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ABSTRACT:

Robust estimation (RE) is a fundamental issue in robot vision and photogrammetry, which is the theoretical basis of geometric
model estimation with outliers. However, M-estimations solved by iteratively reweighted least squares (IRLS) are only suitable for
cases with low outlier rates (< 50%); random sample consensus (RANSAC) can only obtain approximate solutions. In this paper,
we propose an accurate and general RE model that unifies various robust costs into a common objective function by introducing
a “robustness-control” parameter. It is a superset of typical least-squares, l1-l2, Cauchy, and Geman-McClure estimates. We
introduce a parameter-decreasing strategy into the IRLS to optimize our model, called adaptive IRLS. The adaptive IRLS begins
with a least-squares estimate for initialization. Then, the “robustness-control” parameter is decreased along with iterations so that
the proposed model acts as different robust loss functions and has different degrees of robustness. We also apply the proposed model
in several important tasks of robot vision and photogrammetry, such as line fitting, feature matching, image orientation, and point
cloud registration (scan matching). Extensive simulated and real experiments show that the proposed model is robust to more than
80% outliers and preserves the advantages of M-estimations (fast and optimal). Our source code will be made publicly available in
https://ljy-rs.github.io/web.

1. INTRODUCTION

Robust estimation (RE) is an important technique for model fit-
ting, whose goal is to seek a true geometric model from con-
taminated observations. Almost all geometric problems related
to gross errors (outliers) are inseparable from RE since it is the
theoretical basis of outlier detection. RE has been widely ap-
plied in robot vision and photogrammetry, such as line fitting,
feature matching, image orientation, image odometry, bundle
adjustment, point cloud registration (scan matching), and sim-
ultaneous localization and mapping (SLAM), etc. Various ro-
bust estimation methods have been developed, among which
random sample consensus (RANSAC) (Fischler, Bolles, 1981)
family and M-estimations solved by iteratively reweighted least
squares (IRLS) (Holland, Welsch, 1977) are the most widely
used methods.

RANSAC is a hypothesize-and-verify technique that alternates
between minimal subset sampling and estimated model verific-
ation until the stop criterion is reached. The model with max-
imum concensus set is accepted as the correct one. RANSAC
has many variants, e.g., fixed locally optimized RANSAC
(FLO-RANSAC) (Lebeda et al., 2012), universal RANSAC
(USAC) (Raguram et al., 2012), and marginalizing sample con-
sensus (MAGSAC++) (Barath et al., 2020). Although many ef-
forts have been made, RANSAC-type methods suffer from sev-
eral limitations caused by the basic framework of hypothesize-
and-verify. First, RANSAC-type methods can not obtain op-
timal solutions. They use minimal subsets instead of all ob-
servations for model estimation, which is sensitive to noise for
the lack of redundant observations. Second, the number of
sampling trials increases exponentially with outlier rate. As
∗ Corresponding author

a result, RANSAC becomes slow at high outlier rates (Chin,
Suter, 2017). Third, RANSAC-type methods are difficult to be
adapted in adjustment systems such as bundle adjustment and
pose graph optimization.

M-estimations originated from statistics have been applied in
various fields. Huber, l1-l2, Fair, Cauchy, Geman-McClure,
Welsch, and Tukey estimators are well-known M-estimators.
In addtion, there are many variants, such as GM-estimators,
S-estimators, and MM-estimators. More comprehensive sur-
veys can be found in (Huber, 2004). The basic idea of M-like
estimators is to use robust functions to penalize outliers and
optimizes the cost via the IRLS method. In the optimization,
outliers are given small weights (close to 0) while inliers are
given large weights (close to 1). Thus, the effect of outliers to-
wards to the total energy is largely discounted. M-estimations
overcome some of the shortcomings of RANSAC. First, they
can reach globally optimal solutions if good initializations are
provided. Second, they are very efficient (1∼2 orders of mag-
nitude faster than RANSAC-type methods). More importantly,
they can be easily adapted in an adjustment system for joint op-
timization. Therefore, M-estimations are the preferred methods
in robot vision and photogrammetry, especially for gross error
detection in adjustment. Nowadays, many observations are ob-
tained automatically by algorithms, which contain a large frac-
tion of outliers, such as the feature matching and point cloud re-
gistration tasks. However, M-estimations can not handle cases
with more than 50% outliers (Chin, Suter, 2017).

Recently, several estimators try to break through the bottle-
neck problem of M-estimation. For example, generalized pbM-
estimator (GpbM-estimator) (Mittal et al., 2012) proposes a
robust errors-in-variables model. Q-norm estimator (Li et al.,
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(a) Cost function ρ(r) (b) Weight function w(r) in IRLS

Figure 1. Comparisons between non-robust least-squares cost
and robust M-estimation costs (r is the residual of an observa-
tion).

2016) and weighted q-norm estimator (Li et al., 2020b) further
improve the robustness by introducing a lq-norm (0 < q < 1)
model. These methods are robust to more than 70% out-
liers. However, they involve non-convex optimization prob-
lems, which decrease their efficiency and make them almost
impossible to be used in an adjustment system.

In this paper, we aim to develop an estimator with follow-
ing properties: fast, optimal, robust to high outlier rates,
and suitable for adjustment systems. We propose a new ro-
bust model that is a superset of typical least-squares, l1-l2,
Cauchy, and Geman-McClure estimates. This model intro-
duces a “robustness-control” parameter to unify various robust
costs into a common framework. We propose a parameter-
decreasing strategy in the IRLS (called adaptive IRLS), where
the “robustness-control” parameter is decreased along with it-
erations. In adaptive IRLS optimization, the proposed model
acts as different robust loss functions and has different degrees
of robustness. We use several important tasks of robot vision
and photogrammetry, including line fitting, feature matching,
image orientation, and point cloud registration, to show the ef-
fectiveness and versatility of the proposed model. Extensive
simulated and real experiments show its great potentials, i.e, it
is robust to more than 80% outliers and inherits all advantages
of M-estimations. Our contributions are as follows:

• We propose a robust cost function that unifies a set of loss
functions with different degrees of robustness. Our cost
function can be generalized to different dimensions.

• We propose an adaptive IRLS for optimization, so that the
model acts as different robust loss functions.

• We provide several applications in photogrammetry for
readers to understand and use the proposed model.

2. OUR ROBUST MODEL

2.1 Motivation

Least-squares cost is widely used in robot vision and photo-
grammetry because of its optimality for Gaussian noise. How-
ever, it is very sensitive to outliers. A single outlier can make
the solution highly suboptimal, since the Gaussian noise as-
sumption is violated by outliers. As shown in Figure 1, least-
squares cost (the red curve) increases quadratically and gives
same weights to all observations. It is not a robust cost. In

(a) Cost function ρ(r) (b) Weight function w(r) in IRLS

Figure 2. Visualization of the proposed cost function (a) and its
weight function (b) with different “robustness-control” paramet-
ers α. (β = 1)

contrast, typical M-estimation costs (such as Geman-McClure,
Tukey, and Welsch) are bounded functions. They give small
weights to observations with large residuals while giving large
weights to others in the IRLS, so that the observations with
large residuals contribute small to the total energy. The prob-
lem of these costs is the sensitivity to high outlier rates. If out-
lier rate is higher than 50%, initial estimated model is largely
biased from its ground truth. In this case, inliers may have large
residuals and are given very small weights (Observations with
residuals lager than 4 are given≈ 0 weights in this figure). This
is so strict that many inliers may not be participated in the op-
timization at the beginning.

So, if we can bridge the gap between least-squares cost and M-
estimation costs, the above-mentioned problem will be largely
alleviated. At the beginning, the cost should let all observations
participate in optimization like the least-squares cost. Then,
the cost gradually increases the robustness and becomes a ro-
bust function like the M-estimation costs (The change process
is shown by arrows in Figure 2.). Although initial model may be
not accurate, true inliers with large residuals still contribute to
the total energy. Actually, in each change of the cost function, a
small portion of observations with the largest residuals are ex-
cluded from optimization (assigned ≈ 0 weights). Generally,
these observations are outliers. Therefore, as the cost function
changes, many outliers are discarded and the true outlier rates
decrease. When the cost becomes a M-estimation like cost, the
true outlier rates can be smaller than 50%.

2.2 Cost Function

The basic cost function of our proposed robust estimation
model is,

f(r, α, β) =
β2

α

(1 +

(
r

β

)2
)α

2

− 1

 (1)

where r is the residual of an observation; α reflects the robust-
ness of the function, which is called “robustness-control” para-
meter; and β > 0 is a scale parameter. Our cost yields the
classic least-squares loss when α = 2,

f(r, 2) =
1

2
r2 (2)

Least-squares cost is very sensitive to gross errors. Even one
outlier can lead to an arbitrary bad solution. When α = 1, the
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Algorithm 1: Robust estimation based on our robust model
Input: observations {(xi,yi)}ni=1

Output: parameters δ of model F
1 Initializationw(0) = 1, δ = δ(0), α(0) = 2, β = 10;
2 while ‖ ∆δ ‖< ε do
3 Variable update: estimate δ(t) via WLS (Eq. (9));
4 Weight update: compute weightsw(t) via Eq. (7);
5 α update: decrease α by a step, α(t) = α(t−1) − τ ;
6 ∆δ = δ(t) − δ(t−1), t++;

7 Compute final δ via WLS with the newest weights;
8 Output δ and select inliers based on residuals.

proposed cost becomes the l1-l2 estimate,

f(r, 1, β) = β2

√1 +

(
r

β

)2

− 1

 (3)

In our cost, α = 0 is a singularity, i.e., f(r, 0, β) is undefined.
Take the limit as α approaches to 0, function (1) turns into the
Cauchy estimate,

lim
α→0

f(r, α, β) =
β2

2
ln

(
1 +

(
r

β

)2
)

(4)

If we set α = −2, our cost is equivalent to the Geman-McClure
estimate,

f(r,−2, β) =
β2r2

2 (β2 + r2)
(5)

As known, the l1-l2, Cauchy, and Geman-McClure estimates
are robust cost functions. Our proposed cost is a superset of
these functions and the shape parameter α controls its robust-
ness. Considering the singularity, our final general cost is,

ρ(r, α, β) =


β2

2
ln

(
1 +

(
r
β

)2
)

α = 0

β2

α

((
1 +

(
r
β

)2
)α

2

− 1

)
α 6= 0

(6)

Our cost can also be optimized by the IRLS like M-estimations.
In the IRLS, Eq. (6) is reformulated as a weighted least-squares
(WLS) problem, i.e.,

∑
w(r)r2. w(r) = ∂ρ

∂r

/
r is a weight

function, where ∂ρ
∂r

is the derivative of ρ with respect to r.
Hence, our weight function used in the IRLS is,

w(r, α, β) =


β2

β2+r2
α = 0(

1 +
(
r
β

)2
)α

2
−1

α 6= 0
(7)

2.3 Main Algorithm

Suppose {(xi,yi)}ni=1 is a set of outlier contaminated obser-
vations. The geometric relationship between {(xi,yi)}ni=1 can
be modeled by a function F , i.e., yi = F(xi, δ) (noise and
outliers are not considered), where δ is the parameters of F .
The goal is to estimate the parameters δ. This problem can be
formulated as our robust model,

min
δ

n∑
i=1

ρ (ri, α, β) (8)

where ri = r(xi,yi, δ) =‖ yi −F(xi, δ) ‖. We then rewrite
this problem as an IRLS problem,

min
δ

n∑
i=1

wir
2
i (9)

where wi = w (ri, α, β). Problem (9) can be optimized by
adaptive IRLS, whose details are summarized in Algorithm 1.
At each inner iteration t, three main steps are performed:

1. Variable update: estimate δ(t) with fixed weights w(t−1)
i

in Eq. (9),

δ(t) = min
δ

n∑
i=1

w
(t−1)
i r2i (10)

This is a simple WLS problem that can be easily solved.

2. Weight update: compute weights w(t) = {w(t)
i }

n
1 based

on Eq. (7) with fixed δ(t),

w
(t)
i = w

(
r
(t)
i , α(t−1), β

)
(11)

3. α update: decrease the “robustness-control” parameter α
by a step-size τ to change the weight function, i.e., α(t) =
α(t−1) − τ .

Compared with traditional IRLS, our proposed adaptive IRLS
has one more step of α update. Along with iterations, this step
changes the cost function and increases robustness. As can be
seen, our adaptive IRLS has the same time complexity with
traditional IRLS. If the WLS optimization in Variable update
costs O(n) time. Then, the complexity of the proposed robust
estimation method is O(n).

3. APPLICATIONS

3.1 Line Fitting

The goal of this problem is to fit a 2D straight line from outlier-
contaminated points {(xi, yi)}n1 . The 2D line model F is,

yi = F(xi, δ) = axi + b (12)

where δ = (a, b). Then, the residual ri = (yi − axi − b) and
the weight function of our model for line fitting is,

w(xi, yi, α, β) =


β2

β2+(yi−axi−b)2
α = 0(

1 +
(
yi−axi−b

β

)2
)α

2
−1

α 6= 0

(13)

3.2 Image Feature Matching

Invoking the image feature matching problem, our goal
is to eliminate mismatches from initial correspondences
{(xi,yi)}ni=1 that are extracted from an image pair (I1, I2),
where xi, yi ∈ R2. We choose affine transformation to
model the relationship between (I1, I2), i.e., estimating an af-
fine model F : R2 → R2 that aligns I1 and I2,

yi = F(xi, δ) = Axi + t (14)
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where δ = (A, t), A is a 2 × 2 affine matrix, and t is a 2 × 1
translation vector. In this problem, ri =‖ yi− (Axi+ t) ‖ and
the weight function used in Algorithm 1 becomes,

w(xi,yi, α, β) =


β2

β2+‖yi−(Axi+t)‖2
α = 0(

1 +
(
‖yi−(Axi+t)‖

β

)2
)α

2
−1

α 6= 0

(15)

3.3 Image Orientation

The goal of exterior orientation is to recover the image pose
from n contaminated 3D-2D correspondences {(Qi,pi)}n1 ,
where {Qi}n1 are 3D object points and {pi}n1 are their 2D coun-
terparts on the image. Assume camera internal parameters are
provided by matrix K, then, Qi can be projected onto pi by
camera projection model,

pi = F(Qi, δ) =
P1:2

[
Qi 1

]T
P3

[
Qi 1

]T (16)

where P = K[R,T ] is the camera projection matrix (Pj(j =
1, 2, 3) is the j-th row of P), R is a 3×3 rotation matrix, T is
a 3×1 translation, and δ = (R,T ). The weight function for
exterior orientation is,

w(Qi,pi, α, β) =


β2

β2+‖pi−F (Qi,δ)‖2
α = 0(

1 +
(
‖pi−F (Qi,δ)‖

β

)2
)α

2
−1

α 6= 0

(17)

3.4 Point Cloud Registration

In the point cloud registration problem, we aim to estimate a
rigid transformation that merges a point cloud pair (H1,H2)
in the same coordinate system. Given a set of 3D initial cor-
respondences {(Xi,Yi)}n1 that is extracted from (H1,H2), the
model F for registration problem is,

Yi = F(Xi, δ) = RXi + T (18)

where δ = (R,T ), R is a 3D rotation matrix, and T is a 3×1
translation vector. Then, the weight function for point set regis-
tration is,

w(Xi,Yi, α, β) =


β2

β2+‖Yi−(RXi+T )‖2 α = 0(
1 +

(
‖Yi−(RXi+T )‖

β

)2
)α

2
−1

α 6= 0

(19)
Note that if we add a scale factor s in Eq. (18), the problem
becomes an absolute orientation problem.

4. EXPERIMENTS AND EVALUATIONS

This section evaluates the proposed robust model on both sim-
ulated and real experiments. We compare our method with
Cauchy M-estimator, Welsch M-estimator, RANSAC, FLO-
RANSAC, Q-norm estimator, and MAGSAC++ on line fit-
ting, feature matching, image orientation, and point set regis-
tration tasks. We use root-mean-square error (RMSE), success
rate, and running time for quantitative evaluations. Table 1
summarizes parameter and implementation information of each
method. All experiments are performed on a laptop with CPU
Core i7-8550U @ 1.8GHz, and 8 GB of RAM.

(a) Success rate (b) Number of iterations

Figure 3. Feature matching results of the proposed model with
different values of τ .

Method Parameter Implementation

Cauchy Tuning constant: 2.385; MI: 100. MATLAB
http://rosa.unipr.it/fsda.html

Welsch Tuning constant: 2.985; MI: 100. MATLAB
http://rosa.unipr.it/fsda.html

RANSAC
Subset size: 3;

confidence: 0.99; MI: 104.
MATLAB

https://www.peterkovesi.com

FLO-
RANSAC

Subset size: 3;
confidence: 0.99; MI: 104;

local optimized (LO) size: 21.

MATLAB
https://zhipengcai.github.io/

Q-norm
q: 0.5; step size: 1.65;

initial penalty: 10−4; MI: 100.
MATLAB

https://github.com/LJY-RS

MAGSAC++
Subset size: 3;

confidence: 0.99; MI: 104;
maximum threshold: 10σ.

C++
https://github.com/danini/magsac

Our method τ : 0.2; β: 10; MI: 100. MATLAB
https://ljy-rs.github.io/web

Table 1. Detailed settings of the compared methods (MI repres-
ents maximum number of iterations)

4.1 Parameter τ Study

Parameter τ is important for the proposed model. We conduct
a simulated feature matching experiment to study the sensit-
ivity to τ . The simulation details are as follows: Given the
number of observations n and an outlier rate η, the size of in-
liers n1 is computed by n1 = n ∗ (1 − η). We first randomly
generate n1 2D feature points X1 = {xi}n1

1 by using a nor-
mal distributionN (0, 5002). Then, we obtain their correspond-
ences Y1 = {yi}n1

1 via transformation yti = Atxi + tt, where

At =

[
sx cos θ sx sin θ
−sy sin θ sy cos θ

]
and tt =

[
tx
ty

]
. The rota-

tion angle θ ∈ (−π
2
, π
2

), anisotropic scales sx, sy ∈ (0.5, 1.5),
and translations tx, ty ∈ (−500, 500) are all randomly gener-
ated. We also add Gaussian noise N (0, 22) to Y1 to make the
simulation realistic, obtaining an inlier set H1 = (X1,Y1). Fi-
nally, two sets of points with the same size n2 = n − n1 are
generated based on a normal distribution N (0, 5002) to obtain
the outlier set H2 = (X2,Y2). The inlier set and outlier set are
merged to obtain the outlier-contaminated feature correspond-
ences {(xi,yi)}ni=1. In our experiment, we set n1 = 1000 and
r = {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}. For
each (n1, η) configuration, we perform 100 independent tests
and report the average results. In a test, if the RMSE of a
method is smaller than triple of the noise level (σ = 2 in this
experiment), this estimation is successful. Thus, the definition
of success rate is the ratio of successful estimation times in 100
independent tests.

Figure 3 shows the results of the proposed method with differ-
ent τ . If the outlier rate is lower than 80%, our model is not
sensitive to τ . It achieves impressive performance when τ is
within [0.05 0.5], i.e., the success rate are always close to 100%
(Figure 3(a)). However, larger τ results in worse performance
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(a) Success rate


(b) RMSE


(c) Running time

Figure 4. Comparison of line fitting results on the simulated data.



(a) Success rate



(b) RMSE



(c) Running time

Figure 5. Comparison of feature matching results on the simulated data.

when τ > 80%. We also report the required number of itera-
tions. As can be seen in Figure 3(b), smaller τ requires more
iterations for convergence and costs more time. Thus, we make
a trade-off and fix τ = 0.2 for all following experiments.

4.2 Line Fitting Experiment

The simulation process is similar to the one in Section 4.1. The
differences are that the observations are 2D points {(xi, yi)}n1
and the transformation is yi = atxi + bt, where the slope angle
is generated within arctan(at) ∈ (−π

2
, π
2

) and the offset is
within bt ∈ (−100, 100). The standard deviation of Gaussian
noise is σ = 1. The results are summarized in Figure 4.

As shown, M-estimators (Cauchy and Welsch) work well at low
outlier rates (r ≤ 50%). However, their performances dra-
matically drop if the outlier rate r is larger than 50%. Thus,
their success rate curves show a “cliff-like drop”. Q-norm
estimator performs much better than M-estimators. It is ro-
bust against 70% outliers. Compared with abovementioned es-
timators, RANSAC-type methods (RANSAC, FLO-RANSAC,
and MAGSAC++) and our method can deal with 90% out-
liers. Their success rates are always 100%. RANSAC and
FLO-RANSAC have slightly lower estimation accuracies (lar-
ger RMSE) than MAGSAC++ and our method, since they only
estimate an approximate solution. Although MAGSAC++ is
also a RANSAC variant, it uses multiple strategies such as a M-
estimation stage to refine the model obtained by the RANSAC-
like stage. Our method is much faster than MAGSAC++, e.g.,
60+ times faster at an outlier rate of 90%, even though MAG-
SAC++ is implemented in C++.

4.3 Feature Matching Experiment

Simulation: The simulation process is the same as the one in
Section 4.1. Figure 5 reports the results. Again, M-estimators
breakdown at an outlier rate of 50%. The reason is that M-
estimators use median absolute deviations (MAD) for residual
scale estimation. The median operator only considers half of the
observations and gets inaccurate residual scale when the outlier
rate is higher than 50%. In this task, our method is still very
robust although the performance slightly decreases when outlier
rate reaches 90%. Compared with RANSAC-type methods, our
main advantages are two-fold: First, our model is much more
efficient. For example, our method is about 90 times faster than
MAGSAC++ at an outlier rate of 80%. Second, our method is
suitable for residual adjustment, since adaptive IRLS is almost
the same as traditional IRLS. As known, M-estimators solved
by IRLS are used in bundle adjustment for outlier removal. Our
method can also be extended for multi-image feature matching
problem, which will be our future work.

Real data: Six real multimodal image pairs are used for eval-
uation. We apply radiation-variation insensitive feature trans-
form (RIFT) (Li et al., 2020a) algorithm to extract initial feature
correspondences. The lowest outlier rate η of these image pairs
is 69.8% and the highest one is 96.5% due to severe nonlinear
radiation differences. Figure 6 shows our matching results. The
RMSEs are smaller than 2 pixels. The average running time is
only 4 ms while MAGSAC++ costs 176 ms.

4.4 Image Orientation Experiment

Simulation: Given camera internal parameter matrix K, we
first randomly generate n 3D image space points {Qc

i}n1 inside
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n =1420,  =96.5%, Time=0.005s, RMSE=1.78 n =1588,  =77.2%, Time=0.006s, RMSE=1.59 n =1369,  =69.8%, Time=0.004s, RMSE=1.95 

(a) visible-visible (b) infrared-visible (c) SAR-visible 

n =1129,  =92.0%, Time=0.003s, RMSE=1.93 n =873,  =80.0%, Time=0.002s, RMSE=1.86 n =847,  =93.1%, Time=0.004s, RMSE=1.81 

(d) depth-visible (e) map-visible (f) night-day 

Figure 6. Our matching results on six different types of multimodal image pairs. n is the size of initial correspondence set, η is the
outlier rate of initial correspondences. Each line represents a feature correspondence.



(a) Success rate



(b) RMSE



(c) Running time

Figure 7. Comparison of image orientation results on the simulated data.

are 20 percent and 16.7 percent, respectively.) whose range is 
the maximum range of the all 3D-to-2D correspondences (the 
range of the image projections is almost as large as the image 
size). The average RMSEs (reprojection error) of 100 indepen-
dent tests of our LqPnP are 1.292 and 1.571 pixels, respec-
tively, while other methods are all failed.

Parameter Study
In the proposed method, parameter q is very important. To 
quantify the sensitivity of the proposed method to parameter 

q, we have performed several studies whose results are 
reported in Figure 7. The configurations of these experiments 
are the same as the ordinary case in the Simulations section. 

As can be seen, parameter q is not sensitive to the number 
of points and Gaussian noise levels (Figure 7a and Figure 7b). 
The performances are similar when varying the parameter q 
from 0.1 to 0.9. In contrast, parameter q is very sensitive to 
outliers. The best performances are achieved when q is set to 
be 0.5 and 0.6 (Figure 7c). Either small values or large values 
of q will decrease the accuracy and stability of the proposed 

(a) (b)

Figure 6. The aerial images used in this experiment. The red circles in the images are control points measured by GPS-RTK. 
(Figure 6a has been rotated for better visualization): (a) Image 1: captured by central camera of SWDC, and (b) Image 2: cap-
tured by an oblique camera of SWDC.

Table 2. The Experimental Results of the First Image

Methods φ/degree ω/degree κ/degree Xs (m) Ys (m) Zs (m) RMSE(pixels) True/False

LHM -11.980 5.955 -20.396 -154.344 -39.414 -631.589 44.205 False

EPnP+GN -3.4360 0.987 -19.807 19.2890 37.5730 650.269 1.991 True

RPnP -16.676 3.508 -19.820 -205.987 -10.504 -617.843 46.092 False

DLS -13.530 5.674 -20.374 -171.509 -35.707 -627.129 43.659 False

OPnP -13.936 5.636 -20.350 -176.032 -35.127 -626.105 43.623 False

ASPnP -12.845 6.530 -20.679 -164.067 -45.641 -628.751 44.271 False

SDP -13.880 5.539 -20.329 -175.342 -34.055 -626.055 43.644 False

PPnP -13.881 5.539 -20.329 -175.348 -34.050 -626.053 43.644 False

EPPnP -11.291 6.036 -19.331 -148.154 -40.922 -640.069 62.728 False

REPPnP -11.291 6.036 -19.331 -148.154 -40.922 -640.069 62.728 False

LqPnP -3.2230 0.582 -19.785 16.864 32.822 650.592 0.617 True

PATB -3.2100 0.545 -19.802 16.740 32.820 650.599 1.051 True
Note that PATB is a commercial software for bundle adjustment.

Table 3. The Experimental Results of the Second Image

Methods φ/degree ω/degree κ/degree Xs (m) Ys (m) Zs (m) RMSE(pixels) True/False

LHM -19.033 41.645 63.137 -154.344 -39.414 -631.589 256.238 False

EPnP+GN 17.927 -44.755 -117.56 658.171 161.18 646.314 2.546 True

RPnP -19.246 41.624 63.062 627.541 190.293 -684.325 256.902 False

DLS -19.537 43.031 62.86 640.381 186.995 -663.044 257.031 False

OPnP -19.716 42.911 62.702 647.656 192.066 -672.89 256.515 False

ASPnP -19.400 42.880 62.312 639.621 186.035 -665.693 256.566 False

SDP -20.3985 44.0064 62.27 646.752 191.336 -643.662 259.937 False

PPnP -20.399 44.007 62.27 646.752 191.336 -643.66 259.937 False

EPPnP 5.433 3.832 59.196 49.547 -101.967 -705.835 1585.296 False

REPPnP 5.433 3.832 59.196 49.547 -101.967 -705.835 1585.296 False

LqPnP 17.964 -44.673 -117.563 657.875 162.093 647.846 0.678 True

PATB 17.99 -44.699 -117.577 657.718 162.188 646.999 1.192 True
Note that PATB is a commercial software for bundle adjustment.
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(a) Central image
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(Figure 6a has been rotated for better visualization): (a) Image 1: captured by central camera of SWDC, and (b) Image 2: cap-
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OPnP -13.936 5.636 -20.350 -176.032 -35.127 -626.105 43.623 False

ASPnP -12.845 6.530 -20.679 -164.067 -45.641 -628.751 44.271 False

SDP -13.880 5.539 -20.329 -175.342 -34.055 -626.055 43.644 False

PPnP -13.881 5.539 -20.329 -175.348 -34.050 -626.053 43.644 False

EPPnP -11.291 6.036 -19.331 -148.154 -40.922 -640.069 62.728 False

REPPnP -11.291 6.036 -19.331 -148.154 -40.922 -640.069 62.728 False

LqPnP -3.2230 0.582 -19.785 16.864 32.822 650.592 0.617 True

PATB -3.2100 0.545 -19.802 16.740 32.820 650.599 1.051 True
Note that PATB is a commercial software for bundle adjustment.
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(b) Oblique image

Figure 8. Aerial images for real image orientation experiment.
Red circles are correct correspondences, whose 3D control points
are measured by GPS-RTK technique and 2D image points are
manually picked.

a box [-8, 8] × [-8, 8] × [8, 16]. Their corresponding object
space points are obtained by Qi = (Rt)−1(Qc

i − T t), where
the rotation matrix Rt and translation vector T t are randomly
generated. Then, the object space points are projected onto the

image via di
[
pti 1

]T
= KQc

i , where di is the depth and

pti is the image correspondence of Qi. The Gaussian noise
with 1-pixel deviation is added to

{
pti
}n
1

. Finally, n2 image

points are selected to add errors (outliers), obtaining observed
image points {pi}n1 . {(Qi,pi)}n1 are the contaminated 3D-2D
correspondences. We use Gauss-Newton method in the WLS
optimization to solve the nonlinear image orientation problem.
It requires initialization for rotation and translation parameters.
We obtain initial rotation angles by adding a random disturb-
ance between [-10°, 10°] to the ground truth and generate initial
translations between [70% × T , 130% × T ]. For fairness, this
initialization is adapted for all compared methods. The image
orientation results are displayed in Figure 7. With appropri-
ate initializations, our method achieves 100% success rate at
an outlier rate of 90% and performs better than RANSAC-type
methods in terms of RMSE.

Real data: We use two aerial images (see Figure 8) for evalu-
ation, which are obtained over the Pingdingshan City, Henan,
China. The left image is captured by the central camera of
SWDC system with a focal length of 12102.1 pixels and a size
of 5406×7160 pixels and the right one is acquired by an ob-
lique camera with a focal length of 14671.5 pixels and a size
of 7160×5406 pixels. We measured 24 (contains 12 inliers)
and 75 (contains 15 inliers) 3D-2D correspondences for Figure
8(a) and Figure 8(b), respectively. The inliers are displayed as
red circles in the figure. The initializations (three rotation angle
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Method Image ID ϕ (°) ω (°) κ (°) Xs (m) Ys (m) Zs (m) RMSE (pixels) TIME (s)

Initial guesses
1 0 0 0 0 0 500 – –
2 0 0 -30 0 0 500 – –

PATB
1 -3.21 0.54 -19.80 16.74 32.82 650.60 1.05 –
2 17.99 -44.69 -117.58 657.72 162.19 646.99 1.19 –

Our method
1 -3.22 0.58 -19.78 16.85 32.77 650.59 1.00 0.02
2 17.96 -44.67 -117.56 657.84 162.09 647.89 1.05 0.02

Table 2. The image orientation results on two large-scale real images.



(a) Success rate



(b) RMSE



(c) Running time

Figure 9. Comparison of point set registration results on the simulated data.

n =9022,  =99.2%, RMSE=0.14   n =4985,  =97.2%, RMSE=0.15  n =15699,  =99.5%, RMSE=0.16   n =5201,  =96.4%, RMSE=0.11 

(a) Arch (b) Facade (c) Trees (d) Courtyard 

n =1420, r =96.5%, Time=0.005s, RMSE=1.78 n =1588, r =77.2%, Time=0.006s, RMSE=1.59 n =1369, r =69.8%, Time=0.004s, RMSE=1.95 

Figure 10. Our 3D matching results on four LIDAR scan pairs. n is the number of initial 3D correspondences and η is the outlier rate
of initial correspondences. Each line represents a 3D correspondence.

parameters [ϕ, ω, κ] and three location parameters [Xs, Ys, Zs])
and results are reported in Table 2. As shown, our results are
very close to the ones obtained by the commercial software
PATB with only inlier correspondences. Although the outlier
rate of the second image is 80%, the proposed method still
achieves an accuracy of 1.05 pixels.

4.5 Point Cloud Registration Experiment

Simulation: The simulation process is similar to the one in Sec-
tion 4.1. The 3D points are generated by a normal distribution
N (0, 1002). The rotation angles are randomly generated within
(−π

2
,−π

2
) and translations are generated within (−100, 100).

The noise level is 0.1m. Figure 9 provides the comparison res-
ults. Again, our method and MAGSAC++ achieve the highest
accuracies, including success rate and RMSE. Our method is
much faster than MAGSAC++. We note that the efficiency of
MAGSAC++ becomes slow when the estimated model is com-
plicated, such as in this task and image orientation task.

Real data: Four LIDAR scan pairs are collected from the

ETH dataset1 (ground truth transformation of each scan pair is
provided) for evaluation. The resolution of these point clouds
is downsampled to 0.1m. We use ISS (Zhong, 2009) feature
detector and FPFH (Rusu et al., 2009) descriptor to establish
initial 3D correspondences. 3D feature matching is much more
difficult than its 2D counterpart. Therefore, the outlier rates
of the initial 3D correspondences are very high (> 96% in
these scan pairs). We first use an edge voting strategy (Li et
al., 2020b) to filter some outliers before applying the proposed
method for rigid model estimation. The 3D matching results are
shown in Figure 10. The registration accuracy of our method is
better than 0.2m (twice of the resolution).

We also show the potential of the proposed method in 3D laser
SLAM task. We use three sequences of KITTI dataset2 (with
ground truth) for evaluation. Sequence 5 consists of 2761 laser

1 https://prs.igp.ethz.ch/research/completed projects/automatic registrat
ion of point clouds.html

2 http://www.cvlibs.net/datasets/kitti/eval odometry.php
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Number of scans: 2761                        Number of scans: 1101                             Number of scans: 1101 

Trajectory length: 2210m                      Trajectory length: 1236m                           Trajectory length: 694m 

Localization error: 0.45%                      Localization error: 0.41%                           Localization error: 0.38% 

          (a) KITTI sequence 5                         (b) KITTI sequence 6                              (c) KITTI sequence 7 

 
Figure 11. Our laser odometry results on the KITTI dataset. The color of point clouds is rendered by height. The black line inside each
subfigure is the estimated trajectory of the vehicle.

scans; sequence 6 and 7 contain 1101 laser scans. For each se-
quence, we regard every 20 consecutive scans as a group. First,
each group is registered by our method to obtain a submap.
Then, we register consecutive submaps based on our method
to get the whole scene map. We use the translational error (loc-
alization error) of KITTI as the evaluation metric. The recon-
structed 3D scene maps and the estimated trajectories of the
vehicle are displayed in Figure 11. The localization accuracy
of our laser odometry is better than 0.5% on these three laser
sequences.

4.6 Limitations

Our method relies on an assumption that outliers are randomly
distributed or approximately uniform distributed. If this as-
sumption is violated, our method may fail. Thus, our method is
not suitable for cases with multiple geometric models.

5. CONCLUSIONS

We proposes a general objective function by introducing a
“robustness-control” parameter. It is a superset of typical least-
squares, l1−l2, Cauchy, and Geman-McClure costs. We present
an adaptive IRLS for optimization. It uses different weight
functions in iterations and has different degrees of robustness.
We also provide the applications to several important tasks of
robot vision and photogrammetry. Extensive simulated and real
experiments demonstrate that our model is robust to more than
80% outliers and is much faster than RANSAC-type methods.
We will integrate our robust model in visual and laser SLAM
systems in the future.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (NSFC) (No. 41901398).

REFERENCES

Barath, D., Noskova, J., Ivashechkin, M., Matas, J., 2020. Mag-
sac++, a fast, reliable and accurate robust estimator. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 1304–1312.

Chin, T.-J., Suter, D., 2017. The maximum consensus problem:
recent algorithmic advances. Synthesis Lectures on Computer
Vision, 7(2), 1–194.

Fischler, M. A., Bolles, R. C., 1981. Random sample con-
sensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Communications of
the ACM, 24(6), 381–395.

Holland, P. W., Welsch, R. E., 1977. Robust regression using
iteratively reweighted least-squares. Communications in Stat-
istics - Theory and Methods, 6(9), 813-827.

Huber, P. J., 2004. Robust statistics. 523, John Wiley & Sons.

Lebeda, K., Matas, J., Chum, O., 2012. Fixing the locally op-
timized ransac–full experimental evaluation. British Machine
Vision Conference, Citeseer, 1–11.

Li, J., Hu, Q., Ai, M., 2016. Robust feature matching for
remote sensing image registration based on L {q}-estimator.
IEEE Geoscience and Remote Sensing Letters, 13(12), 1989–
1993.

Li, J., Hu, Q., Ai, M., 2020a. RIFT: Multi-modal image match-
ing based on radiation-variation insensitive feature transform.
IEEE Transactions on Image Processing, 29, 3296–3310.

Li, J., Zhao, P., Hu, Q., Ai, M., 2020b. Robust point cloud re-
gistration based on topological graph and Cauchy weighted lq-
norm. ISPRS Journal of Photogrammetry and Remote Sensing,
160, 244–259.

Mittal, S., Anand, S., Meer, P., 2012. Generalized projection-
based M-estimator. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(12), 2351–2364.

Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.-M.,
2012. USAC: a universal framework for random sample con-
sensus. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8), 2022–2038.

Rusu, R. B., Blodow, N., Beetz, M., 2009. Fast point feature
histograms (fpfh) for 3d registration. IEEE International Con-
ference on Robotics and Automation, 3212–3217.

Zhong, Y., 2009. Intrinsic shape signatures: A shape descriptor
for 3d object recognition. IEEE International Conference on
Computer Vision Workshops, 689–696.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2021-137-2021 | © Author(s) 2021. CC BY 4.0 License.

 
144


	INTRODUCTION
	OUR ROBUST MODEL
	Motivation
	Cost Function
	Main Algorithm

	Applications
	Line Fitting
	Image Feature Matching
	Image Orientation
	Point Cloud Registration

	EXPERIMENTS AND EVALUATIONS
	Parameter  Study
	Line Fitting Experiment
	Feature Matching Experiment
	Image Orientation Experiment
	Point Cloud Registration Experiment
	Limitations

	CONCLUSIONS



