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ABSTRACT:

Autonomously exploring and mapping is one of the open challenges of robotics and artificial intelligence. Especially when the
environments are unknown, choosing the optimal navigation directive is not straightforward. In this paper, we propose a reinforcement
learning framework for navigating, exploring, and mapping unknown environments. The reinforcement learning agent is in charge of
selecting the commands for steering the mobile robot, while a SLAM algorithm estimates the robot pose and maps the environments.
The agent, to select optimal actions, is trained to be curious about the world. This concept translates into the introduction of a
curiosity-driven reward function that encourages the agent to steer the mobile robot towards unknown and unseen areas of the world
and the map. We test our approach in explorations challenges in different indoor environments. The agent trained with the proposed
reward function outperforms the agents trained with reward functions commonly used in the literature for solving such tasks.

1. INTRODUCTION

The problem of autonomous robot navigation is traditionally
tackled by employing environment representations, i.e. maps,
that are used to plan a collision-free path to reach specific
target locations. These indoor maps are usually constructed
using Simultaneous Localization and Mapping, or SLAM, al-
gorithms (Thrun et al., 2005). SLAM algorithms estimate the
robot sensor’s location and construct the map of the environment
simultaneously using a sequence of sensor measurements, with
the underlying assumption of a known and pre-defined sequence
of control commands or actions, e.g. velocity commands for
a mobile robot carrying the sensor. The indoor maps are not
always available beforehand, and even when maps are known,
they do not include, for example, details about obstacles in a
dynamic environment.

Therefore, especially in the last decade, thanks to the advances in
reinforcement learning (Sutton and Barto, 2018) map-less path
planning solutions took the attention of the scientists. Successful
reinforcement learning-based solutions are proposed in (Wu et
al., 2018), (Tai et al., 2017), (Zhelo et al., 2018), (Pfeiffer et al.,
2017),(Zhang et al., 2018), and (Zhang et al., 2020). However,
such map-less path planners often require long training times
and a high amount of data to perform well. Moreover, when
maps are available, reinforcement learning-based planners can
benefit from the information contained in the maps and often
outperforms map-less approaches. Examples of learning-based
planners relying, fully or partially, on maps are proposed in
(Zhang et al., 2016), (Brunner et al., 2017) and (Mustafa et al.,
2019).

When the environments are unknown, efficiently constructing
the maps by selecting the optimal sequence of control actions
∗ Corresponding authors

is a very challenging problem. This is commonly referred to in
literature as the active SLAM problem, in which not only pose
and map are estimated, but also the control actions are chosen in
order to explore the whole environment. The simplest solution
one could think of is to rely on pre-coded navigational directives
based on landmark positions and/or specific features, e.g. turn
left when recognizing a certain landmark such as the corner of
a room. However, coding these directives is problematic if the
environment is not known beforehand or not static and often
these solutions are brittle and struggle to adapt to environments
with different topologies. Another approach for active SLAM
is the so-called frontier-based exploration (Yamauchi, 1997a).
This method relies on the identification of special navigational
targets, i.e. the frontiers, sitting in-between the known and
unknown regions of the map, selecting the most promising1 one
and eventually navigate to it. Once the chosen frontier is reached,
the procedure is repeated until all the frontiers are visited and the
map is complete. This approach is mostly suitable for occupancy
grid-based maps, where each cell of the grid corresponds to a
portion of the environment. Each cell of the grid map is either
classified as free, occupied, or unknown. However, the overall
path the robot follows to complete the map is usually not optimal
in terms of distance traveled, even in the case the closest frontier
is repeatedly selected.

As in the case of path planning, reinforcement learning-based
methods can be used to select the control commands to steer
the robot for fully exploring unknown environments such that
SLAM algorithms can reconstruct their maps. However, the
problem of exploratory navigation for constructing maps is more
challenging, than the navigation-to-a-target problem. Because

1 The most promising frontier can be chosen in different ways, such as
the closest frontier, the most informative one or combinations of the
two objectives.
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there is not an explicit navigation target, the reinforcement learn-
ing agent needs to learn to explore. Defining a suitable non-
sparse reward function is not straightforward in this case. The
problem of learning to explore, in the context of reinforcement
learning, can be tackled by reward shaping. The goal is to reward
the agent to be curious, i.e. to choose actions that allow travel-
ing to novel or never-visited states of the environment. This is
usually referred to in literature as curiosity-driven reinforcement
learning (Pathak et al., 2017).

In this work, we propose a reinforcement learning and SLAM-
based framework for efficiently exploring and building maps of
unknown indoor environments based on the robot’s on-board
sensory readings and the information coming from the SLAM
algorithm, such as the pose estimate and the map’s completeness.
The proposed approach is shown in Figure 1. In particular, we
introduce a curiosity-driven reward function dependent on the
novelty of the position visited by the robot that allows fast learn-
ing of the exploration policy and its generalization to untrained
environments. Additionally, the proposed reward function is
also independent of the type of map, either feature-based or
location-based map, built using the SLAM algorithm.

state 
St

St+1

action 
At    

reward 
Rt

Agent  

Environment  

map + pose 
estimation

Figure 1. Proposed framework combining reinforcement learning
and SLAM where the reconstructed 2D map and the pose

estimation of the SLAM algorithm contributes to both state
estimation and reward shaping process. As a result, the agent can

choose the best action to steer the robot and to support the
continuation of the active SLAM algorithm.

The paper is organized as follows: Section 2 introduces the
background information regarding reinforcement learning and
SLAM, Section 3 discusses the related work to this research
and Section 4 presents the proposed approach. Then, Section 5
shows the experimental design, followed by Section 6 presenting
the result and discusses the findings. Eventually, Section 7
concludes the paper.

2. BACKGROUND

2.1 Reinforcement Learning

Reinforcement learning, or RL, (Sutton and Barto, 2018) studies
the problem of learning optimal behaviors through the inter-
action, occurring at discrete time-steps, of the agent, i.e. the
learning entity, with an unknown world, i.e. the environment.
At each time-step t, the agent is in a certain state st ∈ S, de-
termined by the information perceived from the environment,
performs an action at ∈ A and receives a scalar reward rt signal
assessing the quality of the action taken. The goal of a reinforce-
ment learning agent is to find the best policy for solving a given
task by accumulating the highest total reward at the end of the
run

∑N
k=0 γ

krt+k.

2.1.1 Deep Deterministic Policy Gradient Deep determin-
istic policy gradient, or DDPG, (Lillicrap et al., 2015), is an
actor-critic reinforcement learning algorithm that can deal with
problems with continuous state and action spaces. DDPG estim-
ates the action-value function Q, or critic, and a deterministic
policy π, or actor, using two neural networks. The determin-
istic policy π(s; θπ), parametrized by the parameter vector θπ ,
is made stochastic during the training phase of the algorithm
with the addition of Ornstein–Uhlenbeck noise(Uhlenbeck and
Ornstein, 1930). The actor network π(s; θπ) is updated with
the deterministic policy gradient theorem and it is shown in
Equation (1).

∇θJ(θθ) = Es∼ρ,a∼π[∇θππθ(s; θπ)∇aQ(s, a; θQ)] (1)

where ρ is the state distribution induced by the policy π and a is
the action chosen accordingly to the policy π.

The critic network Q(s, a; θQ), parametrized by the parameter
vector θQ, is updated using the temporal-difference error com-
puted by a target network Q−(s, a; θQ−

) with the same approach
used in (Mnih et al., 2015). The loss for updating the critic net-
work is shown in Equation (2).

L(θQ) = Es∼ρ,a∼π[(r(s, a)+γQ′(s′, a′, ; θQ−
)−Q(s, a; θQ))2]

(2)

where ρ is the state distribution induced by the policy π and
a′ = π−(s′; θπ

−
) is the next action and it is chosen accordingly

to the target policy network π−(s′; θπ
−
).

We update the target networks with soft updates using the ex-
ponential moving average of the original parameters θ, as in
Equation (3).

θema = (1− λ)
N∑
i=0

λiθN−i (3)

where λ ∈ [0, 1] is the decay rate and θN are the neural network
weights after N update steps.

2.1.2 Exploration by Reward Shaping The trade-off between
exploration and exploitation is one of the biggest challenges in
reinforcement learning, the agent has to explore to find higher
rewards, but its ultimate goal is to exploit and collect the highest
possible rewards. Especially in all the situations in which the
environment is complex and a sparse reward function is used,
random exploration is not sufficient, and improving the policy
requires a long training time.

It is possible to formulate curiosity-driven reward functions that
motivate the agent to explore uncertain regions of the state space,
e.g. states that are badly predicted, accordingly to a learned
forward dynamical model, as in (Pathak et al., 2017) and (Zhelo
et al., 2018). These approaches drastically improve the con-
vergence of the algorithms and can solve sequential decision
making processes even in the cases of very sparse reward func-
tions. When policies are learned through such reward functions,
these tend to indiscriminately explore the whole state space and
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they do not necessarily focus on exploring more interesting areas.
This may be a limitation in very large environments. Moreover,
if the environment is highly stochastic or random, the forward
model can only poorly predict the next state and, consequently,
the reward is not informative enough to allow good exploration
and fast policy learning (Burda et al., 2018).

Alternatively, the novelty can be defined in terms of reachability,
i.e. how many steps the agent needs to reach a certain state
(Savinov et al., 2018). This approach stores a special sub-set
of novel observations and compares them with the most recent
observation of the agent in order to determine the novelty of such
observation. In their approach, the authors use a neural network
to determine if the current observation can be reached within the
k-steps from any of the stored observations and consequently
generate a reward proportional to that distance. This method
shows significant improvements in terms of convergence speed
with respect to the forward model prediction and suffers less
from the problem of the environment stochasticity.

2.2 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) algorithms
are designed for creating 2D or 3D maps of the environment
while simultaneously estimating the pose of the sensor used for
the measurements. Depending on the measurement sensor of
choice, the scale of the environment to be mapped, computa-
tional limitations, and level of details wanted from the mapping
and pose estimation outputs, a large variety of SLAM methods
are proposed in the literature (Wang et al., 2017). For indoor
robot navigation problems, the most frequently chosen robust
and fast methods have been; FastSLAM (Montemerlo et al.,
2003), RGB-D SLAM (Endres et al., 2014), ORB-SLAM (Mur-
Artal et al., 2015), GraphSLAM (Thrun and Montemerlo, 2005)
and Rao Blackwellized particle filter (RBPF) (Murphy, 2000)
approaches. Even though RGB-D SLAM provided fast and
robust localization and detailed map generation possibilities,
lower availability and higher prices of the RGB-D sensors made
other SLAM algorithms more interesting for most of the re-
searchers. FastSLAM and ORB-SLAM relied on the availability
of trackable visual features in the environment. GraphSLAM
and RBPF SLAM offered comparable performances even when
different sensor measurements are involved (Kümmerle et al.,
2009). GraphSLAM provided slightly better performance when
the sensor turns back to the same starting point (called loop-
closure). On the other hand, RBPF SLAM enabled storing the
environment information in a smaller memory size which is very
advantageous for mobile robot systems to run active SLAM and
other complex decision making algorithms (such as path plan-
ning with a RL-based algorithm) real-time on a small embedded
platform. Because of these mentioned advantages, in this study,
we have used RBPF SLAM to solve the simultaneous localiza-
tion and mapping problem of the mobile robot by building an
occupancy grid-based map. However, we need to highlight that
the proposed curiosity-driven reinforcement learning-based path
planning framework is fully independent of the SLAM algorithm
of choice as it requires only the pose estimate. The SLAM mod-
ule of our framework can be assumed as a functional module
that can easily be replaceable with another SLAM algorithm
that provides the environment map and the sensor pose as a time
series.

2.2.1 Rao-Blackwellized Particle Filter The goal of any
SLAM algorithm is to estimate the pose χ of the sensor and map
m of the environment, given its measurements z1:t and control
actions a0:t−1:

p(χ1:t,m|z1:t, a0:t−1) (4)

RBPF SLAM simplifies the estimation of the posterior probabil-
ity, shown in Equation (4), by factoring it in two terms:

p(χ1:t,m|z1:t, a0:t−1) = p(χ1:t|z1:t, a0:t−1)p(m|χ1:t, z1:t)
(5)

where p(χ1:t|z1:t, u0:t−1) is the probability of the trajectory
conditioned to the sequence of measurements z1:t and control
actions a0:t−1 and p(m|χ1:t, z1:t) is the probability of the map
conditioned to the trajectory χ1:t, assumed to be known2, and
measurements z1:t.

The sensor’s pose p(χ1:t|z1:t, at−1) is estimated by the RBPF
using a finite set of N particles:

Xt = {χ(1)
t , χ

(2)
t , ..., χ

(N)
t }, (6)

where each particle χ(n)
t represents the belief of what the true

pose may be at time step t. Moreover, at each iteration of the
particle filter algorithm, a new set of particles Xt is recursively
computed from the previous set Xt−1. To do so, first, a new set
of particles Xt is sampled from the probabilistic motion model
s
(n)
t ∼ p(χ

(n)
t |χ

(n)
t−1, at−1) given the previous set of particles

Xt−1. Then, by means of the observation model p(ot|χ(n)
t ) the

importance weight w(n)
t of each particle is computed. Eventu-

ally, we apply the so-called selective resampling (Grisetti et al.,
2005) to sample a new set of N particles in accordance to their
importance weight.

Our implementation of the RBPF SLAM algorithm utilizes an
occupancy grid map representation. The untrackable posterior
probability of the map p(m|z1:t, χ1:t) can be computed as the
product of the posterior of each cell mi of the grid. This factor-
ization is shown in Equation (7).

p(m|z1:t, χ1:t) =

M∏
i=1

p(mi|z1:t, χ1:t) (7)

where M is the total number of cells in the map.

3. RELATED WORK

3.1 Reinforcement Learning-Based Active SLAM in Ro-
botics

Reinforcement learning has been used in active SLAM for learn-
ing optimal exploration strategies for steering a mobile robot,
carrying sensors, in unknown environments, and constructing
their maps. In (Kollar and Roy, 2008), reinforcement learning
is used to find the most informative trajectories to reach a set
of given target locations and to consequently, improve the qual-
ity of the map. However, differently from our work, we do

2 This term is commonly known in literature as mapping with known
poses.
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not assume a known set of navigation targets, but we rely only
on onboard sensor readings and information coming from the
SLAM algorithm for steering the robot into the unknown areas
of the environments.

A reinforcement learning-based active SLAM architecture is pro-
posed in (Chen et al., 2019), where an agent is trained to explore
the environments in order to build their maps by relying on raw
RGB-D sensor readings, a top-view image of the map, and a
bump sensor for detecting collisions. The approach relies on
expert trajectories to initialize the agent’s policy. Differently for
them, we do not rely on expert data and high-dimensional sens-
ory reading, but only on LiDAR. Additionally, the focus of our
work is to design a reward function that encourages exploration.

A similar architecture is proposed in (Dooraki et al., 2018),
where a reinforcement learning agent is trained on depth images
and range sensory readings for navigating without collisions and
constructs maps of different environments. The reward function
is shaped using multiple objectives and ultimately promotes
moving forward to free space. However, this reward function
has no terms related to the map coverage, therefore the agent is
not necessarily rewarded for exploring quickly and/or choosing
short trajectories.

In (Botteghi et al., 2020) and (Placed and Castellanos, 2020),
the authors propose a reinforcement learning approach for act-
ive SLAM that relies on 2D LiDAR readings and information
coming from the SLAM algorithm to select the best steering
command, out of a discrete action space, for a mobile robot to
explore different environments. While we use similar state space
definition, we employ a continuous action space for obtaining
smoother trajectories. Both approaches focus on the shape of
the reward function. Differently, in our work, we propose a new
curiosity-based reward function that drastically improves the
generalization skills of the agent.

Eventually, the authors of (Niroui et al., 2019) propose a hybrid
reinforcement learning and frontier-based exploration frame-
work, where the agent is not directly choosing velocity com-
mands nor trajectories for the robot, but simply selects the fron-
tier to visit. An A∗-based path planner is then in charge of
steering the robot to the selected frontier. Despite the success,
the method reduces, only slightly, the total traveled distance by
the robot with respect to the original frontier-based exploration
approach (Yamauchi, 1997b). In our approach, we do not rely
on the explicit computation of the frontier, which may be com-
putationally expensive. Moreover, visiting all the frontiers may
cause longer trajectories than necessary.

All these reinforcement learning-based approaches rely on ran-
dom noise on the action space to explore action space and,
consequently, explore the environment. We believe that is not
enough for fast learning and generalization and we employ a
curiosity-based reward function. The proposed reward func-
tion may be beneficial to the performance of all the mentioned
approaches.

4. METHODOLOGY

4.1 Proposed approach

We aim at solving the active SLAM problem using reinforcement
learning to select the best actions to explore indoor environments
and construct their maps. We assume this problem to have a

finite horizon, i.e. we assume the existence of a terminal state,
reachable in a finite number of steps, corresponding to the envir-
onment being fully explored and the map being fully constructed.
The reinforcement learning algorithm, i.e. DDPG, only relies on
80 2D-LiDAR readings, the robot’s pose estimate coming from
the RBPF SLAM algorithm, the previous action taken by the
agent, the percentage of the map to be explored, and the time
steps left before the end of the episode. The time steps left and
the percentage of the map left before completeness help to make
the algorithm aware of the terminal conditions and consequently
help the performance and stability of the learning algorithms
(Pardo et al., 2017). Moreover, these two assumptions allow us
to study and tackle the problem without the need for an explicit
memory structure in the reinforcement learning algorithm. The
state vector st at a given time instant t is shown in Equation (8).

st = [zt, χ
(x,y,θ)
t , at−1, ζ

¬
t , τ

¬
t ] (8)

where zt corresponds to the LiDAR readings uniformly spread
on a 360° range, χ(x,y,θ)

t to the pose estimate, i.e. x, y-position
in the Cartesian plane and the robot’s orientation θ, at−1 to the
previous action taken by the agent, ζ¬t to the remaining map
percentage before completeness and τ¬t to the time steps left
before the end of the episode. The agent’s actions are continuous
linear and angular velocity set-points that are sent and tracked
by the low-level controllers on the robot.

4.2 Exploration by Reward Shaping

We propose an adaptation of the episodic curiosity reward intro-
duced by (Savinov et al., 2018) for improving the exploration
skills of the reinforcement learning algorithm in the context of
active SLAM and we investigate its effect on the generalization
skills of the trained agent to different environment topologies.
We propose a reward function that combines a bonus when the
environment is fully explored and the map is completed, a pen-
alty when collisions occur, and a curiosity reward promoting
exploration of unknown locations. The propose reward function,
named Curiosity, is shown in Equation (9).

R(st) =

 rmap completed, if ζt ≥ C
rcrashed, if zt ≤ zmin
rct , otherwise

(9)

where rmap completed is the bonus given to the agent when the
percentage of map completeness ζt is above a threshold3 C,
rcrashed is a negative penalty for getting too close, accordingly to
a fixed threshold zmin, to obstacles according the current LiDAR
reading zt and rct is the curiosity term promoting exploration.

To compute the curiosity-based reward, we first define a finite-
size bufferM with cardinality M containing novel robot’s posi-
tions χ(x,y)

t , estimated via the SLAM algorithm. A position is
novel if it is at least at a distance k from all the other positions
visited, with k a parameter of our algorithm. If a novel position
is found during exploration, this is added to the novelty buffer. A
graphical illustration of the curiosity reward is shown in Figure
2.
3 Due to small mapping error, the map is rarely completed exactly at

100%, therefore we set the map-completeness threshold to 93% to
prevent never reaching such a condition.
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Figure 2. Intuitive representation of the novelty circle with radius
k.

At each time step of the algorithm, the curiosity reward term
is computed by averaging the sum of the Euclidean distance
between the current robot position estimate χ(x,y)

t and all the
novel position χ(x,y)

1...M = χ
(x,y)
1 , . . . , χ

(x,y)
M in the novelty buffer,

as shown in Equation (10).

rct =
α

M

M∑
i=1

d(χ
(x,y)
t , χ

(x,y)
i ) (10)

where α is a constant scaling the novelty reward term and con-
trolling the urgency in reaching novel positions,M is the number
of elements of the novelty buffer and d is the Euclidean distance
operator. If rct is higher than a certain threshold for a given
position χ(x,y)

t , then this is added to the novelty buffer.

If the buffer is full an older novel position is randomly dis-
carded. In this way, anything that is easily reachable by the
agent becomes quickly uninteresting since no further reward can
be obtained from it, whilst reaching positions further away from
the known positions, i.e. at least distant k, is encouraged. This
reward drives the robot to unexplored areas by leveraging on the
pose estimate from the SLAM algorithm. Moreover, because
only the pose estimate is used the proposed approach is inde-
pendent of the kind of map the SLAM algorithm is constructing,
by making the approach suitable to different scenarios.

Positions close to the walls are not considered as novel positions
since this would encourage undesired behaviors. A benefit of
this is that the agent gains a natural tendency to select actions
keeping the robot in the middle of the rooms. The choice of k
is intuitively crucial for the fast learning of the reinforcement
learning algorithm. If k is chosen too small, any position can,
in principle, become novel and appended to the novelty buffer.
This would slow down the exploration and consequently reduce
convergence speed. On the other side, if k is picked too large the
curiosity reward term tends to disappear because novel positions
may be too difficult to reach as too distant.

The complete algorithm used for computing the curiosity reward
is presented in Algorithm 1 in Appendix A.

4.3 Neural networks architecture

In the DDPG algorithm, both the policy and value function
are approximated by neural networks. In particular, the state
vector is fed to the actor network which is composed of three
fully connected hidden layers with ReLU activations and 512
neurons each. Eventually, the output layer has dimensionality

2 and outputs the linear and angular velocities for the robot.
To constrain the velocities to feasible values for the robot’s
actuators, we use a sigmoid and a tanh activation for the linear
and angular velocity respectively. In this way, we constrain the
robot to move only forward, but we leave the possibility to turn
left or right.

The critic network is also composed of the three fully connected
hidden layers with ReLU activations and 512 neurons each.
However, while the state vector is fed to the first hidden layer
of the network, the action is only fed into the second layer. The
output layer has linear activation and a single output, i.e. the
estimated Q-value of the input state-action pair.

5. EXPERIMENTAL DESIGN

5.1 Setup

The experiments are performed using the Robot Operating Sys-
tem (ROS) and the simulation platform Gazebo. Gazebo allows
simulating robots, their dynamics, realistic environments, and
sensors, while ROS allows the communication among all the ele-
ments of the simulation platform, e.g. robot and sensors, and the
learning algorithm. Additionally, ROS allows easy integration
with different SLAM packages and the gmapping package that
is used in this research.

The learning algorithm is written in Python using the Tensorflow
library for the construction and training of the neural networks,
and OpenAI-gym for the reinforcement learning environment.

5.2 Baselines

We compare the proposed reward function, in Equation (10),
with three different reward functions used in literature and in
Equation (11)-(13). In particular, we focus on the learning speed
of the agents, trained with different reward functions, the length
and quality of the trajectory after training, the percentage of map
completed, and the generalization to untrained environments.

We first compare with a sparse reward function, named Sparse:

R(st) =


rmap completed, if ζt ≥ C
rcrashed, if lt ≤ lmin

0, otherwise.
(11)

Then, we compare with the reward function based on the map
completeness gain, named Oracle, similar to the one adopted by
(Chen et al., 2019):

R(st) =


rmap completed, if ζt ≥ C
rcrashed, if lt ≤ lmin

ζt − ζt−1, otherwise.
(12)

Moreover, we compare with a reward function based on the
entropy, named Information-gain, similar to the one used in
(Botteghi et al., 2020):

R(st) =


rmap completed, if ζt ≥ C
rcrashed, if lt ≤ lmin

Ht −Ht−1, otherwise.
(13)
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(a) Env-1 (b) Env-2 (c) Env-3

Figure 3. The training environment, Env-1, and testing environments, Env-2 and Env-3 used for training and evaluating the proposed
approach.

where Ht is the map’s entropy at time t and Ht−1 is the map’s
entropy at time t− 1.

Eventually, all the learning-based approaches are compared with
the frontier-based exploration (Yamauchi, 1997a).

5.3 Training and Testing

We are interested in studying the effect of the reward function
on the performances and generalization skill of the agents. To
do that, we train the agents is a single environment, Env-1, and
evaluate their performances on two unknown ones. The training
environments is the Env-1, shown in Figure 3a, while the testing
environments, Env-2 and Env-3, are shown in Figure 3b and 3c
respectively.

The training environment Env-1, is based on a real 65m2 apart-
ment from the Dutch housing website funda (funda, 2020). Map-
ping the whole environment provides a significant challenge
since a random policy is not enough for exploring the whole
space and construct its map efficiently. The second and the third
environments, Env-2 and Env-3, have total areas of 68.5m2

and 75m2 and they are, again, based on real apartments from
(funda, 2020). These two environments are only used for test-
ing the generalization capabilities of the trained agents and no
policy-learning is performed here.

We train each agent for the same amount of episodes on envir-
onment Env-1, by employing two different training strategies.
Firstly, the robot position, at the beginning of each episode, is
kept the same for the whole training process4. Secondly, at the
beginning of each episode, the robot is randomly spawned in
one of four possible starting positions.

After training, each agent is tested in the unseen a priori envir-
onment Env-2 and Env-3, and the map completeness and the
trajectory length and quality are recorded. For each testing envir-
onment, four different starting positions are selected and three
experiments per position are performed.

6. RESULTS AND DISCUSSIONS

6.1 Training Results

The map-completeness5 and the number of actions per episode
of the different agents during training is presented in Figure 4a

4 The chosen starting position is a point in the middle of the bottom-left
room of environment Env-1.

5 Because we are employing different reward functions, the reward values
obtained by the agents are different. Therefore, we compare the training
performances based on how fast the map is completed.

and 4b. When only a single fixed starting position for the robot,
in each training episode, is chosen, the agent trained with the
curiosity-driven reward function outperforms the other in terms
of map-completeness rate, by quickly converging after ∼ 150
episodes, and the number of actions compared to the other agents.
The proposed curiosity-based reward function quickly motivates
the agent to choose actions that can steer the robot to unseen
locations of the environment, as far as possible from the known
ones.

On the other side, when the robot is spawned at different start-
ing locations, the agent trained with the information-gain re-
ward function, in Equation (13) and the one trained with the
map-completeness reward function, in Equation (12), achieve
performance comparable to the curiosity, if not even slightly su-
perior, to the proposed curiosity-based reward function in terms
of map-completeness during training. These two methods bene-
fit the most from the random initialization of the robot’s position.
However, when we analyze the number of actions taken in each
training episode, the proposed reward function can reduce the
actions taken at a higher rate than the other reward functions.
In this context, the sparse reward function, in Equation (11),
without a memory structure, e.g. a recurrent policy network,
does not converge to a good solution in the time span of 400
episodes.

6.2 Generalization Results

We test how well the planners trained in environment Env-1
perform in the unseen a priori environment Env-2 and Env-
3. Additionally, we compare the learning-based planners with
frontier-based exploration. In Table 1, the generalization results
in environment Env-2 and the ones related to environment Env-3
are shown, where we compare the planners by recording the av-
erage map-completeness and trajectory length in twelve different
runs for each planner with four possible starting positions.

approach map-completeness % traj.length (m)
(mean ± std) (mean ± std)

Env-2 Sparse 55.86± 17.44 11.86± 3.35
Oracle 65.28± 18.53 15.89± 4.4

Information-gain 93.48± 8.94 24.31± 5.87
Curiosity 99.09± 0.65 17.65± 5.14
Frontier 98.45± 0.366 15.68± 3.6

Env-3 Sparse 37.08± 7.88 10.7± 2.25
Oracle 66.83± 11.29 18.87± 10.33

Information-gain 88.03± 6.54 18.78± 4.04
Curiosity 92.58± 6.69 25.23± 7.93
Frontier 99.15± 0.29 25.38± 4.08

Table 1. Generalization results in the untrained environment
Env-2 and Env-3.

When compared to the other agents, the one trained with the pro-
posed reward function achieves the highest map-completeness
in both environments and travels smoother and shorter paths
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Figure 4. The training results in Env-1 when the robot starts each training episode in the same position, Figure 4a and 4b, and when its
pose is randomly selected, Figure 4c and 4d. The Sparse corresponds to the sparse reward function, the Oracle to the map-completeness

reward function, the Information-gain to the entropy based reward function and Curiosity to the proposed reward function.

compared to the others. It is worth mentioning that when trained
with the Sparse and Oracle reward functions, the agent never
and rarely, respectively, completes the maps and they show a
circling behavior on the spot with low-velocity. Because we
fix the maximum number of actions in an episode to 500, the
distance traveled by such planners is low.

The curiosity-driven agent achieves performances comparable
to the frontier based explorations in terms of average map com-
pleteness and trajectory length. However, it is worth to mention
that the proposed planner has higher computational efficiency
compared to the frontier, where more operations have to be
performed at each time step, such as detecting the frontiers,
choosing one accordingly to a pre-determined criterium, and
navigating to the frontier without collisions6.

7. CONCLUSION

The key element of the success of the approach is to transform
the problem of exploration of unknown environments into the
problem of visiting novel locations of the world and the map.
This is done by shaping the reward function, used to train the
reinforcement learning agent, to encourage its curiosity into
unseen locations and, consequently, features. The reinforce-
ment learning agent, trained with the proposed curiosity-driven
reward function, outperforms in terms of generalization to un-
trained environments, map-completeness, and trajectory length
and smoothness, the agents trained with commonly used reward
functions for such tasks. The proposed approach achieves per-
formance comparable to the frontier-based exploration method,
but with lower computation cost. Moreover, the approach is not
limited to occupancy-grid maps, this is the case of the frontier-
based exploration, but can cope with any type of map repres-
entation and SLAM algorithm. This is due to the fact that the
algorithm for training and testing only requires the robot’s pose
estimate and the completeness of the map.
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APPENDIX A

Curiosity Reward Computation

The outer loop iterates over the number of episodes, the middle
loop iterates over the number steps allowed in an episode and
the inner loop iterates over the novelty bufferM.

Algorithm 1: Episodic Curiosity Reward
Initialize novelty bufferM with size M ;
for episode in Nepisode do

for t in Nstep do
rtemp = 0 ;
for i in M do

if d(χ(x,y)
t , χi) > k then

rtemp = rtemp + d(χ
(x,y)
t , χi);

else
rtemp = 0 ;

end
end
rct =

α
M
rtemp

end
end

APPENDIX B

Experiments Settings

The parameters used in our experiments are shown in Table 2.

RL and SLAM parameters Value

optimizer ADAM
actor learning rate 10−3

critic learning rate 10−4

discount factor γ 0.99
batch size 64

replay buffer size 106

novelty threshold k 1.8m
particles 80

process scan threshold translation 0.05
process scan threshold rotation 0.05

grid cell size 0.05m×0.05m
occupancy threshold 0.60
LiDAR max. range 10m
LiDAR min. range 0.2m
collision threshold 0.2m

map completeness threshold 93 %

Table 2. Parameters of the experiments.
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