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ABSTRACT:

In this work, we propose an approach for an autonomous agent that learns to navigate in an unknown map in a real-world environ-
ment. Recognizing that the real-world environment is changing overtime such as road-closure happening due to construction work,
a key contribution of our paper is adopt the dynamic adaptation characteristic of the reinforcement learning approach and develop
a dynamic routing ability for our agent. Our method is based on the Q-learning algorithm and modifies it into a double-critic Q-
learning model (DCQN) that only uses visual input without other aids such as GPS. Our treatment of the problem enables the agent
to learn the navigation policy while interacting with the environment. We demonstrate that the agent can learn navigating to the
destination kilometers away from the starting point in a real world scenario and has the ability to respond to environment changes
while learning to adjust the routing plan dynamically by adjusting the old knowledge. The supplementary video can be accessed at
the following link: https://www.youtube.com/watch?v=tknsxVuNwkg.

1. INTRODUCTION

With the introduction of deep reinforcement learning (DRL) in
recent years, robotics field has started to widely use it. For robot
navigation problem, the majority of research demonstrate that
DRL agents can learn to navigate in confined and known vir-
tual indoor environments such as AI2THOR and Gibson (Zhu
et al., 2016) (Xia et al., 2018), maze (Mirowski et al., 2016) and
3D games (Lample and Chaplot, 2016). In contrast to the vir-
tual environment, navigation in the unknown real-world envir-
onment has following characteristics: (1) constantly changing
environment (2) complicated scenarios (3) irregular trajectories
(4) large scale setups and (5) unknown map. Hence, training
an agent for real world navigation problem is computationally
more demanding. In this work, we propose a reinforcement
learning method with replay buffer to store all the learned envir-
onment information and enable the agent to extract experience
from the buffer to accelerate the learning progress in the case
environment dynamically changes.

We investigate two tasks in this paper: (1) long-range real-
world navigation in an unknown map; (2) dynamic rerouting
due to changes in the environment. For the navigation task,
we train the agent to traverse to a target destination using only
visual observations similar to that of a human that can learn to
find the destination by only observing immediate surroundings.
The agent exploits an action policy that rewards reaching the
destination while interacting with the environment. Compared
with most state-of-art research, our primary contributions is to
apply DRL approach to a real-world dynamic routing naviga-
tion problem in an unknown map. We show that the agent can
learn new skills without forgetting the old knowledge while ad-
apting to the changes in the environment which is considered
a dynamic learning process. To evaluate the feasibility of the
dynamic routing task, we modify the map by closing access to
roads and let the agent relearn to reach to the destination based

on the experience.

Training an agent in a DRL framework requires an interactive
environment which is not provided in typical dataset collection
techniques. To this end, we made an environment based on (Zhu
et al., 2016) approach that enables the agent to freely move and
rotate to collect observations of various real street scenes.

We propose DCQN method for these tasks. Our experiments
demonstrate that the agent can swiftly learn the navigation task
and reroute without knowing the map. We also compare DCQN
with target-driven visual navigation algorithm (Zhu et al., 2016)
and show that DCQN is significantly faster than the target-driven
actor-critic algorithm.

2. RELATED WORK

In this section, we provide a brief overview of related research
in the areas of DRL and navigation using DRL.

Deep reinforcement learning. DRL consists of model-free RL
and model-based RL. For model-free RL, (Mnih et al., 2013)
propose the most famous Q-Learning algorithm which has been
demosntrated to successfully surpass human performance in an
Atari game. (van Hasselt et al., 2015) address the Q value
overestimation problem with double Q-Learning network. Ad-
ditionally, C51 (Bellemare et al., 2017), and QR-DQN (Dab-
ney et al., 2017) provide alternative value based RL techniques.
Model-free RL includes a policy models such as A2C/A3C (Mnih
et al., 2016), PPO (Schulman et al., 2017) and TRPO (Schul-
man et al., 2015). DDPG (Lillicrap et al., 2019), TD3 (Fujimoto
et al., 2018), SAC (Haarnoja et al., 2018) that are considered
advanced techniques based on both policy optimization and Q-
Learning.

DRL navigation. Recently, navigation research based on RL
have shown some promising results that can train agents in
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simulated small indoor environments for short trajectories (Zhu
et al., 2016). (Chang et al., 2017) , (Anderson et al., 2017),
(Bruce et al., 2017), (Mo et al., 2018). The inherent problem of
these simulated virtual environments (Dosovitskiy et al., 2017),
(Kolve et al., 2017), (Shah et al., 2017), (Wu et al., 2018) is
that the scenes tend to lack diversity and are visually simple. In
our work, we use real world environment that consists of ve-
getation, moving vehicles and buildings which is diverse and
real.

3. ENVIRONMENT

In this section, we introduce the CampusNav environment we
have generated for the navigation and dynamic routing task.
The environment is necessary for repeatability and testing of
the algorithm. We should note that the algorithm can run when
the agent is placed in an new unknown area. CampusNav spans
the Ohio State University campus and surrounding region with
a total area of 4.5 km2 (see Fig. 1(a)). While constructing the
map graph (see Fig. 1(b)), we extracted road network as a graph
composed of edges and nodes at the intersections. We note that
similar data can also be obtained from google street side im-
ages. The CampusNav dataset is available at: https://github.com/
superhan2611/dynamic-routing.

(a) (b)

(c) (d)

Figure 1. CampusNav covers a range of 2.5km x 1.7km, we
illustrate the road network as an undirected graph. The image

data is collected by iPhone placed on a moving car.

The CampusNav environment is built based on the approach
proposed by (Zhu et al., 2016) and contains the following in-
formation:

Location. The locations are the coordinates of the intersection
positions. We select 101 intersections in the test area to collect
image data. These locations form the nodes of an undirected
graph covering an area of 2.5km x 1.7km. The agent takes ob-
servations and performs action at these locations.

Observation. The observations are the RGB images collected
by iPhones placed on the top of the moving vehicle (see Fig.
1(c)). The agent observes all four orientations, north, south,
east and west (see Fig. 2) to decide on an action. The raw image
resolution is set at 640×480. We use the ImageNet pretrained
ResNet-50 (He et al., 2015) to produce 2048-d features as the
input of state in the training process.

State-action transition graph. Reinforcement learning requires
the agent to interact with the environment. This interactive pro-
cess contains a sequence of actions and corresponding state ob-
servations (s1, a1, ..., aN−1, sN ). To this end, the state-action
transition graph are used to store the state-action transition in-
formation of the environment. Although the graph is used to
construct the environment, the agent only sees the acquired im-
age at the particular location without knowing other information
in the navigation process.

Figure 2. Discrete locations and agent’s observations at each
position

4. METHODOLOGY

This section formulates the problem and specifies the algorithm
architecture for these tasks required in an RL framework.

4.1 Problem Formulation

The goal of this paper is to teach the autonomous agent the skill
to navigate to the destination starting from arbitrary location
with the minimum action steps using the images of the scene as
vehicle moves. Additionally, the agent is taught the ability to
dynamically reroute depending on the changes to the road net-
work. In our model, we take the image that the agent sees as the
state input. The target scene is specified by another image. The
output is the action that the agent takes such as move forward,
move back, turn right and turn left depending on the policy π
learned by the agent.

We formulate the learning problem as a Markov Decision Pro-
cess (MDP) and implement the RL framework. The key ele-
ments of RL are state, action space and task reward. The agent
uses visual odometry and has two inputs: the ResNet-50 fea-
tures extracted from the images from the agent’s current state st
and the target scene gt. To find the spatial arrangement between
the current and target locations, we project them into the same
embedding space represented as embedding fusion input in Fig.
3(a), so that the view-geometric relations are preserved and
a joint representation of current state and the target scene are
formed and used as the input of the DRL algorithm.

The navigation task that takes one of the four actions is per-
formed on an irregular grid unlike an indoor environment (see
Fig. 1(b)). Hence, we define a range of directional represent-
ations for the actions. In particular, move forward represents
moving in any direction between −22.5◦ and 22.5◦, moving
backward between 67.5◦ and −67.5◦, turning right between
22.5◦ and 67.5◦, and finally turning left between −22.5◦ and
−67.5◦.
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(a) (b)

Figure 3. (a) The outline of the network architecture, the
ResNet-50 are pre-trained on ImageNet. (b) Schematic

illustration of the critic network. The ResNet-50 extracts feature
from the original image.

For the reward design, since our goal is to minimize the ac-
tion sequence length to navigate to the target, we consider three
situations: reward for reaching the goal (1.0) upon task comple-
tion, time penalty (-0.005) to encourage shorter trajectory and
collision (-0.01) to avoid hitting objects.

4.2 Double Critic Deep Q-Learning Model

Arguably, the navigation task can be considered as a Markov
Decision Process, with state space S and action spaceA. In our
problem, the environment is an unknown geographic area and
the state space S is finite. We consider navigation task as an
off-policy learning process and let the autonomous agent learn
the policy based on experience instead of exploring the envir-
onment for collecting experience, which is a less efficient and
time consuming task. To this end, we store the past traversed
environment information: state, action, next state and immedi-
ate reward as the agent’s experience et = (st, at, rt, st+1) at
each time-step t in a replay buffer and implement the deep Q-
Learning algorithm. The drawback of traditional Q-Learning
is that it overestimates action values under certain conditions.
Therefore, we introduce a trivial modification and propose a
DCQN model to reduce over estimations. Similar to the Double
Q Learning approach (van Hasselt et al., 2015), it is the progress
towards finding general solutions rather than a deterministic se-
quence of steps that would be less robust.

To achieve this, we build two pairs of target-critic networks.
Similar to the usual Deep Q Learning, the target networks share
the same parameter with the corresponding critic network and
are only periodically updated. Under a given policy, the critic
(Q) function with action a at state s

Qπ(s, a) = E[rt+γrt+1+γ
2rt+2+...|st = s, at = a, π] (1)

is parameterized using the two full-connected layers of the per-
ceptron shown in Fig. 3(b).

The goal of the agent is to select the action that maximizes the
critic function at each time step t after making an observation(s).
This is followed by taking the optimum action(a). In each
learning episode, we draw samples of experience (s, a, r, s′)
from the replay buffer at random drawn from a uniform distribu-
tion. The critic network generates theQ value of the policy π =
P (a|s). The theoreticalQ value should be r+γmaxa′Q′(s′, a′)
and maxa′Q′(s′, a′) is calculated by the target network. In this
paper, we propose two target and critic networks and choose
the minimum value generated by these two networks as the tar-
get Q′ value to avoid overestimating problem. The Q-Learning

updates the network parameters using the temporal-difference
with the loss function given as follows:

Li(θi) = E(s,a,r,s′)[(r + γmaxa′Q(s′, a′; θ−i )−Q(s, a; θi))
2]

(2)
The two critic networks are updated according to the TD error.
After a certain number of episodes, the target network is also
updated using the parameters of corresponding critic network.
The learning structure is shown in Fig. 4.

Figure 4. Schematic illustration of Double Critic Deep Q
learning model.

5. EXPERIMENTS

In this section, we implement the DCQN model for the nav-
igation and dynamic routing tasks. We first show our agent’s
capability to navigate in a real campus environment and then
demonstrate its performance as it responds to the changes in
the environment. We also compare our model with the target-
driven AC model (Zhu et al., 2016) on the navigation task in
AI2-THOR simulated indoor environment.

5.1 Experimental setup

We randomly initialize the weights of the two critical networks.
The input is the ResNet-50 extracted features from 640x480
raw image. All experiments are conduct on a NVIDIA Titan V
using Pytorch with Adam optimizer. While training the critic
networks, we use learning rate η = 10−4 and discount rate
γ = 0.95 in equation (1) and (2). The size of the replay buffer
is 412.

5.2 General Navigation in CampusNav Environment

In our experiments performed in the CampusNav environment,
we observe that the agent trained with the DCQN successfully
learns the navigation task. For this task, we investigate two dif-
ferent agent architectures: single-target (singleNav) and multi-
target (multiNav). The single-target agent is trained with one
specific goal while the multi-target agent is trained with mul-
tiple goals simultaneously (see goal settings from Table 1). The
training progress for both agents are shown in Fig. 5. In the rest
of the discussion, the rewards in figures indicate the cumulative
rewards computed at each episode as the agent reaches the des-
tination. As shown in Fig. 5 the agent trained with single target
converges faster and is more stable than the one trained with
multiple targets. However, after certain number of episodes,
the multi-target agent finds the same goal as the single-target
agent and has stronger navigation ability as it is trained with
multiple goals.

For testing repeatability, we rerun the experiment for 100 epis-
odes and plot the number of steps the agent took to reach the
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Figure 5. Training curves tracking the agent’s episode reward.

singleNav multiNav
Dreese Lab Dreese Lab

Town house
Cinema

Intramural fields

Table 1. Training goal settings

destination. Fig. 6(a) shows that the multi-target agent is able
to find the target in less than 20 steps and covers all the nodes
on the map which suggests that the agent could reach to the
destination starting from any unknown location on the map.
Within the same training episodes, we observe that there are
some miss-trained points for single-target agent which leads
to an unsuccessful navigation process as the agent only covers
95% of the nodes on the map. Fig. 6(b) visualizes the trajector-
ies of the multi-target navigation with random starting point to
2 different goal destinations.

(a) (b)

Figure 6. Number of steps taken for 100 test episodes and the
resulting trajectories generated for visualization for the

multi-target agent.

5.3 Navigation in a Dynamically Changing Map

A critical experiment for our method is the dynamic routing
task which demonstrates the proposed agent’s ability to adapt
to the continuously changing environment. The change in the
environment are obtained by closing the roads for instance due
to construction. This is represented by updating the state-action
transition graph where value -1 indicates the unreachable to the
next state. By definition, the dynamic routing task requires
learning of the map and the agent is expected to update the
policy in accordance with the changes. Rather than relearn the
whole environment, we focus on constantly adapting the old
agent skills to the changing map. To achieve this goal, our agent
is firstly assigned a goal and trained for single-target navigation
task (result shown in Fig. 7(a)). When the map changes due to
road closure as illustrated in Fig. 7(b), the agent quickly relearn
the policy based on the changes based on past experience.

Figure 8(a) shows the training cumulative rewards earned in
each episode. The performance is stable and the change of the
map doesn’t cause instabilities during training. Each time a
road is closed, the agent is able to update its policy in less than
3 minutes under 300 episodes. In real application, this indicates
that the car could stop and a new solution will be found in few

(a) (b)

Figure 7. (a) The navigation route learned for a single-target
agent. The vehicle and the flag represent the starting point and
the target correspondingly. (b) The stop sign represents road

closure and follows the number order.

minutes. We can see from the process in Fig. 9(a)-9(h), the
light blue trajectory represents the original route while the dark
red trajectory shows the agent’s adaptive rerouted path when the
map changes.

(a)

(b)

Figure 8. (a) Training curves tracking the agent’s episode reward
while closing one road at a time. (b) Training curves tracking the

agent’s episode steps while closing roads simultaneously.

In another experiment, we randomly close 11 roads simultan-
eously at around 8000th episode which can be seen as the pulse
in the plot in Fig. 8(b). After this closure, it is observed that
the learning performance of the agent stabilizes in less than 500
episodes which demonstrates a significantly fast and successful
dynamic learning ability. Since the map becomes complicated
after this significant number of closures, the number of steps
taken to reach the goal in one episode is more than it was be-
fore. Figures 9(i) and 9(l) illustrate examples of the adjusted
route plan compared with former policy.

5.4 Comparative analysis

We introduce a new model, which we refer to as the Double
Critic Q-Learning Network for navigation in unknown and dy-
namically changing maps. To compare the performance of our
DCQN algorithm against a baseline target-driven Actor-Critic
(AC) model given in (Zhu et al., 2016), we conduct experiments
using the AI2-THOR framework. AI2-THOR is a simulated in-
door environment which includes a set of interactive scenes and
provides accurate modeling of the world physics.

We train the model on 14 different target scenes selected from
two sets of indoor environment: bathroom and bedroom. For
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. Agent’s dynamic routing plan regarding to the change of the map

evaluation, we do the navigation task for 100 episodes and set
a maximum number of steps to 200 which means the agent
will give up finding the destination in a particular episode if
it can’t reach it in 200 steps. Throughout the experiment, for
a just comparison of learning efficiencies of the two methods,
we limit the training time to 5 minutes for each target and then
evaluate the learning performance.

Figure 10. Comparison of the DCQN agent with Target-driven
AC agent

Figure 10 provides a comparison of the two models and shows

that the DCQN method outperforms the Target-driven model on
all 14 target navigation tasks. DCQN agent converges faster and
is more stable than the AC agent of (Zhu et al., 2016). With the
same training time, the average step length of AC agent is 4.5
times more than the DCQN agent. We also trained the AC agent
for an additional 15 more minutes, and show in Fig. 10 that the
AC agent improves its performance , yet there is still a big gap
in performance when compared to DCQN model. One possible
reason for surpassing the AC model is we build the replay buffer
which stores the (st, at, st+1, r) pairs based on the state-action
transition graph and train the network according to TD error
which is more efficient than exploring the environment from
the very beginning in AC model.

6. CONCLUSION

We introduced the reinforcement learning approach for autonom-
ous navigation of an agent that can dynamically adapt itself
in changing real-world environments. The agent uses visual
odometry to generate relative trajectory and navigates using a
MDP process and a dynamic learning characteristic of DRL
approach that allows the agent to adjust the navigation policy
as the map changes. Our approach can easily be generalized
to more complicated and continuously changing environments
and maps. We demonstrated the navigation performance of our
approach in large scale real-world environments with multiple
destinations where the environment dynamically changes. We
also showed that the DCQN algorithm outperforms the Target-
driven AC model in commonly used AI2-THOR environment
for indoor navigation problem.
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The limitations of our approach are: (1) Our RL algorithm is
model based and is trained in the certain environment, there-
fore, it is lack of generalization to new environment or unseen
target. (2) We formulate the map as a graph and perform the
RL algorithm at the nodes of the graph with four actions. As
for more complex map, the number of node and action space
will be much larger. Training agent in such an environment
might be time consuming. Future work will involve generaliz-
ing the navigation ability for unseen environment or target and
improving the learning efficiency for more complicated map.
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