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ABSTRACT: 

 

Terrestrial Laser scanner has been widely used in the field of forestry. Wood-leaf separation is the fundamental step to most 

applications of forestry. This paper presented a robust supervised learning method for wood and leaf classification by developing 

four new feature vectors. Fractal dimension is first calculated to indicate the difference of regularity or roughness between wood and 

leaf. Zenith angle and variation are presented to distinguish trunks or branches from leaves. The adaptive axis direction of cylinder is 

adopted to calculate the local point density precisely. Experimental results show that the supervised learning method using the four 

feature vectors presented in this paper can achieve a good classification performance. Both accuracy and 1F  score are higher than 

the ones of the method using eigen value based feature vectors. 
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1. INTRODUCTION 

Three-dimensional laser scanning (LS) technology is an active 

remote sensing technology which has been developing rapidly 

in recent years (Hui et al., 2019). LS system can actively 

transmit laser pulses to obtain the three-dimensional coordinate 

information of the target object, making it become an important 

data source for spatial topological analysis of vegetation (Zhang 

et al., 2019). With the improvement of LS measurement 

accuracy and sampling rate, this technology has been widely 

used in forestry, ecology, botany and other related fields (Wang 

et al., 2019). Compared with airborne or satellite-borne LS, 

terrestrial LS (TLS) can provide smaller light spots, achieve 

higher single point measurement accuracy, and also provide 

denser point clouds. Thus, TLS is widely used in forest 

structural parameters calculation, above-ground biomass (AGB) 

estimation, leaf area index (LAI) quantification, etc. (Calders et 

al., 2015. Calders et al., 2018) 

 

The separation of wood and leaf from TLS data is a crucial step 

for realizing these above-mentioned applications. The 

traditional methods usually separate wood and leaf manually 

with the help of visualization software (Hosoi, Omasa, 2006). 

Obviously, it will be time consuming and labor intensive. 

Moreover, the classification results mainly depend on the 

experience of the staff and the quality of the point clouds 

obtained. To solve these problems, many automatic algorithms 

for separating wood and leaf have been developed in recent 

years. These algorithms can be divided into two categories 

including geometric information based and echo attributes 

information based (Jin et al., 2019). The geometric information 

based approaches implement the separation mainly relying on 

the different shape characteristics of wood and the leaf (Hosoi 

et al., 2006. Xu et al., 2007. Ma et al., 2015. Zhu et al., 2018. 

Vicari et al., 2019). For instance, wood is generally linear 

distribution and shows cylinder shape in local areas, while leaf 

is more scattered and lacks linear characteristics. The echo 

attributes based methods mainly depend on the difference in 

information such as the reflection intensity, reflectance, or 

waveform to achieve the separation (Beland et al., 2011. Beland 

et al., 2014. Cote et al., 2011). In recent years, with the fast 

development of LS technology, several laser scanners can 

acquire full waveform data over vegetation areas. According to 

the difference in height and width of the waveform data towards 

wood and leaf, the accuracy of separation can be improved 

(Hancock et al., 2017. Danson et al., 2018. Li et al., 2018. Li et 

al., 2018).  

 

Several existing experiments have shown that the accuracy of 

separation methods using echo attributes information such as 

reflection intensity is lower than the accuracy based on the 

geometric information method. This is because the reflection 

intensity of the laser pulse is related to various factors such as 

distance, incident angle, and roughness of the surface of the 

object. Thus, it is difficult to achieve radiation calibration of the 

reflection intensity. Although the use of full waveform data 

information can improve the accuracy of wood and leaf 

separation, not all laser scanners can acquire full waveform data. 

Compared with these sensor specific methods, the approaches 

based on geometric information containing three-dimensional 

coordinates of point clouds are more applicable. Almost all the 

existing geometric methods used eigen values and vectors to 

classify wood and leaf. Since eigen values indicate the 

magnitude of variance present in coordinates, while eigen 

vectors reflect the direction of the variance. To further develop 

geometric features used for wood-leaf classification, this paper 

try to develop new feature vectors calculated from three-

dimensional coordinates. Two publicly available datasets are 

used to test the new developed features. Experimental results 
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show that the proposed method can classify wood and leaf 

effectively. 

 

2. METHODOLOGY 

2.1 Fractal dimension feature vector 

In Euclidean geometry, objects are generally seen as regular 

shape and their corresponding geometric feature can be 

determined as integer dimensions, such as one, two, three etc. 

However, in the real-world, there are many complicated and 

irregular objects (e.g., coastlines or snowflakes). Their 

geometric morphology cannot be described by integer 

dimensions. To better describe the complexity and roughness of 

these objects, fractal theory has become a new branch of 

modern mathematics. Nowadays, this theory has been widely 

used in many areas, such as signal analysis and image 

processing (Yang et al., 2015). 

 

In fractal theory, fractal dimension is an important index to 

describe the fractal morphology. The values of fractal 

dimensions will indicate the irregularity and roughness of the 

complex objects. Fractal dimension can be calculated in 

different ways. This paper adopts the box counting method 

since its principle is simple and this method is easy to 

implement. The box-counting dimension is defined as Equation 

(1). 
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where   = the side length of the cube 

 N   = the number of the occupied cubes by point 

clouds 

 

 

The fractal dimension Dim  can be calculated when   

approaches 0. However, in terms of point clouds, the side length 

of cube cannot get infinitely close to 0. Moreover,   is 

generally discrete. To better describe the box-counting 

dimension, Equation (1) can be changed to the form as 

Equation (2). 

 

   log logN Dim b     (2) 

 

where b  = a constant 

 

Obviously, a series of different side lengths will lead to a series 

of different numbers of occupied cubes. By applying the least 

square fitting between  log   and  log N , the box-counting 

dimension Dim  can be obtained. 

 

In terms of forest point clouds, wood and leaf own different 

fractal morphology. To separate wood and leaf effectively, the 

fractal dimension for every point can be calculated according to 

the following steps: 

 

ⅰOrganize the raw point clouds using the k-dimensional tree. 

 

ⅱ Traverse every point to acquire its neighbors  r

iSet p  

within r  radius. 

 

ⅲVoxelize the neighboring point sets with a series of cube side 

lengths  0.1,0.2, ,r   as shown in Figure 1 and calculate 

the corresponding number of occupied cubes  N  . 

 

ⅳCalculate the box-counting dimension Dim  according to 

Equation (2) using the least square fitting and repeat steps ⅱ 

and ⅲ until all the points are traversed. 

 

Figure 1. Schematic diagram of fractal dimension calculation 

 

2.2 Zenith angle and variation feature vectors 

In general, wood and leaf own different grow features. For 

instance, trunks tend to grow straight up, while leaves tend to 

diverge. In other words, zenith angles of trunk points are 

generally close to 90 , while the zenith angles of other points 

do not own this characteristics as shown in Figure 2. Moreover, 

no matter trunks or branches their zenith angle variations are 

generally smaller than the ones of leaves. Thus, wood and leaf 

can be separated according to zenith angle and variation feature 

vectors. 

 

Figure 2. Zenith angles of different part of point clouds 

 

The zenith angle is the angle between the normal vector and the 

vertical direction in the local region of the points. It can be 

calculated according to Equation (3). 

 

1 2

1 2

=arccos
V V

V V

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 (3) 

 

where 
1V  = the zenith direction vector 

2V  = the normal vector 

  = the zenith angle 
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As mentioned above, the zenith angle variation of wood is 

general smaller than that of leaf. The zenith angle variation 

 std   is defined as Equation (4). 
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2
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 
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 
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where   = the mean value of the zenith angle variation 

n  = the number of neighboring points 

  
(a) (b) 

Figure 3. Illustrating the zenith angle and variation for the 

single tree. (a) zenith angle; (b) zenith angle variation. The 

color scales at the bottom of each figure indicate the range of 

angle. 

 

From Figures 3 (a) and (b), it can be found that the zenith angle 

and variation of wood are clearly different from the ones of leaf. 

Thus, these two features will contribute to the wood-leaf 

classification results. 

 

2.3 Points distribution feature vector 

Compared with leaf points, wood points are usually cylindrical 

in distribution. Thus, woods can be separated from leaves by 

counting the number of points within the cylinder. Note that the 

axis direction of the cylinder should be adaptive to local point 

clouds as shown in Figures 4 and 5. The number of points 

within the cylinder can be seen as local density of point clouds 

which can be calculated according to Equations (5) and (6). 

 

Figure 4. Local point density calculation using the cylinder with 

adaptive axis direction 

 

 

Figure 5. Sketch map of the local point density calculation 

 

   , , ,iDensity p Num q cyl p r h       (5) 
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where  cyl  = the cylinder 

 Num  = the number of points within the cylinder 

r  = the radius of the cylinder 

h  = the height of the cylinder   = the axis direction of 

the cylinder 

 ,dis p q  = the distance between points p  and q  

 Density p  = the local point density 

 

In this paper, the direction of the cylinder is set as the vertical 

direction of the normal vector calculated by applying the 

principal component analysis (PCA) method to the neighboring 

points. In so doing, the calculated local point density can 

represent the geometric morphology accurately. 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

To evaluate the performance of these four new developed 

vectors, this paper adopts two isolated tree point clouds for 

training and testing, respectively. These two datasets are 

provided by Moorthy et al. (2019). Both of the two datasets are 

manually labelled using CloudCompare by an experienced 

person. The two datasets contain x, y, z coordinates and label 

information, in which 0 represents a leaf point and 1 represents 

a wood point as shown in Figure 6. Tree 1 (Figure 6 (a)) is used 

for training since its structure is more complicated, while Tree 2 

(Figure 6 (b) is used for testing. This paper down sampled the 

two datasets to improve the computational and memory 

efficiency. Random forest is adopted for the supervised learning 

since its performance is better than other machine learning 

methods, such as neural networks, naive bayes, etc. ( Moorthy 

et al., 2019). 
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(a) (b)  

Figure 6. Two isolated tree point clouds with labeling 

information. Blue point represents leaf, while yellow point 

represents wood. (a) Tree 1 used for training; (b) Tree 2 used 

for testing. 

 

Accuracy and 
1F  score are used to assess the performance of 

the proposed method. Accuracy is the proportion of all 

predictions that are correctly classified. 
1F  score is the 

harmonic mean of both precision and recall. Accuracy and 
1F  

score can be calculated according to Table 1. 

 

True 

Positive 

False 

Negative 
Accuracy Precision (P) 

A B (A+D)/(A+B+C+D) A/(A+C) 

False 

Positive 

True 

Negative 
Recall (R) 1F Score 

C D A/(A+B) 2*P*R/(P+R) 

Table 1. Confusion matrix used in pointwise assessment of 

separation results 

 

In the confusion matrix, A and D are correctly classified points, 

while B and C are wrongly classified points. Obviously, when 

leaf is defined as the positive class, 
1F  score for leaf class can 

be obtained. When wood is defined as the positive class, 
1F  

score for wood class can be obtained. 

 

To objectively evaluate the performance of the proposed 

method, this paper also acquired the wood-leaf classification 

results using the feature vectors based on eigen values. These 

eigen value based vectors are planarity, linearity, scatter, surface 

variation and entropy. The classification results of the two 

methods are shown in Figures 7 (a) and (b). From the two 

figures, it can be found that the proposed method owns a better 

classification result than that of the method using eigen value 

based feature vectors. What’s more, the proposed method can 

detect the trunk more accurate. 

 
 

(a) (b) 

Figure 7. wood-leaf classification results using different vectors. 

(a) Classification result using the vectors based on eigen values; 

(b) Classification result using the proposed method. 

 

Table 2 shows the accuracy and 
1F  score calculated using the 

two methods. It is obvious that all the three indexes of the 

proposed method are higher than the ones of the method using 

eigen value based vectors. Thus, it can be concluded that the 

new developed vectors in this paper can separate wood and leaf 

effectively. From Table 2, we can also find that 
1F  score for 

wood of the two methods is much lower than 
1F  score for leaf. 

It is because that many small branches are wrongly classified as 

leaves as shown in Figure 7. The classification results can be 

better when more training datasets are involved. 

 

 Accuracy 
F1 Score 

(wood) 

F1 Score 

(leaf) 

Feature vectors 

based on eigen 

values 

0.829 0.563 0.894 

Feature vectors 

based on the 

proposed method 

0.877 0.588 0.928 

Table 2. Comparison of accuracy and F1 score 

 

4. CONCLUSION 

Wood-leaf separation is a crucial step for the applications of 

TLS in the field of forestry. In this paper, four new geometric 

feature vectors calculated from three-dimensional coordinates 

are presented. Considering the difference of regularity or 

roughness between wood and leaf, fractal dimension is 

developed for the classification. Zenith angle and variation are 

presented to distinguish trunks or branches from leaves. The 

adaptive axis direction of cylinder is adopted to calculate the 

local point density precisely. Experimental results show that 

these four new developed feature vectors outperformed the five 

feature vectors based on eigen values. The proposed method 

achieved a higher performance in terms of both accuracy and 

1F  score. However, the 
1F  score for wood is much lower than 

that for leaf. It is because that many branch points are wrongly 

classified as leaf points. How to improve the wood classification 

accuracy will be focused in the future research. 
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