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ABSTRACT: 

 

Container crane inspection is a very important task to maintain their uninterrupted operation. Nevertheless, this is a costly and time-

consuming activity if performed manually. Recently, image-based detection of surface damages or changes using drones has gained 

increasing interest in industry; especially when objects of interest have a complex structure like container cranes. One main aim of this 

paper is a single-epoch image analysis which will also serve later for multi-epoch processing. It provides reliable information about 

current defects that may lead to big damages if not inspected by experts. Naïve Bayes classifier is employed to classify the images in 

different classes of which critical defects and especially rust is important. The preliminary results show that the precision on the target 

class reached about 99%. However, 87% percent recall in this class is not enough and it should be improved for this application.  

Having a large dataset requires an efficient data management system to provide users and decision makers with the information needed. 

In addition, in order to foster full automation, the aforementioned image analysis component should have a direct connection to the 

database and thus is able to query image and semantic information. We therefore introduce the second aim of our research, that is a 

concept for database design. Here, not only the raw data and the final results are integrated but also the intermediate results. At the 

same time, the database concept is connected to an integrated client interface that allows retrieving data of interest in a virtual globe.  

 

 

 

1. INTRODUCTION 

 

Health monitoring is an essential process in ensuring the safety 

and serviceability of civil infrastructure like bridges and 

container cranes (Rao et al., 2020; Saleem et al., 2020; Stein, 

2018). Current practice for assessing structural health of 

container cranes is mainly based on visual inspections by human 

operators (Hoskere et al., 2020). Container bridges or ship-to-

shore cranes are the common means in seaport container 

terminals for loading and unloading the containers from container 

ships. To maintain the uninterrupted and all-day operation of 

container cranes in a seaport, it is important to carry out a 

thorough and reliable inspection. 

 

Inspections are time-consuming; there are numerous places that 

can only be reached physically and manually with great efforts. 

Changes in the surface of the container cranes (e.g. colour 

irritations, surface bulges, rust accumulation) must be detected at 

an early stage, as massive consequential damage or even 

breakage of the container cranes can occur. The breakage of the 

container crane at the NTB container terminal in Bremerhaven 

on May 15, 2015 during loading of "Maersk Karachi" is a 

dramatic example of the consequences that an unrecognised weak 

point in the structure can have. 

 

In most seaports, industrial climbers are used, among other 

means, to inspect certain parts of the container crane in detail. 

Due to the associated safety requirements and the port-specific 

circumstances (strong winds, frost periods, strongly changing 

daylight incidence), the work is costly and risky. The laborious, 

time-consuming, unsafe and subjective nature of manual 

inspections motivate research into methods for automating such 

inspections. Drones have become an efficient tool in many 
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applications due to the flexible use in data capturing process 

(Kerle et al., 2019; Nex & Remondino, 2014; Sahebdivani et al., 

2020). Therefore, a logical step forward in increasing the 

automation of container cranes’ inspection is employing the 

photos taken by drones and the visual evaluation of the photos 

with the help of qualified specialists. However, this approach is 

still subjective and based on personal assessment, experience and 

the respective daily form of the operators. In addition, the volume 

of data will become larger over time so that a manual 

investigation will become increasingly difficult to perform in the 

terms of time, cost and capacity.  

 

Another very important aspect of health monitoring of the 

container cranes is the temporal analysis of the captured images. 

Automatic comparison of changes in the same areas and regions 

of the container cranes over a longer period of time could be done 

more efficiently using automated intelligent image understanding 

approaches. If the images, evaluation results and annotations 

would be stored in a powerful database, documentation of 

suspected defects would be improved as well as maintenance 

processes, including provision of security with regard to liability 

issues.  

 

Based on the above-mentioned thoughts and requirements, 

during a joint collaboration between Hamburger Hafen und 

Logistitik AG (HHLA - a large operator of the seaport in 

Hamburg, Germany) and the Institute for Geodesy and 

Photogrammetry at the Technical University of Braunschweig, a 

research project called “ABC-Inspekt” has been initiated with the 

aim of automated and intelligent analysis of drone-based images 

to facilitate the inspection of container cranes. In this paper, the 

concept, challenges and preliminary results of the project are 

presented. 
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2. CONCEPT AND METHODS 

 

2.1 Overall concept 

 

In order to realise visual inspection based on drone images, 

several side constraints need to be considered. Flight planning 

and capturing of images for complex container bridges needs to 

consider many parameters. The areas which are prone to defects 

are called “neuralgic areas” in the following. Only those specific 

parts of the crane need to be monitored regularly, such as 

junctions and bolting areas. Examples of those neuralgic areas 

are shown later. Those areas embody quite complex 3D-

structures with varying orientation of planes within the surface. 

In terms of flight planning this means that a constant image 

resolution at the object (GSD: ground sampling distance) is very 

difficult to obtain. In addition, the trade-off between GSD and 

footprint size needs to be regarded, also keeping in mind that a 

capturing of overlapping images is difficult to obtain fully 

automatically close to those massive steel structures (GNSS 

outages, multipath, magnetic field disturbances). Currently, 

experienced pilots are flying manually, and the further 

automation of navigation will be subject to upcoming research.  

 

The research goals are formulated in a way to address the needs 

of the operators at a modern seaport who have the task to organise 

the maintenance of container bridges. Figure 1 depicts important 

components of the overall concept. 

 

 
Figure 1. Overall concept of the project 

 

As an example, some GSD values are computed based on 

different distances to a neuralgic area with respect to three 

standard lenses of the camera Sony Alpha 7R IV (Table 1). 

 

Focal length 

(mm) 

Distance to 

object (m) 

GSD 

(mm/pix) 

Footprint  

(m × m) 

85 
15 0.66 6×4 

25 1.10 11×7 

50 
15 1.13 11×7 

25 1.88 18×12 

35 
15 1.60 15×10 

25 2.68 26×17 

Table 1. Parameters based on 3 standard lenses of the camera 

Sony Alpha 7R IV with different distances to object 

 

Another pitfall is that within those distances the focus of the 

camera is not driven to infinity, that is, the individual depth of 

field is varying per view. As a result, focussing on the area of 

interest means changing the effective focal length. Since the main 

aim is to derive sharp images and to analyse semantic image 

content rather than very accurate geometries, we do not insist on 

using a constant focus. Ultimately, after the flight, a set of images 

for a certain container bridge is captured and clustered according 

to the named neuralgic areas.  

 

An important requirement concerning the database concept is that 

the images and results from automatic image analysis are 

accessible to the human operator in order to allow manual 

intervention in a user-friendly environment, i.e. a modern GUI 

(graphical user interface). One pillar of the image processing 

steps is that a dual strategy is pursued: on the one hand, images 

from each single epoch are analysed in order to find hints for 

possible defects, and on the other hand the comparison of current 

images with historic images (multi-epoch) is assumed to add 

reliability to the entire process. In this paper, however, we are 

focussing on the single epoch case only. 

 

2.2 Image analysis 

 

Pixel-based and object-based image analysis are two possible 

solutions for very high-resolution image classification (Blaschke 

et al., 2014). Considering objects as the base processing units and 

utilising shape features and inter-objects relations can help in 

separating the segments in feature space. Moreover, image 

objects can be related to real objects, more closely. However, the 

quality of initial image segmentation has a significant influence 

on the results (Maboudi et al., 2017). Hence, at the current step 

of this research pixel-based approaches are utilised.  

 

Using any of above-mentioned strategies, the results could not be 

error free. Some possible reasons could be inter-class similarity 

and intra-class heterogeneity of the dataset, uncontrollable 

environmental parameters and possible inconsistencies between 

model assumptions and real mapping between input and output 

space.  Therefore, it is crucial that we consider the type of errors 

in evaluation of the classifiers, especially for a target class 

(defect). Although in ideal case, we would like to have very high 

values for both recall and precision measures; in practice this it 

is not possible due to bias-variance trade-off. In this project FN 

(false negatives; overlooked suspicious points) are more 

important than FP (false positives; falsely indicated defects). 

While FP ultimately leads to higher cost and reduced efficiency, 

FN is very critical and results in lower reliability of the approach 

which could have very dangerous consequences. The workflow 

of the image processing module for defect detection is 

represented in Figure 2, where the main objective is automatic 

detection of cranes’ damages or signs that show that the crane 

part should be inspected for possible defect before future 

damages occur. 

  

Once images are ready for the processing, the first step is to create 

a training dataset. The generated training set is used to train and 

evaluate the classifier for detecting the defect. 

 

Parallel to training the classifier, a foreground-background 

separations step is applied to the images to decrease the 

complexity of the classification problem. After training the 

classifier and separating foreground from background, 

classification can be applied on the unseen images and pseudo-

coloured images are obtained according to the predefined classes. 

Afterwards, a visual inspection is employed in order to evaluate 

the performance of the classifier on unseen datasets. 
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Figure 2. Workflow of the image processing module 

2.2.1 Foreground separation: The main goal of this step is 

to split the image into foreground (main part of the crane) and 

background (other objects). Hence, to decrease the possibility 

of misclassification. For this purpose, different approaches 

which are mostly based on segmentation can be used (Kaur & 

Kaur, 2014).  

 

Our proposal for deriving foreground-background separation  

is to take advantage of the YCrCb colour space properties 

applying first a transformation on HSV colour space, followed 

by morphological operations and connected components 

analysis (Jähne, 2002). In YCrCb, Y is the luminance obtained 

from RGB after gamma correction; Cr is the chromatic red 

represents how far is the red component from the luminance; 

and Cb is the chromatic blue and represents how far is the blue 

component from the luminance. The YCrCb colour space can 

be derived from the RGB colour space (Ford & Roberts, 1998): 
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𝑅
𝐺
𝐵
] (1) 

 

where      𝐾𝑅 = 0.299 

                 𝐾𝐺 = 0.587 

                 𝐾𝐵 = 0.114  

 

This colour space separates the luminance and chrominance 

components into separate, uncorrelated channels. It can be 

interpreted as a normalisation in intensity of R and B channels 

of RGB colour space (García-Mateos et al., 2015). Therefore, 

the behaviour of the chromatic part can be analysed separately 

from the luminance.  

 

In Figure 3.a the original image histogram of chromatic blue 

channel is analysed; it can be seen that the Cb channel has two 

well-defined peaks. This would allow making a threshold-

based operation which is useful to distinguish between the 

crane (the foreground) and other objects, because this pattern 

is repeated along the images (with some small variations). 

 

In order to make the cranes’ blue colour more distinct, an 

empirical transformation in HSV colour space is applied. First, 

the hue is rotated by an angle of 30°, and then the saturation 

multiplied by four. This is visible in the 3D histogram in 

Figure 3.b, and e, where the colours expand in opposite 

directions. The advantage of applying this transformation is 

clearly visible in Figure 3.f. This is useful for the foreground-

background separation, because a fixed threshold can be 

defined independent of the image. 

 

  
a d 

  
b e 

  
c f 

Figure 3. HSV transformation. First row relates to images 

before HSV transformation and second row shows their 

counterparts after HSV transformation. a, d) RGB image, b, 

e) 3D YCrCb histogram; c, f) histogram of the Cb channel 

of a, and d. 

 

Once the transformation is done, the image is again converted 

to YCrCb colour space and an optimal empirical threshold 

value is applied. After employing morphological cleaning, a 

connected component operator is applied to get separated 

segments. Then, segments areas are checked to obtain the 

biggest segment. Exploiting the Euler number as a measure for 

topologic properties, holes in this segment are filled and the 

area of interest is extracted.  

 

2.2.2 Classification: Pixel-based classification is used to 

separate the defects and colour changes from other parts of the 

cranes. Bayes classifier is one well-established classifications 

approach. This classifier uses the a priori probabilities of the 
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events to estimate the probability of unseen events by means 

of the Bayes’ theorem (cf. Equation (2)). It also uses historical 

or training data to calculate the observed probability of each 

event as a function of its characteristic vector. In general, to 

make a prediction, the query set is used. The same features as 

in the training process are feed to the classifier, and as output 

some probabilities are obtained, from which it is possible to 

estimate the most likely class. In the validation phase, 

predicted class is compared with the true label to evaluate the 

overall performance of this classifier. 

 

𝑝(𝑐𝑙𝑎𝑠𝑠𝑖|𝒙) =
𝑝(𝒙|𝑐𝑙𝑎𝑠𝑠𝑖) 𝑝(𝑐𝑙𝑎𝑠𝑠𝑖)

𝑝(𝒙)
 (2) 

 

The evidence can be represented as (3) and is the probability 

of finding a pixel with certain feature vector x in the image, 

from any class, that is, the probability that any pixel on the 

image takes those values. This is a normalising factor and 

could be used when the argmax is not the final decision-

making operator. 

 

𝑝(𝒙) = ∑𝑝(𝒙|𝑐𝑙𝑎𝑠𝑠𝑖) 𝑝(𝑐𝑙𝑎𝑠𝑠𝑖)

𝑀

1

 (3) 

 

The likelihood or conditional probability describes the chances 

of finding a pixel with certain feature vector x from each of the 

possible classes. Those conditional probability functions are 

estimated from labelled training data for each class. An 

example is illustrated in Figure 4. 

 

 
Figure 4. Likelihood representation of some classes 

 

The priors define the probability that pixels from a certain 

class appear in the images and the posteriors define the 

probability that a pixel belongs to a certain class. A set of 

possible classes is previously defined, according to our needs. 

The main objective is to classify each pixel into the most likely 

class. Hence, according to Richards (2013), the rule to decide 

if a pixel belongs to a certain class, will be if the likelihood 

belonging to that class is bigger than any other likelihood of 

that pixel belonging to another class. This can be expressed as 

follows:  

 

𝒙 ∈ 𝑐𝑙𝑎𝑠𝑠𝑖 ↔ 𝑝(𝑐𝑙𝑎𝑠𝑠𝑖|𝒙) > 𝑝(𝑐𝑙𝑎𝑠𝑠𝑗|𝒙) ∀ 𝑗 ≠ 𝑖 (4)  

 

For an 𝑁 dimensional space, the specific form of the Gaussian 

multivariate normal likelihood distribution is defined as 

follows: 

𝑝(𝒙|𝑐𝑙𝑎𝑠𝑠𝑖) =
𝑒−

1
2
((𝒙−𝒎𝑖)

𝑇𝑪𝑖
−1(𝒙−𝒎𝑖)

√2𝜋
𝑁/2

√|𝑪𝑖|
 (5) 

 

The terms which do not depend on class values can be 

removed, and when there is no useful information about the 

values of the prior probabilities they are assumed to be equal 

(Richards, 2013), and this fact defines as (6) the general form 

of the Gaussian maximum likelihood classifier, better known 

as Gaussian Naïve Bayes classifier which determines the class 

membership of a pixel based on the highest class conditional 

probabilities, or likelihoods.. 

 

𝑔𝑖(𝒙) = −𝑙𝑛|𝑪𝑖| − (𝒙 − 𝒎𝑖)
𝑇𝑪𝑖

−1(𝒙 − 𝒎𝑖) 
 

(6) 

where      mi: mean vector of the data in classi 

                Ci: covariance matrix of the data in classi. 

 

In Figure 5 a sample of the colour histogram and its Gaussian 

approximation is depicted. 

 

 

Figure 5. Histograms of one class and fitted Gaussians 

Some practical considerations must be taken into account, in 

order to represent the classes in the training data properly. For 

training the classifiers, representative data of the problem is 

needed. In order to check if the selected algorithms would 

work for our purpose, first, some crane images have been taken 

from the image database. Afterwards, some image patches are 

manually selected and labelled. In this approach, pixels will be 

classified into one of the predefined number of classes, even if 

the probability is small because the Gaussian distribution takes 

values on the full domain. Therefore, it is important to select a 

proper optimal number of classes: bad results can be obtained 

if some of them are overlooked. Moreover, to be able to 

estimate the parameters of their distributions, enough training 

data for each class needs to be provided.  

The probability distribution of the selected classes is depicted 

in Figure 6; the whole spectrum is covered, but there is a range 

covered by the tails of probability distribution functions for all 

the classes, this is due to inter-class similarity. 
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Figure 6. Gaussian distributions of the classes 

 

2.3 Database management 

 

In this project, it is expected that large image datasets using 

drone technology be captured. When working with large 

drone-based image datasets, which are captured for several 

objects (here different cranes) and in multiple epochs, the data 

management can be a challenge and should therefore be 

carefully planned. Drone-based images need to be pre-

processed before they can be used efficiently and this has an 

impact on the management process and should be considered 

before the data management design is implemented. The pre-

processing steps lead to an accumulation of data which grows 

in complexity and which needs to be stored correctly (Huang 

et al., 2018). An efficient way to store the captured images is 

to use a database. It must be designed in a way, that not only 

the original images and the final results are integrated but also 

the intermediate results should be considered. In addition, the 

data management concept should be flexible enough to adapt 

to non-predictable situations which might occur during the 

ongoing development. 

 

In the following the structure and storage of the images in the 

file system is shortly discussed. Next, linking metadata in the 

database with the images in the file system is explained. The 

section concludes with a short presentation of the current state 

of the snowflake-based table implementation in the database. 

 

2.3.1 Data structure and storage: The images captured by the 

drone are transferred to a data server and stored directly into 

the file system. It is expected that all images contain additional 

metadata with important information which are necessary for 

the processing of the images. For example, the metadata 

includes the date- and timestamp when the image was 

captured, information about the camera settings, and the 

geographic position of the centre of the image.  

 

The storage of the individual images in the file system follows 

a predefined structure. This guarantees that a distinct image 

can be accessed without any delay. In addition to the structure 

of the file system, the image name should be unique to clearly 

identify each image. They are therefore re-named 

automatically based on specific metadata (consisting both 

EXIF metadata e.g. the image capture date and time plus 

additional non-EXIF metadata such as the name of neuralgic 

point they are showing e.g. A1, A2) using a Python-based tool 

developed for this task to avoid the need of manual re-naming 

of each image separately. Furthermore, the new names of the 

images are composed of the additional non-EXIF metadata 

like crane type e.g. identifying the vendor, the crane bridges 

e.g. CB1, and the direction from which the photo was taken 

e.g. Right and Left (referring to a viewing direction along the 

quay).   

 

2.3.2 Database Concept: Particularly, to store large drone-

based image datasets a combination of storing the image itself 

on the file system and the attached metadata into a database 

management system could be used (Fan et al., 2017). This 

approach has the advantage that the images are not stored 

directly in the database and therefore cannot be responsible for 

performance issues. The images stored in the file system are 

only linked to the database indirectly by adding the physical 

path as an attribute to the table which contains the metadata. 

This concept guarantees that the volume of the data inside the 

database does not become too extensive and that the data can 

be queried efficiently.   

 

I order to implement the approach described above, it is here 

suggested to use the object relational database system 

PostgreSQL. PostgreSQL is an open source product with a 

wide selection of available features. The PostGIS extension 

can be installed additionally to transform the relational 

PostgreSQL database into a spatial database. This adds support 

for database records with an attached geometry and 

furthermore allows to query the data based on spatial indices 

which accelerates the process of receiving the needed data. In 

addition, the PostGIS extension adds support for vector and 

raster data (Marquez, 2015). The PostgreSQL database in 

combination with PostGIS is also highly compatible with other 

open source software products which are dealing with data 

visualization and processing. Namely the QGIS and 

GeoServer (Alamouri & Gerke, 2019). Especially the latter 

can become relevant later in the project, when the final results 

are presented to the user via a web interface.  

 

To avoid data redundancy, dependency and anomalies during 

the data entry, update, deletion in the database a well-known 

technique of database normalization is considered and realised 

for database schema design and implementation. 

 

The earliest articles written on database normalization 

appeared during 1970s. For example, you may refer to Codd 

(1971) as one of the oldest database schemas. The database 

normalization is a vast and well researched topic but, in brief, 

the main idea of the database normalization is to prevent data 

duplication inside database tables/columns which ensures the 

data consistency and integrity and ultimately results in 

utilizing less space for storage. Besides, it makes the database 

more flexible.  

 

To implement the concept of normalization in database 

schema within the context of this research project, a database 

schema model known as snowflake schema (Figure 7), which 

is a variant of another schema called star-schema, is used (van 

der Lans, 2012). 

 
Figure 7. A Snowflake schema diagram 
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In a snowflake schema model, a main table which is referred 

to “Fact Table” is created. This table is connected to other 

tables which are referred as “Dimension Tables”. A fact table 

in snowflake schema has only one relationship with dimension 

tables. In regards to current application, dimension tables may 

be individual tables to store crane details e.g. name, bridges, 

neuralgic points and etc and then these tables can be referenced 

in a crane table that will act as fact table. This gives a multi-

dimensional and hierarchy style schema (van der Lans, 2012). 

Each dimension stores particular data which is not directly 

relevant to other dimensions, hence, modifying, and deleting 

of entries in one dimension does not affect other dimensions. 

This particular schema model enables normalizing data in the 

database by using fact and dimension tables.  

 

3. PRELIMINARY RESULTS 

 

At HHLA’s Container Terminal Tollerort (CTT), where we 

implement and test our system, a total of 14 container gantry 

cranes of different years of construction from various 

manufacturers are in operation (Figure 8). In order to maintain 

the uninterrupted and all-day operation of the container gantry 

cranes (24 hours/ 365 days) for the loading and unloading of 

container ships in a seaport, the performance and evaluation of 

a qualified inspection is extremely important. 

 
Figure 8. Schematic representation of one crane with 13 

critical/neuralgic points 

 

3.1 Image analysis results 

3.1.1 Foreground-background separation: Some of the 

results of the previous explained foreground-background 

separation method are shown in Figure 9. Some samples of 

neuralgic area images have been evaluated visually, and as it 

can be seen, the method selects the biggest segment and crops 

it with a good performance. 

 

3.1.2 Classification results and evaluation: The Naïve Bayes 

classifier is trained with a total of 400 image patches which 

contain 1M training pixels using a total number of 5 predefined 

classes (crane blue, crane red, crane repaint, rust and metal 

bar).  The quality measures that are commonly used in the 

literature for classification purposes are precision, recall and 

𝑓1-score, which are defined as follows (Géron, 2019):  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

𝑓1_𝑠𝑐𝑜𝑟𝑒 = 2 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 (9) 

 
 

 
 

 
 

 

 

a b 

Figure 9. Foreground-background separation results.  

a) Original image, b) Result after applying our foreground-

background separation approach 

 

The results of the Naïve Bayes classifier trained with Y, Cr and 

Cb features are shown in Table 2. Overall weighted accuracy 

and recall are 80% and 83%, respectively.  

 

 Precision Recall 𝑓1-score 

Crane_blue 0.74 0.90 0.81 

Crane_red 0.99 0.97 0.98 

Crane_repaint 0.35 0.14 0.20 

Metal_bar 0.54 0.98 0.69 

Rust 0.99 0.87 0.93 

Weighted avg. 0.80 0.83 0.81 

Table 2.  Results on test set of Naïve Bayes classifier 

 

As, in the current phase of the project, the target class is rust, 

we analyse the result of this class, separately and all other 

classes serve as negative class. The high value of precision and 

recall and consequently high f1-score are promising. However, 

because of the nature of the target class (rust) and dangerous 

consequences of missing some rust areas, recall measure 

should be our focus in future steps of the project, even at the 

cost of having lower precision.  The preliminary results on the 

validation set images are shown in Figure 10.  

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021 | © Author(s) 2021. CC BY 4.0 License.

 
126



 

  

  

a b 

Figure 10. Preliminary results on validation set. a) Original 

image, b) Prediction of Naïve Bayes classifier 

 

Most parts of the colour changes are detected (in red) 

successfully. However, the method has problems in 

distinguishing some rusts crane red class and also crane blue 

from crane repaint class. Both these issues are on account of 

the fact that inter-class similarities of these classes in the 

current feature space are high. 

 

3.2 Data management results 

 

A database preliminary schema model based on previously 

explained snowflake schema concept is developed for this 

research project.  

As discussed in section 2.3, the input data (images), the output 

of image analysis process and the annotations provided by the 

user/operator are saved in the structure of the file system on 

the server and their storage path is referenced in relevant 

database tables. This schema model ensures the database 

integrity and data normalization. However, the challenge that 

may be faced is the adding more joins in query of data which 

with the developments in Relational Database Management 

Systems (RDMBS) is minimized to some extent. 

 

 
Figure 11. Database schema/structure 

 

In Figure 11 the main fact table is the crane_table which is 

connected to other tables or dimension e.g. crane_type_table, 

neuralgic_points, etc. using their primary keys. The primary 

keys of dimensions are stored as foreign keys and attribute 

inside the fact table. The dimensions may contain their own 

attributes and sub-dimension e.g. epoch_table but cannot be 

connected to each other.  

 

4. CONCLUSIONS 

 

Multi-epoch structural health monitoring is the ultimate aim of 

our research project. In this paper the general concept and 

preliminary results of various modules of single-epoch 

solution are presented. Complex objects’ structure and 

difficulties in accessing the parts of interest of the objects, 

necessitates a cautious flight planning and data capturing. 

Moreover, data management is a key challenge of the project 

due to the large number of images (more than 10 cranes which 

are captured at least 4 times per year and having 500 images 

from each crane per epoch). Hence, a file system-based data 

storage is utilized for managing the images and associated 

attributes. The images in the file system are linked to 

PostgreSQL/PostGIS based databases indirectly by adding the 

physical path as an attribute to the tables which contains the 

metadata of the images. 

 

A machine learning approach based on Naïve Bayes classifier 

is employed to separate the target class from other parts of the 

objects in the image. The preliminary results indicate, given 

that enough representative training data from representative 

classes are provided, that the pixel-based classification can be 

employed to separate the defects (here rust is considered) with 

a very high precision for this class. However, 87% percent 

recall in this class is not enough for this application and we 

should improve our approach to have higher recall value, even 

at the cost of lower precision. While having a defect of size 

one pixel is very unlikely and misclassification of individual 

pixels is not important in practice, object-based approaches 

could be promising to increase the reliability of the detection 

system. Moreover, ensemble learning could also help to 

control the capability of the system to recall the possible defect 

reliable. Exploiting geometric information such as camera 

poses in local (crane) coordinate system is another possibility 

to restrict the search space closer to the area of interests. 

Advanced relationships between geospatial data and database 

tables should also be investigated. Last but not least taking 

advantage of state-of-the-art deep learning approaches is 

pending in our project mainly due to the current lack of 

training samples. 
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