which gives a sub-pixel position to each sample relat-
ive to the high-resolution coordinate system, as illustrated in
Figure 2. In this common coordinate system, the pixels from
the low-resolution frames represent an irregular sampling. The
next section describes how to combine these samples to create
a high-resolution image.

One limitation of using a global parametrization for the re-
gistration is related to the parallax effect. As tall structures
break the assumption that the observed objects are in the same
plane, they appear with a slight offset. In practice, given the
speed and altitude of the satellite the impact of parallax is very
small (below the pixel size). Indeed, with a satellite altitude
of H ' 500 km and a baseline (distance between two cam-
era centers) between consecutive frames of B ' 150 m, the
parallax for a structure of altitude z = 25 m is approximately
B
H
z ' 0, 00725 m ' 0, 00725 pixels per frame (assuming ap-

proximately a 1 m/pixel resolution). As can be seen in Figure 3,
the effect of this amount of parallax error is negligible (com-
parable to a small amount of noise). Nevertheless, in case of
abrupt elevation changes in the imaged surface (tall building or
cliff), corrective offsets should be estimated, for example by us-
ing a local multi-frame motion estimation approach (Rais et al.,
2016).
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Figure 3. Crops from the fusion of 15 frames with Gaussian noise of standard deviation σ = 2/255 and ground-truth registration except
for one frame with an offset of (+1,+1) pixel (zoom ×2). Notice how the artifacts due to the misregistration disappear with

high-orders spline interpolation.

3.2 Fusion with ACT using trigonometric polynomial in-
terpolation

The goal of a fusion method for multi-frame super-resolution
is to combine the samples and their estimated positions into a
high-resolution image. The proposed fusion method is based on
the ACT algorithm (Strohmer, 1995) and spline interpolation.
In order to properly describe it, we first review in this section
the ACT algorithm with trigonometric polynomial interpolation
as originally proposed by Gröchenig and Strohmer. We explain
our adaptation of ACT for the spline model in the following
section.

The Adaptive weights Conjugate gradient Toeplitz (ACT)
method (Strohmer, 1995, Strohmer, 1997) was designed to re-
construct an image from irregular samples. In the case of super-
resolution, we consider the aligned low-resolution frames as a
set of irregular samples and aim to resample it into a regularly
sampled image. The ACT method models a discrete image u
as a trigonometric polynomial of order M

2
× M

2
(with M even

and positive), so that the interpolation at the irregular sampling
positions Ξ = {ξk}Kk=1 ⊆ R2 becomes

u(ξk) =
∑

t∈{−M
2

+1,...,M
2
}2

ûte
2πi
M
·〈ξk,t〉, k ∈ {1, . . . ,K},

(2)
where {ût}M

2

t=1 are the coefficients of the trigonometric polyno-
mials. Thus, denoting z the irregularly sampled data at posi-
tions Ξ, the forward model is written as

z = Sû, with S = ((skt)), skt = e
2πi
M
〈ξk,t〉. (3)

The operator S evaluates the trigonometric polynomial at posi-
tions Ξ and can be applied using the nonequispaced Fast Fourier
Transform (nFFT) (Potts et al., 2001).

The objective of ACT is to recover the coefficients û from the
samples z by solving the following least squares problem

arg min
û

‖
√
W (Sû− z)‖22, (4)

where the optional diagonal matrix W acts as a pre-conditioner
that assigns weights to the samples that are inversely propor-
tional to the local sampling density (Feichtinger et al., 1995,
Facciolo et al., 2009). In practice this density per sample is es-
timated from the area of the Voronoi cell associated with said
sample. The normal equation corresponding to Equation (4),
omitting the weights, is

S∗Sû = S∗z. (5)

This linear problem is solved with Conjugate Gradient and reg-
ularized by early stopping its iterations. The term S∗z is com-
puted using the nFFT and the application of S∗S can be acceler-
ated by observing that it is a Toeplitz matrix which can be made
circulant and thus diagonal in Fourier (Feichtinger et al., 1995).
Thanks to this property, each iteration of Conjugate Gradient
only requires the application of two Fast Fourier Transforms.
After the estimation of û, the inverse discrete Fourier transform
is applied to recover u at regularly-spaced positions.

It is important to notice that depending on the number of
samples, the sampling pattern, and the desired zoom factor, the
problem can be under-determined. One way to render the es-
timation well-posed is to reduce the bandwidth of the trigono-
metric polynomial. This can be achieved by manually choosing
a lower degree polynomial for the reconstruction or by estimat-
ing a restricted spectral support as with the heuristic proposed
in (Facciolo, 2011). Here, we will assume that the available
samples are sufficient for solving the problem.

3.3 Fusion with ACT using spline interpolation

Trigonometric polynomials, as used in the method presented in
Section 3.2, are global interpolators. Since our data can contain
outliers with respect to the assumed model, this non-locality im-
plies that errors will propagate spatially everywhere throughout
the result. Moving objects, misregistrations and invalid bound-
ary conditions are examples of such outliers. As a small experi-
ment, the rightmost image in Figure 3 shows the reconstruction
using trigonometric polynomials on a synthetic burst containing
one outlier frame due to a simulated mis-registration. The re-
construction shows artifacts around edges, which are mitigated
when using spline interpolation. Furthermore, due to the global
nature of trigonometric polynomials, the computational cost of
the method makes it unattractive for processing large images.

Instead, we propose to use a more local interpolator such as B-
splines. For a given image u, its n-th order spline interpolation
ϕ(n) is defined by

ϕ(n)(x1, x2) =
∑

i1∈Z,i2∈Z
ci1,i2β

(n)(x1−i1)β(n)(x2−i2), (6)

with c = (ci1,i2) defined such that ϕ(n)(k1, k2) = u(k1, k2),
β(i) as

β(0)(x) =


1 when − 1/2 < x < 1/2

1/2 when x = ±1/2

0 otherwise
(7)
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and

β(n+1) = β(n) ∗ β(0). (8)

An in-depth study of B-spline interpolation can be found in
(Briand, Monasse, 2018).

Since ϕ(n) is continuous, it can be used to define u at an irreg-
ular sampling position ξ with

u(ξ) = ϕ(n)(ξ). (9)

Similarly to Equation 3, the irregularly sampled data z at posi-
tion Ξ = (ξ1,k, ξ2,k) can be written

z = Bc, (10)

where c is the vector of spline coefficients associated to u and
B = (β(n)(ξ1,k− i1)β(n)(ξ2,k− i2))k,(i1,i2). In practice, both
B and c are finite due to computation precision.

We model the spline-based fusion with the ACT equation by
replacing the Fourier coefficients with spline coefficients. The
energy associated with Equation (10) is

arg min
c
‖z −Bc‖22. (11)

This optimization problem can be solved using Conjugate
Gradient, with the corresponding normal equation

BTBc = BT z, (12)

where BT denotes the transpose of B. After c has been estim-
ated, the spline coefficients are used to sample the image u by
interpolating values on the desired regular grid.

Unlike the Fourier case, BTB has no remarkable structure,
therefore the operators BT and B are successively applied.
However, since B is sparse its application is much more effi-
cient than its Fourier counterpart. Since these operations are
local, they can be implemented efficiently in GPU. Using a
fast parallel spline implementation (Briand, Davy, 2019), we
are able to fuse large images within few seconds, compared to
minutes with the trigonometric polynomial model. We found
that 20 iterations of Conjugate Gradient is a good compromise
between reconstruction quality and running time. Furthermore,
Figure 3 shows the same reconstruction with different spline
orders and we observe that high-order splines act as effective
regularizers. Yet, as high-order splines are more costly to eval-
uate, we choose to use the order 9 for the rest of the paper.

3.4 Image sharpening

We recall that the objective of the fusion step is to combine
samples to produce a high-resolution – but blurry – image u ∗
k, where k includes the pixel integration as well as the optical
transfer function. Let us call ub the image that results from the
fusion. The image sharpening aims to invert the blur introduced
by k during the acquisition. However, as we do not know the
optical characteristics, we empirically design a blur kernel k′

such that the reconstruction is sharp, well-contrasted and with
a low noise level.

We design the blur kernel k′ defined as attenuation in the fre-
quency domain comprised of two main components:

F(k′)(ω) = C(|ω|) · S(ω). (13)

Before sharpening After sharpening

Figure 4. Illustration of the effect of the sharpening step on the
reconstruction. The image on the right (with sharpening) is more

contrasted and less noisy than on the left (before sharpening).

The function C is the radial contrast attenuation due to optical
blur, and we model it as C(r) = (ar + 1)−1, with a = 3.5 in
our experiments. The second part S relates to the sensor spatial
integration during acquisition. In particular, S is modeled as
the transition in the frequency domain between the integration
filter of the pixels of size z and the filter corresponding to pixels
at the finest grid (of size 1):

S(ω) = sinc(zωx) sinc(zωy) · (sinc(ωx) sinc(ωy))−1 , (14)

where sinc(·) corresponds to the frequency response of the
pixel integration.

In order to invert the blur kernel k′, we formulate the following
non-blind deconvolution problem and seek to restore u from ub:

arg min
u

‖u · k′ − ub‖22 + λ1‖∇u‖1 + λ2‖∇u‖22, (15)

where λ1 and λ2 offer a balance between the TV regulariza-
tion (denoises and favors sharpening) and the Tikhonov reg-
ularization on the gradients to avoid the staircasing effect of
TV. We set λ1 = 0.4 and λ2 = 10−2. This inverse prob-
lem can be solved efficiently using a half-quadratic splitting
method (Krishnan, Fergus, 2009), and extended to noisy image
deblurring using (Anger et al., 2019). Figure 4 illustrates the
effect of sharpening on real data. The image after sharpening is
both less noisy and more contrasted as a result of the inversion
of the blur and the regularization.

4. EXPERIMENTS

In this section we first compare the proposed methods with dif-
ferent methods presented in Section 2 on synthetic data. Then,
we compare our results obtained on real data acquired with the
SkySat satellites with the super-resolved L1B product distrib-
uted by Planet. In the synthetic experiments the ground truth is
available, which allows to use a standard metric such as PSNR
to measure the quality of the reconstructions. To assess quantit-
atively the quality of the results on real images without ground
truth we estimate the modulation transfer function (MTF) on
a slanted-edge target. The information provided by the MTF
combined with the estimated SNR allows to establish a notion
of resolution, which is used to compare super-resolved results.

The slanted-edge method for MTF estimation was proposed
by (Reichenbach et al., 1991), standardized as ISO 12233 (ISO,
2014) and later improved by (Roland, 2015). It collects samples
along a strong edge, which requires to estimate its precise angle,
and accumulates the samples into a finer grid. This results in a
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27.34dB
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Figure 5. Synthetic example of super-resolution on the EIA
Target (zoom ×2). The figures correspond to the methods

described in the text.

One of the inputs

35.69dB

Zoom with spline

35.20dB

POCS

37.99dB

Normalized conv.

36.45dB

Shift-and-add

40.35dB

Proposed

Figure 6. Super-resolution of a synthetic slanted-edge target for
estimating the MTF (zoom ×2). The MTFs estimated on this

example are presented in Figure 7. The figures correspond to the
methods described in the text.

denoised high-resolution 1D profile of the edge. The derivative
of the edge yields the line-spread function, which in turn is used
to compute the MTF by taking the modulus of its discrete Four-
ier Transform. This method allows to assess the per-frequency
contrast reduction of the system assuming a radial symmetry of
the MTF and without taking noise into account. In a noiseless
world this attenuation could be undone for all the frequencies as
done in Section 3.4. However, as we will see, in the real world
noise will ultimately limit the resolution.

4.1 Super-resolution on synthetic data

In this section we compare the proposed method (ACT-spline)
to other classic super-resolution methods. In particular we com-
pare to a zoom using splines of order 9 with the implementation
of (Briand, Davy, 2019), to shift-and-add (Keren et al., 1988),
to POCS (Tekalp et al., 1992) and to normalized convolution
(Takeda et al., 2007). Since these methods only assume a trans-
lation between the input images, all experiments in this section
have been generated using only translations. Real data, that
do not follow a translation model, are presented in Section 4.2.
For both experiments, we first generated a well sampled image
at the required resolution from a vector graphic. We then used
this image to generate the burst of images with random trans-
lations, subsampled by a factor two with pixel integration and
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Figure 7. MTF estimated on the reconstruction of the synthetic
slanted-edge target (×2) using different methods (shown in

Figure 6). The proposed method (ACT-spline) has a higher MTF
than the other methods, which means that the method was able

to recover more information in high frequencies.

Figure 8. We evaluate the quality of the proposed method on real
data using this target located in Baotou, China. The regions

indicated by the four colors are used to estimate the SNR in the
reconstructed images. The SNR is estimated independently for

each region and is reported in Table 1.

added Gaussian noise of standard deviation 2/255. The gener-
ated bursts consist of 18 images each. Moreover, we did not
apply the sharpening step since we compare specifically the fu-
sion methods without post-processing.

The first experiment was generated using a crop of the EIA res-
olution chart. Visual results as well as PSNRs are shown in
Figure 5. Normalized convolution and ACT-spline are the only
methods with no visual artifacts, however it is easier to read
the small characters such as the 600 in the result from the pro-
posed method. The same observation can be made by looking
at the PSNR where ACT-spline is the best method followed by
normalized convolution.

The second experiment was generated using a synthetic slanted-
edge target. The goal of this experiment is to generate MTFs for
the different methods. Results of the super-resolution are shown
in Figure 6 and the corresponding MTFs are shown in Figure 7.
We conclude that overall ACT-spline performs better than the
other methods as its MTF is always above the other MTFs, es-
pecially in high-frequencies. The high frequency “bounce” ob-
served in the MTFs of POCS and shift-and-add are caused by
the artifacts in their reconstructions.
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Figure 9. MTF estimated using a SkySat acquisition of a real
calibration target located in Baotou, China. The proposed

method ACT-spline produces an image with sharper edges than
the L1B product provided by Planet. Using this plot a ground
resolution per pixel can be estimated from the images: L1B is

63 cm/pixel while ACT-spline is 53 cm/pixel.

4.2 Super-resolution on real satellite images

Since ground truth is not available for real satellite images,
the quantitative measure of the quality of the super-resolution
is performed using a slanted-edge target. Thankfully, such
are available, for example in the calibration site of Baotou in
China (Li et al., 2015). The target, shown in Figure 8, can
be used to evaluate both qualitatively, using the fan target and
USAF resolution test patterns, and quantitatively, using the
slanted-edge target.

In this section, the super-resolved images are produced from
SkySat low-resolution images (L1A), comprising of 35 frames
with an average overlap of 17 samples per low-resolution pixel
due to the motion of the satellite. We compare two methods:
ACT-spline and the L1B produced by Planet which corresponds
to a ×1.25 zoom factor. In this section, we compare the two
methods after sharpening since we want to compare the quality
of the final product, i.e. at the end of the pipeline. We do not
compare with the other methods from Section 4.1 since we have
shown that our method performs better. Moreover most of these
methods assume a translation between the input images which
is not the case for real satellite images.

The results on the fan target are shown in Figure 1. Visually,
the bands of the fan-shaped target are longer and sharper for
the proposed method than the L1B image: ACT-spline has a
better ground resolution. The same can be seen on the USAF
resolution test patterns shown in Figure 10.

To verify quantitatively this observation, we used the slanted-
edge target. From this target we first estimate the MTF using
the same technique as for the synthetic target in Section 4.1.
The MTF is shown in Figure 9. Our MTF is above the MTF of
the L1B product which means that our reconstruction is sharper.
This plot can also be used to estimate a ground resolution per
pixel. For that we first estimate the SNR of the two reconstruc-
ted images on homogeneous areas, the results are presented in
Table 1. We can see that the proposed result is less noisy. The
ground resolution can be estimated by defining a reference en-
ergy and verify for how many cycles per meter the MTF crosses
this energy. This can then be transformed to cm/pixel. For
that we used the energy corresponding to two times the worst
SNR reported in Table 1 for the two methods. This leads to a

Signal level Noise level SNR

Zone 1
(red)

Low-res. 690.74 12.92 53.46
L1B 690.64 10.00 69.02
Proposed 688.82 6.45 106.76

Zone 2
(yellow)

Low-res. 1851.36 19.91 93.00
L1B 1846.88 13.31 138.68
Proposed 1887.48 13.26 142.24

Zone 3
(blue)

Low-res. 1855.39 18.57 99.88
L1B 1846.91 12.62 146.39
Proposed 1892.45 13.49 140.30

Zone 4
(green)

Low-res. 967.13 15.17 63.75
L1B 963.63 12.37 77.89
Proposed 971.39 10.67 91.02

Table 1. Signal-to-noise ratio (SNR) estimated on the SkySat
images of Figure 8 before and after super-resolution for two

methods (L1B provided by Planet and our ACT-spline).
Super-resolution always improves the SNR and ACT-spline

performs almost always the best for all signal levels.

Low-res. L1A frame L1B Proposed

Figure 10. Examples of reconstruction on real resolution test
patterns from 35 low-resolution SkySat L1A frames. From left

to right: Reference L1A frame, Planet L1B
reconstruction (×1.25), proposed method (×2).

ground resolution of 63 cm/pixel (0.79 cycles/m) for the L1B
product and 53 cm/pixel (0.94 cycles/m) for ACT-spline. This
shows that our method produces images with a better quality
than the L1B images provided by Planet. Moreover, the pro-
posed method produces a ×2 super-resolution image from 35
images (2560 × 1080) in less than a minute, including 30 s for
the registration (CPU), 13 s for the fusion (GPU) and 5 s for the
sharpening (CPU). As the registration is also GPU-friendly, it
would be possible to significantly speed-up the method.

5. CONCLUSION

In this work we have proposed a novel super-resolution method
for satellite images. The method is based on a noise robust
registration step and a fusion based on a spline interpolation
model. Moreover, the fusion step can be implemented on GPU
making the method a viable practical alternative to current tech-
niques. Using real images from the SkySat constellation, we
have shown that this method can create images with a higher ef-
fective ground resolution than current commercial products. We
have measured a gain of 10 cm / pixel with respect to Planet’s
SkySat L1B product, while improving the signal to noise ra-
tio. The method can still be improved by taking into account
parallax and by handling moving objects in the registration.
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