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ABSTRACT:

Copernicus program via its Sentinel missions is making earth observation more accessible and affordable for everybody. Sentinel-2
images provide multi-spectral information every 5 days for each location. However, the maximum spatial resolution of its bands is
10m for RGB and near-infrared bands. Increasing the spatial resolution of Sentinel-2 images without additional costs, would make
any posterior analysis more accurate. Most approaches on super-resolution for Sentinel-2 have focused on obtaining 10m resolution
images for those at lower resolutions (20m and 60m), taking advantage of the information provided by bands of finer resolutions
(10m). Otherwise, our focus is on increasing the resolution of the 10m bands, that is, super-resolving 10m bands to 2.5m resolution,
where no additional information is available. This problem is known as single-image super-resolution and deep learning-based
approaches have become the state-of-the-art for this problem on standard images. Obviously, models learned for standard images
do not translate well to satellite images. Hence, the problem is how to train a deep learning model for super-resolving Sentinel-2
images when no ground truth exist (Sentinel-2 images at 2.5m). We propose a methodology for learning Convolutional Neural
Networks for Sentinel-2 image super-resolution making use of images from other sensors having a high similarity with Sentinel-2
in terms of spectral bands, but greater spatial resolution. Our proposal is tested with a state-of-the-art neural network showing that
it can be useful for learning to increase the spatial resolution of RGB and near-infrared bands of Sentinel-2.

1. INTRODUCTION

The European Space Agency under Sentinel missions are pro-
moting and easing research on earth observation. Thanks to
their open data initiative, data gathered from Sentinel satel-
lites can be freely accessed, allowing research and multiple
services to take advantage of this situation. Among the vari-
ety of Sentinel satellites, Sentinel-2 (S2) is focused on high-
resolution optical imagery, having vegetation, soil and coastal
areas as its main objectives (Drusch et al., 2012). Thirteen spec-
tral bands are captured by the sensor of S2. These bands are in
the visible/near infrared (VNIR) and short-wave infrared spec-
tral range (SWIR) at different resolutions. The greatest spatial
resolution provided is 10m for RGB and NIR bands, whereas
the rest are given either at 20m or 60m.

Recent developments in single image super-resolution (SISR)
(Yang et al., 2018) suggest that these spatial resolutions could
be improved without using additional information. Having higher
resolutions, the posterior analyses could be carried out with
greater details. However, except for a few approaches (Liebel,
Körner, 2016, Wagner et al., 2019), previous works have mainly
developed methods for obtaining all thirteen bands at 10m res-
olution (Lanaras et al., 2018, Gargiulo et al., 2018). Although
this is also a challenging setting, it has the advantage of hav-
ing additional information at 10m resolution (RGB and NIR
bands) that can help during the super-resolution of the other
bands. Anyway, these strategies cannot be applied to improve
the resolution of 10m bands to 5m or 2.5m, since no reference
data at these resolutions exist.
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Currently, deep learning-based methods have become the stand-
ard for image processing and computer vision (Goodfellow et
al., 2016). To deal with images, Convolutional Neural Net-
works (CNNs) (Lecun et al., 1998) are usually considered. SISR
(Yang et al., 2018) is a scenario where CNNs have excelled. A
number of methods have been proposed in the literature for this
purpose (Kim et al., 2016, Ledig et al., 2017). Their advantage
with respect to more classical super-resolution methods such
as bicubic interpolation or reconstruction methods (Yan et al.,
2015) has been already proven. Although networks trained for
standard images do not translate well to satellite images for dif-
ferent reasons (Liebel, Körner, 2016), they seem to be the way
to go for increasing the resolution of S2 10m resolution bands.

Therefore, training a specific network for improving the resolu-
tion of S2 10m bands is required, which must take into account
the characteristics of these kinds of images. In this work, we
propose a full end-to-end CNN to super-resolve RGB and NIR
bands to 2.5m resolution. However, notice that CNNs for super-
resolution fall in the category of supervised machine learning.
Consequently, the network is trained with labeled data, which
means that for each S2 image used to train the network, the
same scene at 4 time more resolution is required. Indeed, this
is the main problem addressed in this work.

The most straightforward way to create pairs of images for super-
resolution would be to consider S2 10m bands as the target res-
olution and downsample the same image to 40m. This way, a
network could be learned for super-resolving 40m to 10m, with
the assumption that this network would then translate well to
super-resolve 10m resolution to 2.5m resolution. Similar ap-
proaches can be found in (Liebel, Körner, 2016, Wagner et al.,
2019). However, this is somewhat similar to the effect of apply-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2020-9-2020 | © Authors 2020. CC BY 4.0 License.

 
9



ing CNNs trained for standard super-resolution to satellite im-
ages, not all characteristics are properly learned and conquently,
the CNN does not generalize as it could be expected.

For this reason, our main motivation is to consider real ground
truth images at 2.5m resolution. This is in line with the ap-
proach in (Galar et al., 2019), where the authors proposed to use
another satellite (RapidEye) to improve S2 RGB bands resolu-
tion to 5m. However, we consider several important aspects that
were not required when dealing with RapidEye and 2x super-
resolution. Moreover, we also introduce the usage of NIR band,
move from 8bit radiometric resolution to the native 16bit of S2
images, avoid manual validation and propose a way to match
the reflectance of both satellites. The work in (Beaulieu et al.,
2018) also follows the same idea for 2x super-resolution, but
no clear justification for the satellite is given and very limited
experiments are carried out. Hence, in this work we propose
to use satellites with similar spectral bands to those of S2 as a
source for target images for training a neural network. With this
aim, we have opted for PlanetScope (PS) constellation of Dove
satellites 1. Although they provide images at 3.125m resolution
(in the case of the Ortho Tile product we have used), we res-
ample them to 2.5m for easing the architecture and learning of
the CNN. As we detail in Section 3, proper preprocessing is the
key for having good pairs of S2 and PS images.

The experimental study to validate the proposed approach con-
sists of a set of images obtained from Open California, which
were freely available from2. We consider a state-of-the-art model
called EDSR (Enhanced Deep Residual Networks) (Lim et al.,
2017) with some modifications to avoid checkerboard patterns
(Aitken et al., 2017, Sugawara et al., 2018). We evaluate dif-
ferent strategies for learning the network using commonly con-
sidered metrics for super-resolution: the peak signal to noise
ratio (PSNR) and the structural similarity (SSIM) (Zhou Wang
et al., 2004). We will show that the proposed methodology
leads to promising results and spectral validation shows that
super-resolution preserves the coherence with the original S2
image. We must keep in mind that preserving the radiometric
information when super-resolving images is of vital importance
in satellite imagery.

The rest of this work is organized as follows. Section 2, briefly
recalls deep learning and CNNs, mainly focusing on SISR. Af-
terwards, we present our proposal for super-resolving S2 im-
ages in Section 3. The experiments are carried out in Section 4.
Finally, conclusions and future work are presented in Section 5.

2. PRELIMINARIES

CNNs (Lecun et al., 1998) are currently the standard to address
computer vision tasks due to their performance. Although im-
age classification was the first problem addressed by CNNs,
their usage have been extended to a series of problems in com-
puter vision, including SISR. Hereafter, we briefly recall sev-
eral approaches for this purpose in Section 2.1 and focus on
EDSR model (the model considered for the experiments) and
the modifications we carried out in Section 2.2.

2.1 CNNs for Single Image Super-Resolution

SISR is the problem of increasing the spatial resolution of an
image using the information in the image itself together with

1
https://directory.eoportal.org/web/eoportal/satellite-missions/d/dove

2
https://www.planet.com/trial/

some knowledge acquired in the form of an algorithm or a model
(Yang et al., 2018). There are three types of methods for doing
SISR: interpolation-based (bicubic interpolation (Keys, 1981)),
reconstruction-based (applying prior knowledge to generate sharp
details (Yan et al., 2015)) and learning-based methods (learning
a model from source and target data (Yang et al., 2018)). We fo-
cus on the latter and more specifically, on deep learning (CNN)
approaches due to the excellent results they have shown work-
ing with standard images (Yang et al., 2018).

To learn a CNN for SISR, one needs to train the network with
pairs of images at low (source) and high (target) resolution.
Then, the network is expected to find high-level abstractions
from the low resolution image to bridge the gap with respect
to the high resolution space. The common way for obtaining
these pairs is to consider very high quality images as target and
downsample them to obtain the source images. However, the
problem in this work is that there are no S2 images available at
high resolution (2.5m).

With the training set available, different architectures and op-
timization objectives have been developed (Yang et al., 2018).
SRCNN (Dong et al., 2014), the first CNN for SISR, used a
bicubic interpolation of the source image as input to the net-
work, resulting in high computational costs. VDSR (Kim et
al., 2016) followed the same idea but increased the depth of
the network. One way to reduce the computational effort by
methods using bicubic interpolation as input was presented in
(Shi et al., 2016), as a part of ESPCN. The authors proposed a
Pixel Shuffle layer with sub-pixel convolution for upsampling
at the end of the network. Later, ICNR initialization (Aitken et
al., 2017) of these layers allowed to remove the checkerboard
pattern recurrently appearing in CNN-based approaches, which
was further improved by blurring in (Sugawara et al., 2018).
EDSR (Lim et al., 2017) followed the same idea of upsampling
at the end of the network. It was based on SRResNet (Ledig et
al., 2017), which stacked several ResBlocks commonly used for
image classification, but unnecessary modules were removed
and the loss function was changed from L2 to L1 norm. We
focus on this network in the next section as it is the base for our
proposal.

EDSR was not the only proposal dealing with the loss function
used for training the CNN. The L2 norm, i.e., Mean Square
Error (MSE), has been the most widely used loss function. In
EDSR, the authors justified using the L1 norm, i.e, Mean Ab-
solute Error (MAE), for its better convergence. Using Gener-
ative Adversarial Networks (GANs) can also be understood as
a different form of training. In SRGAN (Ledig et al., 2017),
the authors trained a SRResNet using GAN learning, that is,
having a discriminator network to distinguish between super-
resolved and real high resolution images. Although this led to
good visual results, this is not usually reflected on the numerical
evaluation due to their ability to picture missing pixels.

2.2 EDSR: Enhanced Deep Residual Networks

EDSR modified SRResNet according to the properties of SISR.
Batch normalization was removed from ResBlocks, in such a
way that information suffer less changes, which is desired in
SISR. Additionally, a residual scaling factor was added to sta-
bilize learning (default value of 0.1).

Two main parameters define the architecture of EDSR: the num-
ber of ResBlocks and the number of filters. We consider the
simplest version of EDSR with 8 ResBlocks and 64 filters, which

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2020-9-2020 | © Authors 2020. CC BY 4.0 License.

 
10



has a good trade-off between accuracy and complexity. After
the 8 ResBlocks, Pixel Shuffle upsampling is used to increase
the resolution of the image at the end of the network, making
EDSR faster than previous alternatives using bicubic interpola-
tion as input to the network. In the case of 4x super-resolution,
the upsampling is implemented by doing Pixel Shuffle twice
(each time duplicating the number of pixels). This allows using
2x super-resolution as a pretrained model for 4x super-resolution,
making convergence faster. The network simply needs to be en-
larged adding another Pixel Shuffle layer duplicating the num-
ber of pixels. We will test the usefulness of this strategy in
the experiments. A scheme of the EDSR used in this work is
presented in Figure 1.

Figure 1. Architecture of EDSR8.

3. S2PS: SENTINEL-2 TO PLANETSCOPE

In this section, we describe our proposal for super-resolving S2
images, using images coming from PS as a reference (target) to
learn a modified EDSR network. The motivation for the usage
of PS is presented in Section 3.1. Details about how we have
generated the training set are given in Section 3.2, whereas the
specific properties of the EDSR network that we have imple-
mented and its learning are presented in Section 3.3.

3.1 Proposal

The problem we want to address in this work is that we do not
have S2 images at 2.5m resolution to be able to learn a CNN for
SISR. As a consequence, we tried to find a sensor that matches
the spectral bands of S2, also providing higher resolution im-
ages. We found that PS constellation of Dove satellites 3 op-
erating since 2016 could be a good candidate for our purpose.
The Ortho Tile Analytic products of PS (the ones used in this
work) are provided at 3.125m4 and hence, we resample them to
2.5m using cubic interpolation for easing the architecture and
learning of the network. We acknowledge that in this case, we
are not truly super-resolving S2 4x, but we are close to it. The
fact that spectral bands were similar and the possibility of ac-
cessing the images of PS freely with Open California program
(detailed thereafter) were key points to opt for PS. Figure 2 de-
picts how the spectral bands of S2 and PS match. More spe-
cifically, for PS those corresponding to 0exx group of Doves is
depicted (there are different groups of PS satellites with slightly
different spectral bands).

Evidently, ortho products from PS and S2 are provided in dif-
ferent processing levels and magnitudes. S2 is provided in re-
flectance with scale factor of 10000 and the processing level
can be selected (e.g., L1C is top of atmosphere reflectance and
L2A is bottom of atmosphere reflectance). In the case of the
product we were able to download for PS, the rasters contained
digital numbers, as most of the satellite images are supplied.
We used the metadata of the product to convert these numbers

3
https://directory.eoportal.org/web/eoportal/satellite-missions/d/dove

4
https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_

screen.pdf

Figure 2. Comparison between PS (group 0exx) and S2 (A)
spectral response functions for RGB and NIR.

to top of atmosphere reflectance. We will detail every aspect
regarding the processing of the images for learning the network
in the next section. We should notice that we restrict our ex-
periments to top of atmosphere reflectance because this is the
product we were able to download from PS. Notice that the
same procedure could be followed with bottom of atmosphere
reflectance if those products were available. As we explain in
the next section, each S2 and PS pair of images were selected
under the same acquisition conditions (same day, close time and
close zenital observation angles) to ensure that TOA reflectance
are comparable.

3.2 Datasets

We downloaded PS images using 14 days free trial from Planet5

giving access to Open California. In the future, we plan to ex-
tend this study with strategically selected images from different
regions of interest. Therefore, all the images in our dataset are
from California state (United States of America, USA).

Although we are limited with respect to the images from PS,
we have access to all the metadata from them. One key issue
to build a proper dataset for SISR is that the difference between
the input and target images should be minimal, except for the
resolution. Commonly, this is achieved by learning to super-
resolve by taking a very high resolution image as target and
downsampling it to obtain the input to the network. In our case,
we have images coming from different satellites and hence, we
should make an effort to make them be almost the same, except
for the resolution. To do so, in the following we explain the
process we have followed.

First, we need to download product pairs from S2 and PS. We
maximize the matching between the product of S2 and PS in
terms of acquisition date. This means that we only download
product pairs located in the same place and obtained in the
same date. Moreover, we establish some requirements for the
query: acquisition data between 01/01/2017 and 01/01/2020;
cloud cover less than 10% in PS and equal to 0% in S2; min-
imum usable data in PS of 90%; the PS product must be com-
pletely inside the S2 product. Notice that these restrictions are

5
https://www.planet.com/
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not required when the network is deployed, since it can be used
for super-resolving any S2 image in L1C level. With these con-
straints, we found 257 different areas. For the experiments in
this work, we have considered the pairs in Table 1. We selected
these pairs mainly focused on having a variety of scenarios. The
selected locations are also presented in Figure 3. Notice that we
divided these images into the common training/validation/test
partitions, where a complete image goes always to a single par-
tition, making the evaluation fairer.

Area Date S2 time PS time Set #Tiles

La Habra 2018/08/29 18:29:09 18:00:59 test 2475
Shafter 2019/04/17 18:39:21 18:18:33 test 1969
Visalia 2018/09/10 18:39:21 18:12:50 val 2464
Ontario 2019/03/30 18:29:39 18:10:25 val 2435
Willits 2017/08/26 18:59:09 18:17:18 train 2610
Vallejo 2017/09/27 18:51:31 18:14:00 train 1394
Anderson 2019/06/20 18:49:21 18:37:39 train 2463
Folsom 2018/06/29 18:49:19 18:20:12 train 2428
Santa Rosa 2017/07/19 19:03:51 18:11:00 train 995
Patterson 2018/10/07 18:52:49 18:22:33 train 2144
Pasadena 2017/09/26 18:44:09 17:54:54 train 2600
Stockton 2018/10/17 18:53:59 18:19:31 train 2364

Table 1. Summary of the images used from S2 and PS to form
our dataset.

Figure 3. Location of the images considered for the study.

Once we have downloaded the product pairs, we obtain the top
of atmosphere reflectance for PS so that both resulting images
are comparable. Co-registration accuracy of each satellite may
vary. We tried to overcome co-registration issues automatically
performing small shifts between image pairs if necessary. In the
case of S2, we only take bands corresponding to RGB and NIR,
the same that are present in PS. The next step consist in divid-
ing each image into tiles (patches) of 48 × 48 and 196 × 196
pixels in S2 and PS, respectively. These will be the inputs and
targets to learn the network. Nevertheless, although one could
expect to have very similar reflectance values in each pair of
tiles, we observed that the color between them did not match
exactly. This issue was caused by the difference in the spectral
bands. Although we evaluated the possibility of matching the
Spectral Bands Functions via SBAF (Pinto et al., 2018), we fi-
nally decided to follow a much simpler method that provided us
with the desired output. Having both patches in the same place
and almost in the same time set out the ideal situation for ap-
plying histogram matching between patches (Gonzalez, Woods,
2008). Histogram matching is the transformation of the image
so that its histogram matches that of another image. Our idea
is to transform the target image (from PS), so that it better re-
sembles a S2 image at 2.5m. To do so, a mapping between the
values of each band of PS and those of S2 is obtained for each
tile. This is done by computing the cumulative histogram of
each image and then, linearly interpolating unique pixel values
in the PS tile that closely match the quantiles of the unique pixel

values in S2 tile. This way, we end up with a PS tile that bet-
ter matches the reflectance values of the corresponding S2 tile.
This process also minimizes the effect of PS satellites having
slightly different spectral bands. Figure 4 shows the effect and
clear benefit of applying this process.

S2 PS PS + Histogram matching

Figure 4. Example of histogram matching applied to a PS tile
with S2 tile as template.

After histogram matching, we still need to filter some undesir-
able patches that do not represent the ideal situation where both
are the same except for the resolution (clouds may be present,
flat surfaces too similar to be useful, i.e., sea, lakes, etc.). To
do so, we designed an automatic validation process, where we
computed the similarity between the corresponding patches of
S2 and PS using the PSNR and SSIM metrics (explained in Sec-
tion 3.4). To make both patches comparable, we applied bicubic
interpolation to S2 image and upsample it to 196× 196 pixels.
By visual inspection, we established the following thresholds:
we took patches with PSNR between 25 and 40 and from those,
the ones with SSIM greater than 0.7. This way we only took
patches that are good enough, avoiding those not providing in-
teresting information. The result of this automatic validation
process for the image over Vallejo area can be observed in Fig-
ure 5.

Sentinel-2 PlanetScope Validation Mask

Figure 5. Automatic patch validation over Vallejo area.

Finally, when using these pairs of tiles from S2 and PS to learn
the network, we normalize them to [0, 1] interval using the 12bit
range. The following steps summarize the whole process:

1. To download PS Ortho Tile Analytic and S2 L1C products
and consider RGB and NIR bands.

2. To convert PS data to Top of Atmosphere Reflectance and
resample it to 2.5m (from 3.125m).

3. Match PS image with S2 image and crop accordingly (since
PS products are smaller in size).

4. To create non-overlapping patches of 48× 48 from S2 and
196× 196 from PS that match.

5. Carry out histogram matching for each PS patch, making
it resemble to be a S2 image at 2.5m.

6. To perform automatic validation of patches using the PSNR
and SSIM thresholds.

7. To normalize patches to [0, 1] interval using 12bit range.

After carrying out this process, we end up with the number of
tiles for each image presented in Table 1. Recall that we divided
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the set of images into training, validation and test sets. We will
use training images to learn the network, validation set to de-
cide which network we finally take during learning and finally,
the test set to evaluate the model in a set of images that the net-
work has never seen. The number of tiles obtained in each set
is shown in Table 2. This numbers are close to those usually
considered for training and evaluating machine learning mod-
els. Most of the data is used for training (approximately 65%
of the patches) and less data is considered for validation and
testing (approximately 20% for each set).

Set #Images #Patches Ratio %

Train 8 16998 64%
Val 2 4899 19%
Test 2 4444 17%

Total 12 26341 100

Table 2. Number of patch pairs generated for training, validation
and test.

3.3 Network training

There are several key issues that we must take into account
for super-resolving S2. We are working with four channels,
RGB and NIR, whereas most networks are usually designed for
the typical RGB channels. This means that we have to prop-
erly adapt the network to receive four channels and also out-
put another four channels. This modification is almost trivial,
but it has several implications. The main one is with respect
to the loss function considered. Previous works (Galar et al.,
2019) showed that using a combination of pixel loss (L1), a fea-
ture loss based on VGG16 (Simonyan, Zisserman, 2014) and a
style loss (Johnson et al., 2016) based on the same network,
provided good results, avoiding the blurry effect of only fo-
cusing on pixel loss. Recall that the feature loss consists of
computing the L1 loss between the activations obtained by the
target and the super-resolved images when they are forwarded
through VGG16 network. Otherwise, the style transfer tries to
force the super-resolved image to have similar correlations to
those of the target image among the activations of the different
channels in several layers of VGG16.

In our case with RGB and NIR bands, the pixel loss can directly
work with the four channels. Nonetheless, the VGG16 network
used for the feature loss and the style loss is only pretrained for
RGB images. To solve this issue, we divided the loss into two
parts: RGB loss and NIR loss, each part having the same three
components (pixel, feature and style losses). Then, we compute
the losses as usual for RGB and we convert the NIR band into
an RGB image by copying the same band into the three RGB
channels. This way, we are able to go through VGG16 and
obtain the corresponding loss for the NIR. Finally, to combine
both parts we scale the losses so that all bands get the same
importance in the final loss. Details on the weights to achieve it
are given in Table 4.

With respect to our implementation of EDSR, we introduce
some novelties apart from the specific loss function so as to
completely avoid the appearance of any checkerboard patterns.
We applied ICNR (Aitken et al., 2017) initialization combined
with a blurring carried out by an average pooling operation
(Sugawara et al., 2018). This mainly means that after Pixel
Shuffle, values are averaged in 2× 2 windows, eliminating any
undesirable checkerboard pattern.

For training the network we carried out different tests with the
progressive resizing idea presented by the authors of EDSR.

The idea resides in first learning a model for 2x super-resolution
and then, using this model to train the 4x super-resolution faster
by simply adding another Pixel Shuffle layer to the previous
one. This way of learning is expected to accelerate convergence
and improve generalization. Having in mind that we are using
images from a different sensor as target images, we will test
different ways of performing this methodology to understand
their advantages. To do so, we first resample the patches to dif-
ferent resolutions (either PS or S2 patches, depending on the
experiments): 40m, 20m, 10m and 5m. Notice that PS patches
are originally at 2.5m and S2 ones at 10m. It is clear that
our final objective is to translate S2 images from 10m to 2.5m
(S2PS). Nevertheless, we can first pretrain the network to learn
2x super-resolution and then use that network to faster and bet-
ter learn 4x super-resolution. Furthermore, these pretrainings
can be performed in different ways. All our experiments are
summarized in Table 3, where we show the different models
learned, including from which model they have started learning
(pretrained model). They mainly differs on which satellite is
used for pretraining and in which order we go from 2x to 4x
super-resolution. We also want to remark that Baseline refers
to the commonly used method for super-resolving S2, that is,
learn from 40m to 10m (4x) and use it to super-resolve from
10m to 2.5 (also 4x). We use this as a reference for comparison
together with bicubic interpolation. Moreover, model 4 refers
to not carrying out progressive resizing.

Model Pre Name Ep Bs Lr

Baseline – S240 → S210 50 256 1e-3

1.1 – PS10 → PS5 10 96 5e-4
1.2 1.1 PS5 → PS2.5 10 24 5e-6,1e-5
1.3 1.2 S210 → PS2.5 50 32 5e-4,5e-3

2.2 1.1 S210 → PS5 10 96 5e-6,5e-5
2.3 2.2 S210 → PS2.5 50 32 5e-4,5e-3

3.1 – S210 → PS5 10 96 1e-3
3.2 3.1 S210 → PS2.5 50 32 5e-4,1e-3

4 – S210 → PS2.5 50 32 1e-3

5.1 – S220 → S210 10 192 1e-3
5.2 5.1 S210 → PS5 10 96 5e-6,5e-5
5.3 5.2 S210 → PS2.5 50 32 5e-4,5e-3
5.4 5.1 S210 → PS2.5 50 32 5e-4,5e-3

Pre: Pretrained model; Ep: Epochs; Lr: Learning rate;

Table 3. Configurations considered in the experiments.

Following current guidelines for training (Smith, 2018), we es-
tablished the largest batch size fitting into the GPU memory (a
NVIDIA RTX 2080Ti with 11GB of RAM), shown in Table 3.
Likewise, we used one-cycle learning policy with learning rate
finder to establish the learning rate to train each model (shown
in Table 3). Other parameters used for training the network are
provided in Table 4.

Parameter name Value

VGG16 layers (feature/style losses) First 3 Max-pooling inputs
VGG16 layer weights feature / style 0.2, 0.7, 0.1 / 200, 2450, 50
RGB / NIR Loss 0.75 / 0.25
Optimizer Adam
Learning strategy / Weight decay Once Cycle Policy (pct start=0.7) / 1e-7

Table 4. Common parameters for all configurations.

3.4 Evaluation measures

The most widely applied metrics for super-resolution evaluation
are considered in this work, both for evaluating the model and
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for the automatic path validation process explained in Section
3.2. These metrics are the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) index (Zhou Wang et al.,
2004).

The PSNR is tightly related to the mean square error between
the super-resolved image (from S2) and the target image (PS
with histogram matching):

PSNR(y, ŷ) = 10 · log10(
v2max

MSE
) (1)

where v2max is the greatest possible difference between two
pixel values.

On the contrary, the SSIM is more related to human perception,
becoming more important than PSNR in certain scenarios such
as ours. Recall that there is no real ground truth image of S2 at
2.5m and hence, we are working with an well-thought approx-
imation obtained from PS.

4. EXPERIMENTAL STUDY

4.1 Results

In Table 5, we present the results in terms of PSNR and SSIM
for all the models super-resolving 10m to 2.5m. Recall that
their main difference is whether they perform progressive res-
izing and how they do it. Moreover, bicubic interpolation and
baseline (learning with S2 to go from 40m to 10m) are used as
a reference, although in the future we would like to extend this
comparison with more complex methods.

Configuration PSNR SSIM

Bicubic 34.71 0.9230
Baseline S240 → S210 33.30 0.8921
1.3 S210 → PS2.5 35.47 0.9387
2.3 S210 → PS2.5 35.43 0.9399
3.2 S210 → PS2.5 35.43 0.9392
4 S210 → PS2.5 35.17 0.9342
5.3 S210 → PS2.5 35.43 0.9392
5.4 S210 → PS2.5 35.27 0.9390

Table 5. Results obtained by the different configurations in test
set for both PSNR and SSIM.

Additionally, Figure 6 provides several examples of super-resolved
patches so that the visual differences of the proposed super-
resolution with bicubic and baseline model can be appreciated.
For this purpose, we have considered model 2.3 as our pro-
posal, the one achieving the best performance metrics (although
the rest provide similar visual quality). Five examples of RGB
bands are presented together with one example of NIR super-
resolution

4.2 Discussion

We start analyzing the results of the different configurations
in Table 5. We can observe that the worst performer is the
baseline. Although this idea has been previously used for super-
resolving S2 images (Liebel, Körner, 2016, Wagner et al., 2019),
these experiments where real ground truth is considered show
that it is not very accurate. This was partially expected as the
details that can be observed when going from 40m to 10m and
from 10m to 2.5m rather differ. Comparing bicubic interpola-
tion with the rest of the models show that EDSR-based mod-
els get between 0.5 and 0.7 more points in terms of PSNR,

whereas greater differences are obtained in terms of SSIM (1.2-
1.7 points in all cases). The fact that we are not comparing with
real S2 images seems to slightly benefit the PSNR for bicubic
interpolation and its blurring effect. However, as it can be ob-
served in Figure 6, the proposed method provides much sharper
details with better defined edges, which explain the differences
in terms of SSIM. In general, it becomes difficult to differenti-
ate between the PS and the super-resolved image, except for the
details that can be hardly recovered from 10m images. Among
the different ways for carrying progressive resizing, no signific-
ant differences are found. However, carryin it out seems to be
slightly beneficial when compared to model 4.

Finally, we would like to mention that we have carried out
a validation of the reflectance values obtained by the super-
resolution by comparing the histograms of a complete S2 im-
age with that obtained after its super-resolution with our model.
This comparison is presented in Figure 7, showing that histo-
grams are not altered by the super-resolution, which is a very
desirable property for further analysis.

5. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a new way for super-resolving
S2 RGB and NIR bands to 2.5m resolution. To do so, we have
used images coming from another satellite with similar spectral
characteristics but providing images at higher spatial resolution.
Having image pairs located at the same place and almost at the
same time with the same acquisition conditions, we have been
able to train a deep learning model based on EDSR network.
To make the network learn to super-resolve but not change the
S2 images, we have first properly preprocessed image patches
radiometry coming from the reference satellite, mainly apply-
ing histogram matching. For learning the EDSR, we have made
use of the current guidelines for avoiding checkerboard patterns
and learning efficiently. The loss function is also specifically
designed for the task of super-resolution and has been adapted
to work with NIR band. In the experiments, different forms of
progressive resizing have been tested, showing their benefits.
Both numeric (in terms of PSNR and SSIM) and visual results
have shown the advantage of the proposed method over bicubic
interpolation or other simpler methods only using S2 images.

Nevertheless, there is still work that remain to be done. The
dataset used could be improved including more images for train-
ing, validation and testing. Moreover, the location of these im-
ages should cover different parts of the world to make the net-
work more robust. With respect to the CNN, we would like
to compare EDSR model with other state-of-the-art approaches
such as GANs. Likewise, the experimental study should be
completed with other methods not based on neural networks.
Regarding our specific proposals, more research should be done
to improve the quality of NIR bands and better balance the cost
function to properly work with every band.
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