
CONVOLUTIONAL NEURAL NETWORKS FOR DETECTING BRIDGE CROSSING
EVENTS WITH GROUND-BASED INTERFEROMETRIC RADAR DATA

M. Arnolda, M. Hoyerb, S. Kellerc

a ci-tec GmbH, 76137 Karlsruhe, Germany - m.arnold@ci-tec.de
b ci-tec GmbH, 76137 Karlsruhe, Germany - m.hoyer@ci-tec.de

c Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany -
sina.keller@kit.edu

Commission I, WG I/3

KEY WORDS: Ground-based Interferometric Radar, Event Detection, CNN, Infrastructure Monitoring, Machine Learning, Time
series classification, Field Campaign, UAV

ABSTRACT:

This study focuses on detecting vehicle crossings (events) with ground-based interferometric radar (GBR) time series data recorded
at bridges in the course of critical infrastructure monitoring. To address the challenging event detection and time series classification
task, we rely on a deep learning (DL) architecture. The GBR-displacement data originates from real-world measurements at two
German bridges under normal traffic conditions. As preprocessing, we only apply a low-pass filter. We develop and evaluate
a one-dimensional convolutional neural network (CNN) to achieve a solely data-driven event detection. As a baseline machine
learning approach, we use a Random Forest (RF) with a selected feature-based input. Both models’ performance is evaluated on
two datasets by focusing on identifying events and pure bridge oscillations. Generally, the event classification results are promising,
and the CNN outperforms the RF with an overall accuracy of 94.7 % on the test subset. By relying on an entirely unknown second
dataset, we focus on the models’ performances regarding the distinction between events and decays. On this dataset, the CNN
meets this challenge successfully, while the feature-based RF classifies the majority of non-event decays as events. To sum up, the
presented results reveal the potential of a data-driven DL approach concerning the detection of bridge crossing events in GBR-based
displacement time series data. Based on such an event detection, a prospective assessment of bridge conditions seems feasible as
an extension to previous structural health monitoring approaches.

1. INTRODUCTION

Bridges are critical infrastructures as they play an essential role
in transportation and traffic. Over time, many bridges’ oper-
ation conditions have changed since, for example, the vehicle
loads have increased. Most bridges have been designed for spe-
cifications different from the current traffic and load conditions.
Therefore, close monitoring and recurrent inspection of bridge
infrastructures are mandatory.

Thus structural health monitoring (SHM), particularly bridge
monitoring, is an important topic in current research stud-
ies (Sun et al., 2020). SHM addresses the monitoring of in-
frastructures with the goal of condition assessment. For this
purpose, bridges are usually equipped with measurement sys-
tems such as acceleration sensors or strain gauge sensors. The
sensor installation, however, inflicts damage, and these meas-
urement systems require regular maintenance. An alternative
approach is to rely on non-invasive measurement systems such
as ground-based interferometric radar (GBR). Furthermore, the
GBR measurement setup is mobile and hence flexible in its use,
since a single radar can be utilized for regular inspections at a
large number of bridges. This makes it an economical alternat-
ive or a practical addition to a conventional sensor installation
at each bridge. GBR measures the displacement of the bridge
in line of sight (LOS), which then can be converted to vertical
displacement (Pieraccini et al., 2006; Michel and Keller, 2020;
Arnold and Keller, 2020). Thus the GBR can capture the bridge
behavior in a displacement time series.

Approaches for assessing the bridge condition respectively

damage detection rely on such measured time series signals.
One commonly applied approach is the Operational Modal
Analysis (OMA). In OMA, the bridge’s modal behavior is ex-
amined without prior knowledge about the system’s input or
the transfer function (Rainieri and Fabbrocino, 2014). Modal
parameters such as the eigenfrequencies of bridges are invest-
igated to achieve damage detection. Changes in these para-
meters can indicate deteriorations within the monitored bridge
structures. When analyzing the structural conditions, strong
bridge responses are necessary. Such responses are stimulated
by crossing vehicles. SHM can (1) detect vehicle crossings
and then, based upon that, (2) apply condition assessment using
these crossings. This study focuses on extracting crossings in
GBR signals, and we refer to these crossings as events.

Arnold and Keller (2020) introduce a feature-based machine
learning (ML) approach to detect events in bridge displacement
data measured with GBRs. Although the proposed approach
performs well in general, decays and events occurring in GBR
data are not distinguished reliably. Decays are strong bridge
oscillations decaying over a period after an event if the bridge
is heavily stimulated. To achieve a more profound event detec-
tion of bridge crossing events, we now propose a data-driven
DL approach without applying any feature extraction before-
hand. We train a Convolutional Neural Network (CNN) solely
on the displacement data extracted from the GBR signal. The
use of a CNN is motivated by the fact that the displacement
data and the grayscale gradients in image edge detection are
similar and image classification is often performed employing
convolution layers (Lawrence et al., 1997; Wang et al., 2019).
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As a baseline, we rely on the best performing feature-based ap-
proach of Arnold and Keller (2020). Labeled measurement data
acquired during several measurement campaigns at two bridges
in Germany is used to evaluate the CNN and feature-based ap-
proach. During these campaigns, we furthermore deploy an un-
manned aerial vehicle (UAV) to gain ground-truth data about
the vehicles on top of the bridge.

The novel contributions of this study are:

• a detailed discussion of the challenges in the event detec-
tion based on GBR displacement data and a demonstration
of the potential of DL approaches to address some of these
challenges;

• an in-depth description of the developed CNN architec-
ture;

• an evaluation of the classification results accomplished by
our purely data-driven CNN, thoroughly compared against
the baseline of a feature-based ML approach;

• a comprehensive application of our approach to entirely
unknown data.

In Section 2, we provide an overview of related work concern-
ing GBR measurements on bridges, CNN time series signal pro-
cessing, and SHM. Section 3 introduces the monitored bridges
and the dataset acquired during GBR measurements. Our meth-
odological approach is described in Section 4 concerning ap-
plied preprocessing steps and the developed CNN model. The
event classification results are presented and evaluated in Sec-
tion 5. We summarize our study in Section 6 and give an out-
look on prospective research aspects.

2. RELATED WORK

In this section, we give a short overview of the relevant research
studies. First, we summarize studies exploiting GBR for bridge
monitoring. Second, selected applications of CNNs focussing
on time series classification and anomaly detection are presen-
ted. Third, the focus is placed on the combination of ML ap-
proaches and bridge deformation data, such as GBR-measured
displacement time series.

Pieraccini et al. (2007) deploy a GBR to measure a bridge in
Florence, Italy, remotely. They evaluate the static and dynamic
measurement capabilities of a GBR. Therefore the GBR scans
the lower side of the bridge, measuring the phase of the reflected
signal while the bridge is being loaded. Focussing on a static
evaluation, they use a locomotive that slowly crosses the bridge,
stopping in the middle for 6 minutes, while remotely and non-
invasively monitoring the displacement along the lower side to
acquire the maximum displacement of the bridge. For dynamic
testing, a truck rapidly crosses the bridge. They are able to
extract modal parameters, such as the eigenfrequency, from the
structural dynamic response to this crossing. To verify the GBR
measurement concept, Gentile and Bernardini (2008) compare
measurement results of a GBR exploiting corner reflectors and
conventional accelerations sensors. In the time domain, a direct
comparison via the velocity is possible. Employing Singular
Value Decomposition (SVD), the eigenfrequencies and mode
shapes are examined. One finding of these studies is that it
is possible to deploy a GBR to measure the bridge displace-
ment. In principle, the GBR needs points with a high reflectiv-
ity for a high signal to noise ratio (SNR), which ensures pre-
cise displacement measurements. However, most of the bridges

are characterized by flat surfaces reducing the amount of sig-
nal backscattered towards the GBR. One option is to install
corner reflectors, which provide a high reflectivity but may in-
flict damage to the bridge. Michel and Keller (2020) evaluate a
non-invasive measurement setup based on GBR without mount-
ing any targets on the bridge’s lower side, called mirror mode.
They place a reflector on the ground opposite of the GBR pos-
ition at the bridge. The measurement setup is verified at a Ger-
man bridge by simultaneously monitoring the bridge with two
GBRs and a profile scanner. One GBR is set up in the mirror
mode, whereas the other GBR measures the vertical displace-
ment component directly. The GBR signal traverses a larger
distance in the mirror mode, reducing the SNR compared to the
standard GBR measurement setup. Nevertheless, the resulting
displacement data is characterized by appropriate reflectivity,
making the mirror mode valuable as an alternative, non-invasive
measurement setup in GBR measurements. Dei et al. (2013)
evaluate static GBR measurements at an 8-span bridge in Italy.
Four corner reflectors are installed: two in the middle of the
monitored span and two close to the piers. As up to 8 trucks
are parked on the bridge, the two reflectors at the pier are el-
evated according to the GBR vertical measurements despite the
bending of the bridge. This elevation is due to the position of
the reflectors causing them to move vertically and horizontally.
The superposition of both is measured by the GBR, leading to
ambiguous results. The reflectors in the middle are not affected
since they undergo no horizontal displacement. Miccinesi et al.
(2021) propose a multiple input, multiple output interferometric
(MIMO) GBR setup to acquire two independent displacement
components to avoid equivocal measurements simultaneously.
It is verified by monitoring a corner reflector oscillating under
a controlled environment. The results are compared to a seis-
mic sensor attached to the reflector. Both signals match in time
and frequency domain. After verification, the MIMO GBR is
exploited to measure the vertical and horizontal components at
an Italian bridge.

In the context of GBR data, CNNs are applied for Synthetic
Aperture Radar (SAR) image classification (e.g., Zhang et al.,
2018). CNNs are mainly used as DL approaches in image
classification tasks such as face recognition (Lawrence et al.,
1997). When focusing on one-dimensional (1D) time series
data, they are currently adopted to solve classification tasks
such as electrocardiogram classification (Mahmud et al., 2020).
Kenji Iwana and Uchida (2020) deploy CNN in time series
classification on noisy time series to evaluate their capabilities.
They rely on a toy dataset consisting of several simple wave-
forms such as sine waves superimposed with different noise
levels. Additionally, they provide the network with multivari-
ate time series signals and public real-world datasets during the
training process. As a baseline, the CNN’s classification results
are compared with results of a Support Vector Machine (SVM)
and Deep Belief Networks (DBN). For all datasets, CNNs ob-
tain the best classification results due to their ability to ex-
tract suitable features themselves. In the study of Cook et al.
(2020), another classification task is discussed involving event
detection in a time series. Anomalies respectively events are,
herein, deviations from a general pattern, which are described
as outliers. Exploiting CNNs, anomaly detection is practiced
in two steps: (1) CNNs predict a signal, and (2) a high differ-
ence between prediction and measurement indicates an anom-
aly. This specific approach is based on a kind of predictability,
for example, a periodicity, in the signal, which a CNN can re-
produce.
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Several studies include ML approaches and bridge deformation
data. Arnold and Keller (2020) use GBR-measured data and
introduce a feature-based ML approach to detect events in dis-
placement time series. GBR-measured data of three German
bridges is presented. Selected ML approaches are applied to
detect and classify events of three different vehicle classes. One
central aspect of the applied preprocessing is to reduce the influ-
ence of time series drifts caused by, for example, environmental
conditions. Therefore, features that are independent of such a
drift are investigated and selected. As a result, events are detec-
ted with an accuracy of up to 83.8 %. Such an event classifica-
tion can be the basis for damage detection on bridges using dis-
placement data recorded during normal traffic conditions. An-
other study conducted by Döring et al. (2020) exploited ratio-
based features of single vehicle crossings to detect damage in a
two-span German bridge. Several damages are inflicted at two
locations during the measurements by cutting tendon cables to
different degrees. A single-vehicle then crosses the bridge for
each damage type while the strain is measured at 18 different
positions at the bridge. Features, independent of vehicle weight
and velocity, are extracted from the strain time series and used
as input data for several ML approaches. Accuracy of up to
95.1 % for damage classification is achieved.

3. GBR-BASED MEASUREMENTS AT BRIDGES AND
RESULTING DATASETS

In this section, we give a brief overview of the measurement
setup used to record the data at the monitored bridges. A de-
tailed description of the measured data is given in Arnold and
Keller (2020). Subsequently, we describe the nature of the dis-
placement data while highlighting the challenges concerning
decays. For verification purposes, we also rely on RGB images
acquired by an unmanned aerial vehicle (UAV).

The GBR can monitor multiple points in the line of sight (LOS)
simultaneously with a sampling rate of up to 200 Hz using mod-
ulation. For this purpose, the signal reflection of every 0.75 m
is accumulated to one single range bin (Pieraccini, 2013). In
sum, the GBR returns one time series every 0.75 m. Therefore,
it is advantageous to have precisely one highly reflective loca-
tion in each range bin. Otherwise, signal superposition and thus
ambiguities occur. Since the GBR uses the interferometric prin-
ciple, it measures the phase of every reflected signal within one
range bin. The phase difference can be converted to the bridge
displacement in LOS between two consecutive samples. Con-
cerning the height difference between the GBR and the bridge,
the vertical displacement ∆z can be deduced (Rödelsperger et
al., 2010). Dei et al. (2013) state that the GBR measures sev-
eral displacement components of the bridge depending on the
position of the corner reflectors. Since our reflectors are relat-
ively centered, we speak of vertical displacement for conveni-
ence only.

Figure 1 schematically shows the general idea of the GBR
measurement setup. The colored triangles in Figure 1a respect-
ive circles in Figure 1b represent reflectors that have been at-
tached to the bridge to provide points of strong local backs-
cattering despite the bridges’ flat surface. As the GBR is po-
sitioned with the LOS parallel to the lanes, the reflectors are
installed with an offset in LOS to be in unique range bins. Ad-
ditionally, a vertical offset has been added to extract further in-
formation, for example, the driving side of a crossing vehicle.

In this study, we consider two bridges, A and B, GBR-
monitored during several measurement campaigns covering an

appropriate range of environmental conditions. Table 1 sum-
marizes relevant details concerning these two bridges. They
are equipped with reflectors to obtain specific reflection points.
Since the first natural frequency of the two bridges is close to-
gether, similar decay processes occur.

We define an event as the time during which a vehicle crosses
the monitored field. In the case of bridge A, this means that only
one field, not the whole bridge, is considered. Figure 2 presents
bridge A’s vertical displacement during three events for all four
range bins (cf. Figure 1). For visualization purposes, we have
removed the offset of each time series caused by environmental
conditions. An UAV was used to acquire the images to gain
ground-truth data of events. The difference in displacement at
different parts of the bridge indicates the vehicle’s driving side:
range bins 21 and 22 show a greater deflection than range bins
23 and 24, which indicates that all vehicles drive from right to
left (see also the reflector positions in Figure 1).

The depicted situation involves several cars queueing behind a
slower truck, which is commonplace. The truck’s heavy weight
causes a strong oscillation of the bridge, which slowly decays
over several seconds. Vehicles entering during this decay still
produce a bend of the bridge. However, the deformation is su-
perimposed by vibration. Nevertheless, we only want to detect
the bending process as an event, regardless of the general bridge
oscillation, which is classified as a non-event.

Table 2 summarizes information about events recorded during
five measurement campaigns conducted during different days,
including the event figures per day. As an event takes approx-
imately 1.35 s on average, the number of non-event incidents is
much larger considering each campaign’s duration. The number
of range bins refers to how many range bins we used for train-
ing. They have been selected following their respective SNR
to ensure low noise. Since the bridge’s eigenfrequency gener-
ally varies depending on the air temperature (Mahowald et al.,
2014), we ensure a wide temperature range when selecting the
study’s dataset. The rows 1 to 4 in Table 2 are combined into a
dataset I, which is partially used for the training of the models.
Besides, row 5 serves as an entirely unknown dataset (dataset
II) to specifically evaluate the performance in distinguishing
decays and events.

4. METHODOLOGY

In this section, we present our methodological approach. First,
we provide information about all preprocessing steps concern-
ing the GBR time series in Section 4.1. Second, the applied ML
models are described focusing mainly on the CNN architecture
(see Section 4.2).

4.1 GBR Time Series Preprocessing

As an objective of this study, we apply as little data prepro-
cessing as possible on the GBR-measured time series data de-
scribed in Section 3. Based on this precaution, we will be able
to deploy the proposed DL approach as an online tool to previ-
ously unmeasured bridges someday. Therefore, no normaliza-
tion is applied before the training process of the ML models.

Since bridges usually vibrate in a lower frequency range (Mehl-
horn and Curbach, 2014) than the GBR’s Nyquist frequency of
100 Hz, we use a low-pass Butterworth filter to remove high-
frequency noise (Bianchi and Sorrentino, 2007) as the only sig-
nal preprocessing step. Additionally, we avoid removing the
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(a) (b)

Figure 1. (a) Lateral view of a prototypical bridge during a GBR measurement. The GBR (yellow) measures the displacement in line
of sight (LOS) visualized as a dotted line. This LOS measurement, then, is transformed into vertical displacement ∆z. The colored

triangles represent corner reflectors, which have been installed to achieve a higher reflectivity. (b) Top view of the same measurement
setup as in (a). It shows the two lanes on top of the bridge as well as the offset of the range bins 21 to 24.

Table 1. Detailed information on the selected bridges.

Structure Type Fields Length Width Natural frequency
Bridge A Beam/plate mixing system 2 57.00 m 13.60 m 3.66 Hz
Bridge B Plate girder bridge/Girder grid bridge 1 26.36 m 11.69 m 3.75 Hz

long-term drift to ensure the models’ robustness against envir-
onmental impacts.

The filtered time series data are automatically split based on
non-overlapping windows of 100 samples, which means 0.5 s,
automatically. Subsequently, the data of each window is com-
pared to a labeled event. If at least 40 % of the 100 samples
window lie within the displacement caused by an event, the en-
tire window is labeled as an event. This step is necessary for the
preparation of the supervised classification task. Based on the
defined window size of 100 samples and the ratio of 40 %, we
obtain a satisfying detection of the event’s start- and endpoint.
Besides, this window size ensures that we capture more than
one period of the bridge vibration.

The amount of events is significantly lower than the number of
non-event incidences. This imbalance can influence the classi-
fication performance of the applied ML models since the entire
dataset is biased towards non-events. Therefore, we apply a ran-
dom undersampling by deleting samples of the majority class,
which, in our case, is called a no event.

As a last preprocessing step, we randomly split the dataset I
with the ratio 70 : 15 : 15 for the training, validation, and test
subset. The training subset contains 47710 incidences over-
all with 23719 event and 23991 no event. Dataset II (see
Table 2) is used as an entirely unknown test subset for the ML
models. The no event class of dataset II solely consists of
decays, which allows us a more thorough analysis concerning
events and decays. It is composed of 236 events and 24 undis-
turbed decays, respectively 516 and 249 incidents, after split-
ting them into windows of 100 samples.

4.2 Machine Learning Models

We evaluate a solely data-driven DL approach for detecting
events in GBR displacement data. As a baseline for the CNN
classification performance, we rely on a feature-based ML ap-
proach, a Random Forest (RF) model (see Arnold and Keller

(2020)). The RF is applied on features extracted from the low-
pass filtered data such as the variance and implemented using
the widely-used scikit-learn package (Pedregosa et al., 2011).
The implementation of the introduced CNN is based on Tensor-
flow (Abadi et al., 2016). In the following, we describe the
architecture of the (1D) CNN. As described in Section 2, CNNs
are mainly popular in image classification but are not often used
in the context of 1D GBR time series data. The displacement
time series of an event has similarities to the 1D grayscale gradi-
ent of an edge. Since edge detection is commonly performed
by convoluting a filter, we exploit convolutional layers in our
model. The CNN architecture is visualized in Figure 3. 100
bridge displacement samples of one single range bin represent
the input. The next three parts consist of three 1D convolu-
tional layers (CONV) with different filters and filter sizes, as
summarized in Table 3. Each CONV layer is followed by a
max-pooling layer (MaxPooling). The CONV1 layer has tanh
as an activation function, in contrast to the other CONV lay-
ers. The main reason for this activation function is that the in-
put data is not normalized to ensure the transferability to other,
unseen bridge data. Based on the tanh activation, the first in-
put features are mapped to the range −1 to 1. The additional
CONV layers, therefore, have scaled input features. Relatively
large kernel sizes characterize CONV1 and CONV2, aim-
ing at capturing gradients over several samples. As the GBR
measures with a frequency of 200 Hz, the displacement change
between consecutive samples is small. A large kernel size

allows the filter to register more significant changes within the
signal. Additionally, the vibration of the signal is easier to de-
tect, which ensures a more profound classification of pure de-
cays and events superimposed with such vibrations. A flatten
layer reshapes the CONV output to be used as an input for fully-
connected (FC) layers. FC1 reduces the vector dimension, thus
condensing on important features. Besides, FC2 expands, al-
lowing for more complex evaluations based on the results of
FC1. FC3 and FC4 then compress the features vector for a
SoftMax, which returns the final classification results. The RF
is implemented with the default hyperparameters except for the
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Figure 2. The displacement time series of three consecutive events for four range bins on bridge A. All events are highlighted and
pictures of the corresponding vehicles, acquired with a UAV, are attached. The leading truck causes the bridge to vibrate even after

leaving the bridge deck. Both following cars lead to a bending of the bridge which is superimposed with the oscillation.

Table 2. Overview of the measurement campaigns at the bridges conducted for this study. The duration refers to the period of
measurements at the respective bridge, number of events to the number of crossing vehicles, and number of range bins to the number

of bins selected for analysis. The temperature range covers the air temperature during the measurements. Dataset I consists of the
training, validation, and test subsets necessary for the ML approaches; while dataset II is an extra test subset, which is entirely

unknown to the ML approaches.

Number Bridge Duration Number of events Number of range bins Temperature range Dataset
1 A 4h30min 1007 6 11.20 °C to 12.35 °C I
2 A 1h45min 395 5 8.90 °C to 10.0 °C I
3 A 30min 119 2 8.10 °C to 8.90 °C I
4 B 3h30min 1482 2 14.70 °C to 15.50 °C I
5 A 1h20min 236 1 18.10 °C to 19.40 °C II

following parameters: max depth = 2, max leaf nodes = 6,
min samples split = 0.6 and n estimators = 200. They
are fine-tuned using GridSearch.

5. RESULTS AND DISCUSSION

The study’s objective is to investigate the potential of a DL ap-
proach in the context of detecting events in GBR time series
data without any feature extraction. The classification perform-
ances of the RF with selected input features and of the CNN
are contrasted in Figure 4 and Table 4. Figure 4 shows the
normalized confusion matrix for the RF and the CNN model,
while Table 4 states the Overall Accuracy (OA), Precision (P),
and Recall (RC). Both models are evaluated on the test sub-
set of dataset I as well as on the entirely unknown dataset II
(see Table 2).

In the case of dataset I, the RF and the CNN achieve high
scores with values above 90 % (see Table 2 and Figure 4a). Be-
sides, the CNN achieves a significantly better classification with
an OA of 94.7 %, which outperforms the RFs OA by 3.2 per-
centage points (p.p.). As dataset I contains events measured at
two distinct bridges, this overall good performance reveals that
the ML models can cope with heterogeneous GBR time series

data. Therefore, the results indicate an appropriate transfer-
ability between data measured at different bridges (under spe-
cific prerequisites). When focusing on the correctly classified
events concerning all events, the RC-score, the CNN, and the
RF achieve almost equal scores. The CNN performance is only
0.8 p.p. better than the RF. However, the P-score differs con-
siderably. The P-score indicates how many of the incidence
classified as events are actual events. According to this score,
the CNN (95.3 %) performs by 5 p.p. better. The main reason
is that the RF experiences difficulties in distinguishing between
decays and events, as shown in (Arnold and Keller, 2020). We
have to consider that no information about the number of decay
incidents of no events in the dataset I is given, which impedes
a further and more detailed analysis.

Therefore, we focus mainly on the distinction between decays
as no events and events in dataset II. The classification res-
ults based on this dataset reveal that the CNN outperforms the
feature-based RF (see Figure 4b and Table 4). Although the
OA decreases compared to the results achieved with dataset
I, all metrics scores are still above 90 %, with the RC for the
CNN even at 99.4 %. When focusing on the RF’s performance,
it strikes that the RF model achieves an almost equally high
RC-score, but the P-score and especially the OA are relatively
low. According to the confusion matrix in Figure 4b, the RF
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Figure 3. Flowchart of our developed CNN. The DL network combines convolutional layers (CONV), fully-connected (FC), and
max-pooling (MaxPooling) layers. The output of each layer is presented as a vertical bar annotated with its corresponding shape.

Details on the parameters of individual layers are given in Table 3.

Table 3. Hyperparameters of the applied CNN visualized
in Figure 3.

Layer Hyperparameters

CONV1
filters = 64
kernel size = 13
activation = tanh

MaxPooling1 pool size = 2

CONV2
filters = 32
kernel size = 11
activation = ReLU

MaxPooling2 pool size = 2

CONV3
filters = 16
kernel size = 5
activation = ReLU

MaxPooling3 pool size = 2
FC1 units = 16
FC2 units = 32
FC3 units = 8

classifies the majority of no event decay (69 %) as an event.
This is again due to the challenges of distinguishing decays and
events. Since in dataset II all no events consist of decays,
the RF misclassifies many incidents. Taking the deviating at-
mospheric conditions included in dataset II from dataset I, we
recognize that the CNN can handle the deviation in the air tem-
perature range and the resulting drift in the GBR-based time
series. Thus, our approach with a minimized preprocessing of
the GBR time series data seems appropriate in applying a CNN.
This allows us to exploit our model during measurement cam-
paigns during different environmental conditions.

Figure 5 shows a classification example of a 60 s period of both
the CNN and the RF model. Note that the shown period origin-
ates from the dataset II, which is entirely unknown to the ML
models. The CNN can detect and distinguish events and de-
cays. It only classifies a small proportion of the given excerpt
falsely. One reason for this finding could be that the example
excerpt, including an event’s end, extends into the decay. As a

Table 4. Results of the applied ML models, RF and CNN, for the
dataset I and II on the classification task event vs. no event.

Model
Dataset I Dataset II

OA P RC OA P RC
in % in % in % in % in % in %

RF 91.5 90.3 93.5 64.5 74.6 98.1
CNN 94.7 95.3 94.3 92.7 93.6 99.4

solution, we can, for example, reduce the step size for the pre-
diction window. The RF, on the other hand, fails in this case
since it classifies the complete decay as an event after the first
vehicle’s crossing at around 3 s.

The window highlighted in pale blue corresponds to the vertical
displacement situation visualized in Figure 2. In this situation,
two cars cross the bridge shortly after a truck caused the bridge
to vibrate. Thus, the bending caused by the two cars is super-
imposed by the bridge oscillation. It sticks out that the CNN
performs better in extracting only the events regardless of the
decay. This finding implies that the CNN learns to filter out
the oscillation and considers the actual bending of the bridge.
Based solely on the selected input features, the RF is incapable
of classifying the entire excerpt correctly and considers the de-
cay as an event. Both ML models have in common that they
detect the single, undisturbed events at approximately 36 s and
52 s successfully. Although a small offset of around 0.25 mm
caused, for example, by temperature changes is present, the ML
models’ performances are not affected.

In summary, our results show that a data-driven CNN is super-
ior in event detection based on displacement time series as com-
pared to feature-based models. While both approaches achieve
appropriate results in general, the main difference is the chal-
lenge of distinguishing events and decays. In this case, the
CNN performs well, while the RF classifies a majority of the
incidences incorrectly.
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Figure 4. Confusion matrices of the CNN model (left) and the RF model (right) for (a) dataset I and (b) dataset II.
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Figure 5. Classification results of an exemplary, 60 s long section of bridge A for CNN (upper) and RF (lower). The measurement
campaign from which this section originates is unknown to the model. The highlighted area corresponds to the excerpt depicted in

Figure 2.

6. CONCLUSION AND OUTLOOK

In this paper, we introduce and investigate a data-driven DL ap-
proach exploiting convolutional layers for event detection in 1D
GBR-displacement time series data. Events refer to vehicles
crossing the bridge during the GBR measurements. The data
originates from real-world measurement campaigns at two Ger-
man bridges. Our proposed DL approach addresses the current
challenges, especially regarding the differentiation of cross-
ing events and subsequent decays, present in state-of-the-art
feature-based ML approaches based on shallow learners such
as an RF model. The CNN detects events successfully and re-
liably; even in distinguishing decays and events, it performs
satisfyingly. As a shallow baseline learner, we rely on a RF
model. Overall, the CNN outperforms the RF in detecting only
the bridge crossing while omitting the decay. In two distinct
datasets, the ML models’ performances are evaluated concern-
ing, among others, the decays. The first dataset is used for
training, validation, and test of the ML models. In contrast,
the second dataset remains unknown in order to investigate the
applied models’ transferability and reproducibility.

Our CNN achieves higher overall accuracy, precision, and recall

on both datasets compared to the baseline model. The short-
comings of a feature-based, commonly applied ML model are
revealed, especially in the second test on an unknown dataset.
As presented, the CNN achieves an overall accuracy of 92.7 %
and a precision of 93.6 % in classifying events and decays (non-
events). The RF falls short with an overall accuracy of 64.5 %
and a precision of 74.5 %. Both models’ recall-score is sim-
ilar, implying that they rarely classify events as non-events. Be-
sides, we compare the classification results exploiting a time
series excerpt from a measurement campaign unexploited in
the ML models’ training. Both the CNN and the RF reveal ro-
bustness against environmental impacts since a long-term time
series drift does not affect the classification performances.

In sum, our study shows promising results for relying on a
solely data-driven CNN as DL approach in the context of event
detection with GBR-based time series data without any extens-
ive preprocessing. Focusing on the further improvement of the
CNN performance and a detailed evaluation of its limits and
opportunities, we need to increase the number of decays in the
training subset. Therefore, we will conduct further measure-
ment campaigns at the presented bridges as well as add new
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bridges to the portfolio. Based on this new data, we can en-
hance the generalization abilities of our proposed DL approach.
Besides, we need to consider including bridges with strongly
different eigenfrequencies in our measurement campaigns to
investigate the CNN performance concerning varying decay
oscillations. Based on the presented DL classifiers, a bridge
damage assessment could be established which functions under
real-world conditions with non-invasive GBR time series data
and stimulations caused by vehicle crossings. Such a prospect-
ive assessment could combine a data-driven event detection and
subsequently an event classification to extract the input caus-
ing the measured bridge displacement. This combination might
be a first step towards determining changes in the dynamics of
bridges concerning a more profound structural health monitor-
ing.
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