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ABSTRACT  
 
Recently, LiDAR point cloud data acquired by Unmanned Aerial Vehicles (UAVs) are used in many scientific disciplines and like the 
former photogrammetric techniques these data are usually collected in overlapping strips. Generation of comprehensive models of the 
scanned areas requires these strips to be aligned together which is a challenging process due to the multi sensor scanning system including 
the scanning sensor, the GNSS receiver and the IMU sensor. The main errors result from the inaccurate GNSS locations and flight path 
shifts as well as failure of the GNSS signals in complex urban or forest environments. For that reasons, the development of an automatic 
feature-dependant method in urban areas or individual tree-based in forest areas where there are no distinct features for strip adjustment in 
these environments become a must. This research work focuses on automated co-registration/alignment multiple point cloud strips of 
forested areas acquired from UAV LiDAR (or referred to as ULS) lack of artificial ground control. The main limitations of ULS data of 
forests are the relatively low sampling density of near ground areas and stem nullity due to the top-view scanning mode of ULS. To obviate 
this, this work explicates the tree crowns shape to identify the key points required for co-registration by applying a density based clustering 
algorithm (DBSCAN) to the tree crowns and models resulting clusters with Gaussian mixture models by learning the best parameters using 
maximum likelihood estimation to define the key points. A feature vector is assigned to each point by quantifying its angular and linear 
relationship with respect to the local system origin. Next, the similarity score matrix is computed by a fixed geometric relationship between 
the distance and angle similarity. Then, the maximum weight matching problem is solved for the similarity score to gain point-to-point 
correspondence. Finally, the optimal 2D rigid transformation parameters (one rotation and two translations without  scale factor ) are 
obtained using permutations to try out for all possible paired combinations and count the number of inlier points satisfying a tolerance of 
planimetric deviation after alignment within a user defined threshold. The results of two test forest plots with different tree species and ULS 
point densities show a mean planimetric enhancement from 1.79 m to 0.22 ± 0.13 m for plot one and from 2.33 ± 0.53 m to 0.61 ± 0.21 m. 
 

1. INTRODUCTION 
Forest monitoring and mapping are currently very vital because of 
their ecosystem’s role in environment and economy. One of the 
most valuable techniques for forest mapping is Light Detection And 
Ranging (LiDAR) which exploit the rage measurements to the 
surroundings to calculate the 3D positions of the targets with 
extreme dense point cloud and high measuring accuracy. LiDAR 
platforms include air-based and ground-based. The quick 
developments in hardware manufacturing resulted in small, 
lightweight platforms like Unmanned Aerial Vehicle Laser Scanner 
(ULS) for air-based systems and Backpack Laser Scanner (BLS) in 
case of ground-based systems. Both ULS and BLS has significantly 
contributed to forest applications ( Polewski et al., 2019; Wallace 
et al., 2016). Lately, developments in small-scale technology 
offered a Hand-held Laser Scanning system (Bosse et al., 2012) 
with light weight and suitable for many mapping and localization 
applications. Each of these systems has its advantages and 
limitations. Unmanned Aerial Vehicles (UAVs) present a 
distinctive combination of very high-resolution data collection at a 
relatively lower survey charge. In forest it may be used for 
assessments of woodlots, fires investigation, vegetation 
monitoring, species detection, volume calculation, along with 
silviculture (Nex and Remondino, 2014). Forest structure, 
including spreading and physical appearance of trees, branches, 
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understory, and canopy gaps, has a helpful linkage to numerous 
ecosystem purposes. 
 
The point cloud data from any LiDAR system are affected by 
different errors (especially random and systematic errors) from the 
system configuration and measurement. Strip adjustment aims at 
minimizing the effects of systematic errors to maintain qualified 
results when dealing with multiple strips of point clouds. A proper 
calibration of strips requires accurate Position and Orientation 
(POS) measurements of GNSS/IMU. In addition, the establishment 
of control points (artificial targets) is a time-consuming process and 
of high cost rather than the lack of GNSS signals in GPS-denied 
environments (urban canyon or dense forests). To overcome these 
difficulties, several approaches used the scanned features as 
alternatives for the ground control points to perform an automatic 
or object-based strip alignment of point cloud data using the well-
known Iterative Closest Point (ICP) algorithm  ICP would be more 
suitable for urban point clouds than forest areas after coarse 
registration is completed (Xu et al., 2019), since it is lack of 
adequate variety of objects in forests which make the registration 
process more difficult. ICP approach performs a fine registration of 
an overlapping pair of point clouds by iteratively approximating the 
transformation parameters, presuming proper a priori configuration 
is provided.  
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One of the common features of ULS and other airborne 
photogrammetric data acquisition techniques that data are collected 
in adjacent strips to ensure full coverage of area of interest. 
According to this acquisition nature and the multisensory 
composition of the system some related errors constantly occur 
(e.g. trajectory errors, POS systematic errors and Misalignment and 
gyro drift of the INS (Filin, 2013). The occurrence of such errors is 
observed by visualizing the (figure 1) inconsistencies between the 
neighbouring strips. From this prospective, an adjustment process 
is necessary to reduce or eliminate these errors.  Strip adjustment is 
the process in which a couple of scans, or more are to be truly 
geometrically configured. It requires the original observations 
(GPS, IMU and the laser measurements), which are not generally 
offered to the end-user (Habib et al., 2008). The chief purpose of 
strip alignment is the simultaneous optimization of relative and 
absolute orientation of the acquired point cloud data strips. 
Combining point cloud data from numerous, co-registered laser 
scans from the same or several platforms is a well-known pre-
processing stage to overcome the restrictions of data obscuration 
due to laser occlusion. UAVs offer high-quality point clouds of 
reasonably small areas (few hectares). They have a wide field of 
view and ensure point cloud data with less occlusions (Glira et al., 
2015). The significance of lidar strip adjustment affects many 
phases of forest inventory simply because it guarantees the 
thorough coverage, which in turn provides sufficient information 
on the canopy and tree structure (Wallace et al., 2016), biomass 
estimation (Cao et al., 2016). 
 
This paper is to align pairwise UAV lidar strips in a forested area 
using the detected key points by fitting Gaussian mixture models to 
individual tree crowns assembled by Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algorithm. The 
corresponding point pairs are identified by applying graph 
matching to the matching score matrix obtained from similarity 
measures of feature descriptors formed by the distance and angular 
metrics. After obtaining a correspondence set, the 2D rigid 
transformation parameters are calculated by permuting over all the 
possible combinations of matched pairs to reach the optimal 
transformation. The transformation parameters include one rotation 
angle and two translations while no scale factor because the two 
strips (datasets) are acquired by the same lidar sensor and platform. 

In addition, no z-axis alignment is required as the ULS provides 
georeferenced data due to the GPS-IMU integration with no 
significant z-axis misalignment (figure 1 – bottom row left, which 
represent a profile of the two strips before alignment). 

The main contributions of this work are represented in: 

 Providing proper key points by estimating the best parameters 
of a normal Gaussian distribution fitted to the density-based 
clustered tree crowns to overcome the inaccuracy of tree 
locations in broadleaf forests where the treetop is ambiguous. 

 Assuming fixed inner geometry of the forest structure, the 
feature descriptor is formed based on a combination of angular 
and linear relationships between each key point and the system 
origin (mean of all point coordinates)  

 Permutations on the correspondence set to gain the optimal 
rigid transformation parameters 

 
The rest of this paper is organized as follows, section 2 contains the 
related works, section 3 the research methodology, section 4 
describes the study area and the datasets, section 6 shows the 
research results with discussion and finally section 7 for the 
conclusion. 

2. RELATED WORK 

The co-registration of point cloud data has a vital role in many 
applications like 3D construction, urban mapping and forest 
biomass inventory. So, there are many approaches in literature 
regarding this topic. Theiler et al. (2014) performed the co-
registration of TLS point cloud without any artificial markers 
placed in the scene. They used 4-Points Congruent Sets (4PCS) to 
match and align the point cloud utilizing methods from 
philosophies from image processing and computational geometry. 
Yang et al., (2016) proposed a method to co-register point cloud 
data from ALS and TLS depending on the extracted building 
outlines. These outlines were matched by applying geometric 
constraints on the features. Then, a correlation coefficient was 
computed of all geometric features by decomposing Laplacian 
matrices into the spectral space and find the coarse registration 
while the fine registration was performed via a multi-line 
adjustment approach. 

 
Figure 1. The planimetric discrepancy between two UAV strips 
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Kelbe et al. (2017) used TLS data and proposed a method for 
creating view-invariant feature descriptors that are fundamental 
to the point cloud data and allow blind marker- free registration 
in forest environments. Polewski et al. (2016) considered a 
similarity function based on the planimetric and vertical 
distances among the tree positions in the same plot to 
automatically register ALS/TLS data. The feature descriptors are 
compared to each other to obtain the matching score using a 
model of biological sequence matching and one-to-one 
correspondence is provided by graph matching while they use 
heuristic search to retrieve the optimal tie points set for optimal 
transformation. This study is then applied to co-register BLS and 
ULS datasets with updated similarity function and 
transformation model in (Polewski et al., 2019) using simulated 
annealing to calculate 3D transformation parameters. A 
probabilistic method is developed by Dai et al., (2019) to co-
register point cloud data from ALS and TLS by extracting the 
modes of tree crowns and identifying the correspondence by 
probability density function. Guan et al. 2019) utilized the tree 
locations and common fixed forest geometry to register UAV, 
Backpack and TLS based on TIN matching and then applied ICP 
for fine registration.  
 

3. METHODOLOGY 

The research methodology three main stages: First, a density-
based clustering is performed on the point cloud to extract the 
tree crowns as point clusters. Then these clusters are modelled 
using mixture models to define the virtual key points which will 
be used in the next stage of adjustment. If these points hold fixed 
linear and angular relationship with respect to the origin of the 
Area of Interest (AOI) which is simply calculated as the mean of 
all keypoints coordinates, each point is defined by a feature 
descriptor with its distance and angle to the origin. Second, two 
similarity measures are used to calculate the cost matrix between 
the descriptors. Third, the maximum weight matching problem 
is solved by applying Hungarian algorithm to identify the 
correspondence pair list of the two scans. The optimal 
transformation parameters are obtained by permutation of all 
possible pair combinations. 
 
3.1. DBSCAN Clustering 

The unsupervised clustering approach Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) named in 
(Ester et al., 1996) is used to derive the tie points required for the 
strip adjustment. The algorithm returns several clusters by 
distinguishing the dense points zones separated by lower or blank 
areas otherwise the point is classified as noise. The main 
advantages of DBSCAN are identifying arbitrary shape clusters, 
robustness to noise and limited inputs. On the other hand, the key 
problem is its high sensitivity to the input parameters. The 
algorithm picks a random point and counts the nearby points 
within the search radius (Eps). If the number of neighbors is 
within the minimum number of points (MinPts) to form a cluster, 
the algorithm continues to search from new data point until no 
data points exist within the neighboring radius or the less than 
the MinPts. Then, a new cluster will be discovered. Otherwise, 
point is considered as outlier.  

 
Figure 2. The Research Methodology 

3.2. Gaussian Mixture Modelling and Parameters 
Estimation 

The Gaussian distribution is used to fit the individual clusters 
where the model parameters (i.e. mean and covariance) are 
optimally estimated by Maximum Likelihood Estimation 
(MLE). A Gaussian Mixture Model (GMM) acts as a linear 
weighted sum of K Gaussian densities: 
 
      (1) 

 
In which,  is the kth mixture coefficient 
and,  
 

 
       (2) 

 
is the kth Gaussian density with mean  and covariance matrix 

 and dimensionality D. 
 
The likelihood function ( ) of the multivariate Gaussian 
distribution (Bishop, 2006) for  a D – dimensional vector is: 
 
     (3) 

 
Therefore, for MLE of a Gaussian model, the best estimates 
(figure 3) of the parameters θ = [μ, Σ] can be obtained by taking 
the logarithm of the likelihood function then set the partial 
derivative  and solve for θ. 
 

     (4) 

    (5) 
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Figure 3. The sampled tree crown with extracted the keypoint 

(red circle) 

3.3. Feature Descriptor Formation 

The output of clustering and modelling will be a pair of point sets 
representing the two datasets. Each point in named dataset will 
be described by two main components (figure 4): the angle 

and the radial planimetric distance 

 to system centre (i = 1 : N points, j = 1,2). Each 
descriptor will be a vector of length two [ ] with DH 
indicating the distance to the system origin and β representing 
the angle with respect to the same origin. 
 

 
Figure 4. The Feature Descriptors w.r.t origin (example shown 
is the distance and angle of orange circle point to the origin of 

the system) 

3.4. Similarity Measure 

For each single feature vector (Desi) in the model dataset, two 
modes of similarity are computed to all feature vectors of the 
target dataset. The angle similarity measure (Zhou et al., 2004) 
is used to define the affinity (S ) between two angles ( 1, 2) by 
the defining the angle difference (Δ( ) as a Gaussian 
distribution: 

     (6) 

     (7) 

The distance proximity matrix is determined by: 

     (8) 

The total similarity score matrix of dimension STotal (P1, P2) can 
be calculated by subtracting the two measures  

     (9) 
 
3.5. Feature Matching 

The point-to point correspondence is identified by solving the 
maximum weight function (figure 5) using the Kuhn-Munkres 
algorithm. A weighted graph is established with a set of vertices 
(P1) from the first dataset and edges (P2) describing the points 
in the second dataset. The points count in both datasets usually 
differ, so pseudo vertices are added to the minor group. The 
matching pairs are obtained by maximizing the total similarity 
score matrix (STotal). 

 
Figure 5. The Kuhn-Munkres algorithm for maximum weight 

matching problem 

 
3.6. Optimal Transformation Parameters  

From the graph matching, two sets of common horizontal 
coordinates (xi, yi) and (xj, yj) of tree locations were obtained. 
The two sets are aligned by performing rigid transformation 
using the method of rigid transformation (Kabsch, 1976). First, 
the centroids (c1, c2) of the two sets were determined, and then 
the covariance matrix C was computed. If VSWT be the singular 
value decomposition of C. Then, the optimum rotation Ro and 
translation Txy. 

   Ro = WVT   (10) 
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   Txy = -Rc1 + c2   (11) 

The method searches for the optimal rigid transformation 
parameters by permutation without replacement to seek all 
conceivable combinations. The total attempts count will be 

 with N the total number of matched pairs and M = 2 (least 
number of pairs to solve for. For each iteration, the planimetric 
difference before and after alignment is computed and the total 
number of points within the threshold (dthr) is recorded. The 
optimal pair is the one with the highest number of matched 
points. Hence, the best estimate of transformation is obtained and 
applied to the whole point set.  

3.7. Vertical Offset Calculation 

After identifying the optimal transformation, the vertical offset 
between the two strips can be estimated by comparing the 
elevations of the matched point set projected onto a DTM. A 
unique value (the median) is calculated for the vertical 
differences at all matched points and used to align the pair of 
strips vertically. 

)   (12) 

4. EXPERIMENTAL MATERIAL  

4.1 Study Area 

The study area (figure 6) situated in the Yellow Sea coastal 
national forest park of southeast China (120° 49′9.80″E, 32° 
52′23.27″N). 

The total square area of the forest park is approximately 2235 ha 
including different tree groups. The basic tree species are, Dawn 
redwood (Metasequoia glyptostroboides), Poplar (Populus 
deltoids) and Ginkgo (Ginkgo biloba) (Cao et al., 2016). Two 
square test plots (table 2) with 50 m side length have been chosen 
for the adjustment process based on forest map with different tree 
species and stem density. 

Plot No Tree Species 
Tree 
age 

(year) 

Stem 
Density 
(1/ha) 

I dawn redwood  29 417 
II Poplar 22 208 

Table 2. The forest parameters of the two test plots 

The two plots were chosen to represent different characteristics. 
On hand, the test plot I has coniferous dawn redwood tree species 
with relatively high stem density (417 per hectare) which are 
regularly planted with average tree age 29 years.  On the other 
hand, test plot II includes broadleaf poplar trees with around half 
stem density of the test plot I (208 per hectare) with irregular 
distribution and 22 years average tree age. 

4.2 Data Collection 

The strips of point cloud data were acquired using a GreenValley 
(GreenValley, 2018) UAV LiDAR System of the forest stands. 

The UAV platform used for data collection consists of a lidar 
sensor (Velodyne Puck VLP-16) and an onboard GNSS sensor 
(Novatel) integrated with IMU (Novatel SPAN-MEMS-IMU) to 
update the sensor location during the scanning process. The 
platform is controlled by an auto-pilot system to ensure flying on 
the trajectories for around 25 min. (Guo et al., 2017). Table 1 
introduces the flying parameters and the sensor characteristics.  

Parameter name  Value 

Flying altitude (m)  86 
Voyage Speed (m s−1)  3.6 
Side overlap (%)  80  
Laser Wavelength (nm)  903 
Beam divergence (mrad)  3 
Footprint (cm)  26 
pulses per second (kHz)  21.7 
Scan frequency (line s−1)  16 
Extreme scan angle (°)  30 
Point density (points m−2)  84 

Table 1. The Flight parameters used in the data collection 

The swath width of UAV covers each strip individually while the 
study area is covered by the overlap between the two strips to 
guarantee 100 % coverage within the study area. 

5. EXPERIMENTAL PARAMETER SET UP 

The main experiments parameters are the epsilon (Eps) and the 
minimum points to form a cluster with DBSCAN. The Eps is set 
as the same for both plots while the minimum number of points 
is 110 and 50 for first and second plots respectively because both 
plots are acquired with the same sensor under the same flight 
conditions. The cloth simulation filter (Zhang et al., 2016) is used 
to classify the point cloud to ground and non-ground points. The 
height above ground to eliminate ground points and define tree 
crowns was set to 15 m for plot one and 25 m for the second plot. 

6. RESULTS AND DISCUSSIONS 

The methodology has been examined on the two mentioned test 
plots. The test plot I with coniferous trees and regular stem 
distribution achieves a matching percentage over 69 % while the 
percentage is calculated w.r.t the smaller number of points from 
both strips. (matching percentage = ).  

Figure 7 illustrates the alignment results of test plot I with solid 
circles indicating the matched points from each strip. While 
figure shows the extracted points of the same plot to visually 
demonstrate the improvement after applying the proposed 
methodology. The same outputs are shown for test plot II (figure 
8) to describe the situation before and after adjustment. The test 
plot II has two chief differences from test plot I: broadleaf poplar 
tree species and the stem density. Consequently, the matching 
percentage is 23 % which clearly reveals the influence of tree 
species on the matching results accuracy.  
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Figure 6. The location of the two strips within the study area (North strip in blue and south strip in red)

 
Figure 7. Test Plot I Results (top row: the extracted keypoints), 

(bottom row: the alignment results of the keypoints) 
 
The alignment accuracy has been evaluated by comparing the 
planimetric differences between the matched points before and 
after adjustment for the two test plots. The validation criteria 
demonstrate an improvement of the planimetric deviation range 
from 1.33 m to 2.27 m before alignment to 0.03 m to 0.5 m after 
alignment for the test plot one (top row in figure 9). The same 
values were investigated for the test plot 2 (figure 9 bottom row). 
The range before alignment was from 1.27m to 3.1m while after  

 

Figure 8. Test Plot II Results (top row: the extracted keypoints), 
(bottom row: the alignment results of the keypoints) 

 
were 0.21 m to 1 m. After horizontal alignment of strips, the 
vertical shift correction takes place. Figure 10 describes the 
result of planimetric and vertical alignment using a profile of the 
point cloud of the two test plots. It is visually noticed that for 
both plots, there is a parallelism between their ground level 
which indicates true alignment of their z-axes before and after 
the process of strip adjustment. The study area is a planted forest 
in which the trees within the same plot have the same 
characteristics (e.g. species, age, height, stem diameter etc.). 
Also, the stem distribution is regular over most test plots. The 
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effect of these factors appears in the matching and adjustment 
results as seen from figures 7,8 and 9. On hand, figure 7 
represents test plot I which includes dawn redwood tree species 
with dense regular distribution with high matching percentage. 
On the other hand, figure 8 illustrates the irregular stem 
distribution of test plot II with low matching percentage. Figure 
9 plots the planimetric deviations at the matched points before 
and after alignment, it is shown that test plot I has better 
alignment accuracy (mean = 0.22 m) than test plot II (0.61 m). 
From all mentioned, the method can perform better in dawn 
redwood tree species with regular stem distribution over 
broadleaf tree poplar trees. 

7. CONCLUSION

This work proposed a method to align multiple ULS scans in 
forested areas. The research contributions can be represented in 
extraction of virtual keypoints by fitting GMM to tree crowns 
obtained from density based clustering (DBSCAN), creating the 
feature descriptors by wrapping radial distance and angle from 
each keypoint to the calculated system origin, and permutations 
over all possible pair combinations for best estimates of the 
transformation parameters. The proposed method can overcome 
the limitations of tree localization in case of complex forests 
dominated by broadleaf tree species in which the local maxima 
of single trees is fuzzy to determine. Moreover, the method 
stipulates nothing other than the existence of canopy cover in 
datasets to be aligned and keypoints are assumed to be extracted 
with the same rule based on canopy clustering. Herein, the 
strategy is validated on two real-life forest test plots and obtained 

promising results after alignment showing significant corrections 
to the planimetric differences for matched points. For test plot I 
the mean difference improved from 1.79 m to 0.22 m while the 
same values for test plot II are 2.33 m, 0.61 m, respectively. The 
future work underlaying this methodology will be focused on the 
aerial-ground multi-platform point cloud fusion especially in 
cases where tree locations cannot be accurately determined. 

Figure 9. Evaluation of results of the two plots (top row: test 
plot I, bottom row: test plot II) 

Figure 10. Results of the planimetric and 3D alignment of the point clouds of two plots (top row: profile from test plot I, bottom row: 
profile from test plot II)
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