
DEEPLIO: DEEP LIDAR INERTIAL SENSOR FUSION FOR ODOMETRY ESTIMATION

Arash Javanmard-Gh.1,∗, Dorota Iwaszczuk1, Stefan Roth2

1 Remote Sensing and Image Analysis, Dept. of Civil and Environmental Engineering Sciences,
Technical University of Darmstadt, Germany, (arash.javanmard-ghareshiran, dorota.iwaszczuk)@tu-darmstadt.de

2 Visual Inference Lab, Dept. of Computer Science, Technical University of Darmstadt, Germany,
stefan.roth@visinf.tu-darmstadt.de

Commission I, WG I/6

KEY WORDS: Deep Learning, LiDAR Intertial Odometry, Sensor Fusion, Pose Estimation.

ABSTRACT:

Having a good estimate of the position and orientation of a mobile agent is essential for many application domains such as robotics,
autonomous driving, and virtual and augmented reality. In particular, when using LiDAR and IMU sensors as the inputs, most
existing methods still use classical filter-based fusion methods to achieve this task. In this work, we propose DeepLIO, a modular,
end-to-end learning-based fusion framework for odometry estimation using LiDAR and IMU sensors. For this task, our network
learns an appropriate fusion function by considering different modalities of its input latent feature vectors. We also formulate a
loss function, where we combine both global and local pose information over an input sequence to improve the accuracy of the
network predictions. Furthermore, we design three sub-networks with different modules and architectures derived from DeepLIO
to analyze the effect of each sensory input on the task of odometry estimation. Experiments on the benchmark dataset demonstrate
that DeepLIO outperforms existing learning-based and model-based methods regarding orientation estimation and shows a marginal
position accuracy difference.

1. INTRODUCTION

Odometry estimation – i.e. estimating the 3D position and ori-
entation of an agent through time and space – using sensory in-
formation such as cameras, light detection and ranging sensors
(LiDARs), and inertial measurements units (IMU) is a highly
active field of research in computer vision with a wide range
of application domains such as autonomous driving (Geiger et
al., 2012), robotics (Cadena et al., 2016), building information
modeling (BIM) (Roca et al., 2014) and virtual and augmen-
ted reality (Klein and Murray, 2007). In one of the first papers
on visual odometry (VO) (Nistér et al., 2004) the authors fulfill
the VO task by extracting image features (i.e. harris corners)
and tracking them frame by frame over time. But the main is-
sue of VO lies both in the scale drift due to scale ambiguity,
especially when monocular cameras are used, and the unsound-
ness of the predictions in the lack of enough features in images.
To tackle these problems many researchers start to fuse the VO
predictions with other sensory information, like IMU (Nützi et
al., 2011, Chu et al., 2012) by applying e.g. Extended Kalman
Filter (EKF).

In the case of rangefinder sensors, like LiDARs mainly Iterat-
ive Closest Point (ICP) based algorithms (Segal et al., 2010,
Besl and McKay, 1992) are used to match consecutive frames
by minimizing the distance between the corresponding points
in two point clouds. Also, EKF in a tightly (Ye et al., 2019) or
loosely (Tang et al., 2015) fashion is here used to fuse the ICP
results with the IMU measurements. But unfortunately, most
ICP algorithms suffer from 1) Wrong correspondences 2) In-
accurate initialization 3) Lacking of correct covariance matrix
4) High computational power.

Recently some efforts have been made to apply learning-based
methods - i.e. neural networks, on LiDAR measurements, to
∗ Corresponding author

estimate the pose of a mobile agent over time (Wang et al.,
2019, Velas et al., 2018). Analogously to these works we pro-
pose a supervised learning-based end-to-end trainable fusion
method, which utilizes neural networks to extract relevant fea-
tures from the multi-modal LiDAR and IMU measurements and
fuses these latent features to regress the motion encoded in them.
To the best of our knowledge, this work is the first comprehens-
ive study of the supervised learning-based fusion method for
odometry estimation, which uses both LiDAR and IMU meas-
urements. Particularly our contributions can be summarized as
follows:

• Introducing a novel learning-based fusion architecture for
6D pose estimation - i.e. 3D translation and 3D rotation,
using LiDAR point cloud and IMU measurements.

• Introducing a local and global windowed loss function.

2. RELATED WORKS

Many research efforts have focused on multi-sensor odometry
over last decades. In this section, we give an overview of
model- and deep-learning based methods applied to this prob-
lem.

2.1 Model-based Lidar-(Inertial) Odometry Estimation

Most of the proposed algorithms for LiDAR-based pose estim-
ation on range data are based on or are related to ICP (Besl
and McKay, 1992). Since then, many variants have been sug-
gested to improve the robustness and convergence of the al-
gorithm. In (Segal et al., 2010) the authors formulates the ICP
as a general probabilistic framework (GICP), which depend-
ing on parameterization permutes to a point-to-point, point-to-
plane, or plane-to-plane algorithm. The proposed method in

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

47

(Serafin and Grisetti, 2015) uses the normal and curvature in-
formation of a local surface estimated around a point to find cor-
respondences in an integral image-based fashion. Furthermore,
the normal information combined with Cartesian coordinates
of the corresponding points is used to estimate the transform-
ation by minimizing the least-squares loss. A comparison to
other methods showed that NICP registration offers better res-
ults, also it is more robust against poor initial guesses. To im-
prove the ICP-based pose estimation in (Xue et al., 2019) the
authors introduce a loosely coupled Extended Kalman-Filter-
based IMU-ICP-fusion, where the IMU measurement are used
at different processing stages. According to their experiments,
the best odometry estimation result is achieved using IMU and
a Lidar Odometry and Mapping (LOAM) method (Zhang and
Singh, 2014), which is a feature-based point cloud registration
approach based on a novel strategy for edge and surface features
extraction.

2.2 Learning-based Lidar-(Inertial) Odometry Estimation

The sparsity and unstructured nature of 3D point clouds make
the odometry estimation problem more difficult to solve. Hence
reliable and accurate 6DoF learning-based pose estimation on
point clouds is still an open problem. In (Nicolai et al., 2016)
the authors introduce one of the first deep-learning-based odo-
metry methods on point clouds by projecting the point clouds
to an image before feeding in their CNN-network for pose es-
timation. But the presented results were not able to compete
with model-based ICP matching methods. Another CNN based
architecture proposed in (Velas et al., 2018), also uses a im-
age representation of the input point cloud consisting of three
channels (depth, height, intensity). Even though the translation
estimation results, formulated as a regression task, were prom-
ising, the results on orientation estimation were rather poor,
notwithstanding formulating it as a regression or classification
task. In contrary to these approaches and inspired by (Yang et
al., 2018), (Li et al., 2019) introduces LO-Net , a supervised
end-to-end trainable 6DoF pose estimation method based on
two consecutive LiDAR frame. Therein odometry is formu-
lated as a 7D regression problem, with a 3D translation vec-
tor and a 4D quaternion. Also here the sparse and irregular
point clouds are first projected in 2D matrices by cylindrical
projection. Both supervised and unsupervised method for the
odometry task between two consecutive LiDAR frames is in-
troduced in (Cho et al., 2019). Here the network consists of
two separate ResNet (He et al., 2016) like branches, which are
trained by 2D matrix projections of the 3D Cartesian coordinate
of points (vertex) and their normal vectors. Depending on the
selected loss function the network can be trained in supervised
or unsupervised mode.

3. DATA REPRESENTATION

3.1 Spherical Projection

A point cloud captured by a LiDAR is an unordered set of 3D
Points pi = (x, y, z). To be able to apply 3D CNN-technique
on the point clouds we encode them into a 2D-image. To this
end, we use spherical projection (Milioto et al., 2019) by defin-
ing the mapping function Π : R3 → R2 as,(

u
v

)
=

(
1
2
[1− arctan(y, x)π−1]ω

[1− (arcsin(zr−1) + fup)f
−1]h

)
(1)

Figure 1. Entire point cloud encoding pipeline starting with, top)
input point cloud, middle) discretized point cloud as an image

using spherical projection with channels C = (x, y, z), bottom)
normal image with channels C = (nx, ny, nz).

(u, v) are the image coordinates, (h,w) are respectivly the de-
sired height and width of the resulting image I , f is the field-of-
view (FOV) of the sensor, consisting of an up and down FOV,
f = fup + fdown, and r = ||pi|| is the range of the i-th point
in the point cloud.

In most scenarios the mobile agent is moving, while the sensor
captures a frame, this result in de-skewed scans where there is
no direct one-to-one mapping from a pixel coordinates (u, v)i
to a point pi, i.g. multiple points fall in the same image pixel.
For this reason, we order the point cloud in descending range
order, and the closest points to the LiDAR sensor is assigned
according to (Li et al., 2019, Milioto et al., 2019). The resulting
image I ∈ RM×N×C can be augmented with multiple channels
C. In this work we set C = (x, y, z), see fig. 1.

3.2 Normal Estimation

As shown in (Serafin and Grisetti, 2015) normal vectors are
strong features for point cloud registration. A Commonly
used strategy to calculate the normal vector ni at the point
pi is to sample some points in its neighborhood Ni =
[pi,0, pi,1, pi,j], j = [1 . . . n], build the covariance matrix and
calculate the normal vector based on the Eigendecomposition.
Corresponding to the formulation in (Li et al., 2019), given a
point pi = [x, y, z]i and it’s N neighbors pi,j , j = 1, 2, . . . , N .
We can estimate the normal N (pi) := ni ∈ R3 by,

∆pij = pij − p
i ∈ R3×1 (2)

Di = [∆pi1,∆p
i
2, . . . ,∆p

i
N] ∈ R3×N (3)

argmin
N (pi)

= ||DT
i ni|| (4)

Instead of directly solving the objective defined in eq. (4), we
use a simplified normal estimation method same as (Moos-
mann, 2013), where the normal at each point of an encoded
point cloud is calculated by computing the weighted cross

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

48

products over pi’s four neighbors as defined by,

N (pi) := n̂i =
∑

pi
k
,pi
j
∈S

(ωik∆pik × ω
i
j∆p

i
j) (5)

ni =
n̂i
||n̂i||

(6)

where S is a set of sorted four neighbors {p1
i ,p

2
i ,p

3
i ,p

4
i } sur-

rounding pi. To make sure that faraway neighboring points-
e.g. around the borders of an object, do not distort the normal
estimation, each distance vector ∆pij is weighted by ωij . The
weighting function φ(x) : R3 → R is defined by,

ωij |x=∆pi
j

:= φ(x) = e−α||x|| (7)

where the weighting is controlled by the parameter α.

Figure 1 shows the entire encoding pipeline, where a point
cloud is first encoded as an image I(u, v) with three channels
C = [x, y, z], and subsequently, the normal vectors are estim-
ated using the x, y, z information at each pixel of this image.

4. DEEPLIO ARCHITECTURE

We introduce a cascade modular network architecture, that
learns a robust fusion of LiDAR frames and IMU measurements
for the task of relative pose estimation between a pair of consec-
utive LiDAR frames Ft−1 and Ft. The input to the network is a
sequence of consecutive LiDAR frames and the corresponding
IMU measurements in the same time interval. In essence, our
network learns to extract appropriate features from both sens-
ory information and subsequently learns a sophisticated fusion
strategy suitable for mapping from both LiDAR and IMU fea-
ture space to the space of se(3) defined by,

DeepLIO : {(RH×W×2C ,RSimu×6)1:S} (8)
→ {(se(3))1:S}

where (H,W,C) are the height, width, and the number of chan-
nels of the projected LiDAR frames and Simu is the sequence
length of IMU data measured during two consecutive LiDAR
frames.

As you can see in fig. 2 the network consists of three main mod-
ules.

1. Feature-Nets: This module itself consists of two follow-
ing sub-modules for feature extraction.

• LiDAR Feature Network: This module is respons-
ible for extracting and encoding the LiDAR frames
which are first transformed by spherical projection.

• IMU Feature Network: This module is responsible
for extracting and encoding the IMU measurements,
which consists of linear acceleration and angular ve-
locity (dim=6).

2. Fusion Network: This module is responsible for fusing
the features extracted from LiDAR and IMU feature net-
works.

3. Odometry Network: At least in this module the fused fea-
tures are used to learn the hidden state, which shall explain
the odometry information encoded in these features.

Figure 2. Architecture overview and data stream of the proposed
DeepLIO network.

4.1 LiDAR Feature Network

Similar to (Cho et al., 2019) we also construct the LiDAR-
Feature-Nets as a siamese network with each branch referred
to as VertexNet (top branch) and NormalNet (bottom branch),
but in contrast to (Cho et al., 2019) we use a more lightweight
network based on fire and squeeze-and-excitation modules in-
troduced in (Wang et al., 2018, Iandola et al., 2017, Hu et al.,
2018).

4.2 IMU Feature Network

Usually, IMUs operate at a much higher frequency than LiDAR,
which results in a sequence of IMU measurements (Simu)
during a full LiDAR spin. The IMU sub-network takes this
sequence of raw IMU measurements m(t−1,t) = [α,ω] ∈
RSimu×6 sampled between two consecutive frames as input and
learns the dynamic encoded in this sequence for the task of pose
estimation. For this reason, we experiment with three network
configurations, one made of fully connetected-layers and the
other two constructed by LSTM and GRU modules (Hochreiter
and Schmidhuber, 1997, Cho et al., 2014).

4.3 Fusion Network

Concatenating different features together is a standard fusion
strategy (Clark et al., 2017) with the drawback that different
modalities and noise characteristics are not considered. For
instance, concatenating feature vectors of multiple redundant
sensory information without considering their reliability under
certain environments may result in a sub-optimal and not robust
solution. To remedy this issue we introduce an attention-based
(Vaswani et al., 2017) soft-fusion method inspired and based on
(Chen et al., 2019) for fusing LiDAR and IMU features.

The sequential features extracted from both LiDAR-Feature-Net
and IMU-Feature-Net form the input to the fusion-layer. A key
requirement on the fusion method is that it should be differ-
entiable function so that it can be deployed in an end-to-end
trainable model. Conditioning on both input feature vectors and
similar to (Chen et al., 2019) a self-adaptive soft-fusion func-
tion is defined by the two weighting functions,

sL = σ(WL|[aL,aI]) (9)
sI = σ(W I |[aL,aI]) (10)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

49

where [., .] denotes the concatenation operation, σ is the
sigmoid-function and W [L,I] are the corresponding weights.
sL and sI form the weights corresponding to each element of
combined LiDAR and IMU feature vector. Finally, we mul-
tiply these weights with their corresponding feature vector for
an automatic recalibration and feature selection,

ff : RKL × RKI → RKL+KI (11)

af = ff (θf |(aL,aI)) = [sL ⊗ aL, sI ⊗ aI] (12)

where ff characterizes the fusion function with all parameters
accommodated in θf .

4.4 Odometry Network

The input to this module is a sequence of fused LiDAR and
IMU features. Hence the network should be constructed so that
it can learn reasonable temporal correlations encoded in its in-
put sequence. For this reason, we construct this sub-network
using LSTM-modules (Hochreiter and Schmidhuber, 1997).

5. LOSS FUNCTIONS

So far, we have defined the inputs, outputs, and network archi-
tecture of DeepLIO, in this section we introduce the structure
of the loss function used to train the network.

5.1 Global and Local Loss

Learning to predict a robust estimation of two different quantit-
ies, namely rotation and translation is a challenging task. Even
if we assume that the network can predict the relative motion
between two frames reasonably good with a small deviation,
by the effect of propagation of uncertainty, accumulating these
local predictions still result in an inaccurate global trajectory
estimation. Therefore the loss function should be designed so
that it enforces the network to learn reasonable features for a
robust local and global pose estimation.

Given a sequence S of pairwise stacked and projected LiDAR
frames li ∈ RH×W×2C and their corresponding IMU meas-
urments mi ∈ RSimu×6 from a dataset, the input X and the
ground truth poses Y are defined by,

X = {xi|xi = (li,mi), i = [0, · · · , S]} (13)

Y l = {yli|y
l
i = (ti,ωi) ∈ se(3), i = [0, · · · , S]} (14)

Y g = {ygi |y
g
i = (pi, qi),pi ∈ R3, qi ∈ H, (15)

i = [0, · · · , S]}

Where Y l is the set of local relative motions between each
consecutive frames and Y g the set of global motions occurred
between the first frame and other frames in the sequence.

Furthermore let us denote the network local motion prediction
at the timestamp i as (t̂i, ω̂i) = fθ(xi) ∈ se(3), where fθ is
the neural network mapping function with θ being the state of
all parameters learned by the network during the training. The
set of all local motion predictions of the network for a given
input sequence S is defined by,

Ŷ l = {ŷli|ŷ
l
i = (t̂i, ω̂i) ∈ se(3), i = [0, · · · , S]} (16)

Based on these definitions and w.l.o.g. we can convert these
local motion estimations to global estimations regarding the

Figure 3. Schematic representation of the local and global loss
calculated based on the local predictions of DeepLIO given a

sequence of input data.

first frame in the sequence. Building upon that, we define a
set of global motion predictions by,

g : [ŷli]i=0..n → ŷgn (17)

Ŷ g = {ŷgi |ŷ
g
i = (p̂i, q̂i), p̂i ∈ R3, q̂i ∈ H, (18)

i = [0, · · · , S]}

where ŷgi = (p̂i, q̂i) are the corresponding global position
and orientation estimations at the timestamp i, calculated using
function g, which transforms a set of local motions to a global
motion with respect to the first element of the input set. En-
dowed with this information, we can define the local Ll(ŷli,yli)
and global Lg(ŷgi ,y

g
i) loss as two functions that measure the

discrepancy between the predicted motion and the ground truth.
Figure 3 demonstrates the relation between the network predic-
tions, the global and local loss functions, and a sequence of
input data. An important aspect of designing the loss func-
tion is the representation of the output quantities the network
has to predict. Even though the amount of a position displace-
ment between two frames can be expressed in a Euclidean space
without any effort, representing rotational movement is not as
straight-forward, since a rotation can be presented among other
forms as Euler-angles, rotation-matrices, and quaternions, but
unfortunately, each of them has its advantages and disadvant-
ages, for instance, only three parameters are needed to repres-
ent Euler-Angles, but they do not provide a unique parameteriz-
ation and suffer from gimbal lock, in contrast, rotation-matrices
are unique but they are overparameterized and the orthogonal-
ity constraint hampers the optimization. Regarding the number
of parameters, quaternions are a compromise, but they need to
be normalized into a unit length.

For these reasons and under the assumption that relative motion
between two frames is supposed to be small, in this work, we
represent the local frame-to-frame motion in the space of se(3),
since rotations are not constrained in this representation. At
the other end due to the above reasons the global trajectory is
represented as a quaternion q ∈ H. Hence local and global loss
functions are defined by,

Lt(ŷli) =
∥∥ti − t̂i∥∥γ (19)

Lω(ŷli) = ‖ωi − ω̂i‖γ (20)

Lp(ŷgi) = ‖pi − p̂i‖γ (21)

Lq(ŷgi) =

∥∥∥∥qi − q̂i
||q̂i||

∥∥∥∥
γ

(22)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

50

Where ‖.‖γ determines the distance norm. In this work we set
γ = 2 for all loss functions.

5.2 Homoscedastic Weighted Sum Loss

Learning both translation and rotation simultaneously is due to
the unit and scale differences between these quantities indeed
challenging. Therefore for the loss function we need to find a
sophisticated balancing strategy between both tasks. In (Kend-
all et al., 2015, Wang et al., 2019, Wang et al., 2017) the authors
suggest a linearly weighted sum loss, with the weighting as a
hyperparameter. Since an optimal balancing value is not known
in advance, we need to find a sophisticated hyperparameter tun-
ing strategy.

In contrast to the linearly weighted loss function and inspired
by (Kendall and Cipolla, 2017) we define the loss function as
a Homoscedastic Weighted Sum Loss. Homoscedastic uncer-
tainty is one of the two subcategories of Aleatoric uncertainty
(Kendall and Gal, 2017), which stays constant for different in-
puts but varies between different tasks (Kendall et al., 2017).
One major advantage of this loss is that all hyperparameters
used for balancing between each task are now learnable, hence
they can be learned during the training.

Assuming Gaussian likelihood we can model the network out-
puts for a single local pose prediction as,

p(yi|ŷi = fθ(xi)) = N (yi|ŷi, σ
2) (23)

Where yi = (pi, qi) is the i-th ground truth pose, ŷi = (p̂i, q̂i)
is the appropriate network pose estimation, andN is a Gaussian
distribution with the mean ŷi and the variance σ. From now on
we ignore the i-subscript to enable a better overview.

Given the network outputs, position pi and orientation qi are
conditionally independent, hence reformulating the likelihood
and substituting the results in a Gaussian distribution yields,

p(y|ŷ) = p(p|p̂)p(q|q̂) (24)

= N (p|p̂, σ2
p)N (q|q̂, σ2

q) (25)

In Maximum-Likelihood-Methode (MLE) rather than maxim-
izing the likelihood function itself, we maximize the log of it,
since log is a monotonic function, the same parameters which
maximize a specific function will also maximize its log.

The log of a Gaussian distribution is defined by,

logN (x|µ, σ2) = log

(
1√

2πσ2
e
− ‖x−µ‖

2

2σ2

)
(26)

= −2 ‖x− µ‖2 σ−2 − log σ − const. (27)

We can now formulate the loss function L(θ, σp, σq) as a func-
tion of the network parameters θ and σ(p,q) as,

L(θ, σp, σq) = − log p(y|ŷ) (28)

=
1

2
‖p− p̂‖2 σ−2

p + log σp (29)

+
1

2

∥∥∥∥q − q̂

‖q̂‖

∥∥∥∥2

σ−2
q + log σq (30)

∝ Lpσ−2
p + log σp + Lqσ−2

q + log σq (31)

Where the constant terms are neglected since they do not
change the optimization result. Please note that this loss

function now also depends on the weighting hyperparameters
(σp, σq), hence we do not need to set them manually. Fur-
thermore, these hyperparameters now represent the model’s ob-
servation noise, i.e. they capture how much noise we have in
the outputs (Kendall et al., 2017). Furthermore due to numer-
ical stability and to avoid the division by zero in (Kendall and
Cipolla, 2017) the authors suggest log variance s := log σ.

By extending this method and combining both the local and
global loss functions, the final Homoscedastic Weighted Sum
Loss (HWS-Loss) is defined by,

L(θ, σp, σq||X) =

S∑
i=0

((Lp,i + Lt,i)e−s1 + s1 (32)

+ (Lω,i + Lq,i)e−s2 + s2) (33)

Where (s1, s2) are the observation uncertainties corresponding
to position and orientation predictions.

6. EXPERIMENTS

6.1 KITTI Odometry Dataset

In this work we use the KITTI Odometry dataset (Geiger et al.,
2013) to train and test DeepLIO 1. The dataset consists of 22
sequences from which 11 sequences are provided with ground
truth for training and testing. Each sequence is a trajectory
captured by driving an augmented car in Karlsruhe, Germany.
LiDAR frames are captured by a Velodyne HDL-64e with 64-
beams and a sampling frequency of 10Hz. Also, an IMU with
a sampling frequency of 100Hz and a GPS module is used to
calculate the ground truth pose.

6.2 Implementation details

Using the aforementioned spherical projection we encode each
input point cloud to an image matrix by setting W = 720 and
H = 64 pixels, furthermore we set alpha = 0.8 for normal im-
age calculation. During the training, we build a sequence of five
paired consecutive frames and their corresponding IMU meas-
urements. Furthermore, to assess the capability of the proposed
DeepLIO network to improve the odometry results by fusing
both partly redundant sensor information, we evaluate and com-
pare the accuracy of three different sub-network architectures,
which we denote as,

• DeepIO: This network uses only IMU measurements to
predict the resulting odometry.

• DeepLO: This network uses only LiDAR images and nor-
mals to estimate the odometry.

• DeepLIO: this network uses both LiDAR as well as IMU
measurements and fuses them to estimate the odometry.

In order to facilitate comparison with other learning-based odo-
metry methods, we use sequences 00 − 08 for training and
09−10 for test. We also evaluate the results by utilizing the met-
ric defined in the KITTI dataset, which is the average transla-
tion trel(%) and rotation rrel(°/100m) RMSE on the distance
of 100m-800m. We employed the Adam solver (Kingma and
Ba, 2014) with β1 = 0.9, β2 = 0.99 and wdecay = 10−5 for all
aforementioned network configurations. We set the batch-size
and the sequence length to B = 8 and S = 5. We implemented
the entire framework using PyTorch (Paszke et al., 2019).
1 Our code is available at https://github.com/ArashJavan/

DeepLIO.git

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

51

https://github.com/ArashJavan/DeepLIO.git
https://github.com/ArashJavan/DeepLIO.git

Table 1. Odometry results of DeepIO networks on KITTI dataset.

Sequences
DeepIO 00 01 02 04 05 06 07 08 09 10 mean† mean∗

trel
FCN 6.38 3.28 4.86 2.78 5.03 6.84 6.86 6.93 12.51 14.49 5.37 13.49

LSTM 2.15 1.90 2.42 3.25 2.20 2.35 2.96 3.33 9.70 9.46 2.56 9.58
GRU 2.37 1.66 3.02 5.84 2.57 3.93 3.60 4.13 9.03 8.76 3.39 8.89

rrel
FCN1 2.44 0.49 1.50 0.32 1.87 2.19 3.30 2.17 1.86 3.62 1.87 2.74
LSTM 0.69 0.50 0.60 0.60 0.65 0.42 0.68 0.82 0.64 0.79 0.62 0.71
GRU 0.47 0.60 0.46 0.45 0.32 0.34 0.48 0.45 0.52 0.92 0.44 0.72

† Average translational t(%) and rotational r(°/100) RMSE on training set.
∗ Average translational t(%) and rotational r(°/100) RMSE on test set.

Table 2. Odometry result of DeepLO networks on KITTI dataset.

Sequences
DeepLO 00 01 02 04 05 06 07 08 09 10 mean† mean∗

trel
PointSeg 2.22 1.76 2.61 1.14 1.75 2.84 0.93 2.27 10.52 10.15 1.94 10.33
FlowNet 16.07 22.79 9.30 1.79 14.02 21.24 20.48 15.67 14.48 13.60 15.17 14.04

rrel
PointSeg 1.0 0.8 1.04 1.03 0.9 1.18 0.86 0.96 4.05 4.42 0.97 4.23
FlowNet 6.37 4.55 3.50 1.72 6.06 7.67 11.78 6.04 5.87 9.24 5.96 7.55

† Average translational t(%) and rotational r(°/100) RMSE on training set.
∗ Average translational t(%) and rotational r(°/100) RMSE on test set.

6.3 Evaluating DeepIO

By deploying the deep inertial odometry network (DeepIO) we
aim to investigate the ability of different only IMU-based net-
works to extract the hidden information about the dynamic mo-
tion of the mobile agent from the IMU measurements to predict
the current pose of the agent w.r.t. its previous pose. To this
end, we designed three different network configurations. The
first one is only built by fully-connected layers, where experi-
mented with different hidden-layer settings. The next two net-
works are built by LSTM and GRU units. As the evaluation res-
ults in table 1 shows, both networks based on recurrent neural
networks (LSTM, GRU) outperformed the fully-connected net-
work, which confirms our assumption about the capabilities of
these modules to learn the hidden dynamic in their inputs better.

6.4 Evaluating DeepLO

Consistent with the last section, we evaluated the deep lidar
odometry network (DeepLO) as the next step. For this, we con-
figured the DeepLIO-framework, in a way that only LiDAR-
Feature Networks are activated and used. Furthermore, we de-
ployed two architectures, one based on the FlowNet (Fischer et
al., 2015) and the other based on PointSeg (Wang et al., 2018)
for both siamese Vertex- and Normal-Net feature encoders. As
the results in table 2 shows, the network based on PointSeg
is able to learn and extract relevant features from the LiDAR
images for odometry estimation, where the network based on
FlowNet does not converge to a good solution.

6.5 Evaluating DeepLIO

In the last sections, we presented and analyzed different net-
work combinations to investigate the effect of each sensory in-
formation and to measure their prediction strength. Now it is
time to fuse the strengths of each of these networks into a one-
unit network by utilizing the proposed fusion framework. Also
in this section, we evaluate and compare DeepLIO with other
ICP, Deep learning, and optimization based methods. We re-
duced the training time by the means of transfer learning, based

on the already pre-trained sub-networks introduced in the last
two sections.

Table 3 shows, that compared to both ICP based methods point-
to-point and point-to-plane DeepLIO achieves better results
across all sequences. On the other hand, regarding position
estimation, LOAM and LO-Net achieve slightly better results
throughout all sequences. But regarding orientation estimation,
DeepLIO outperforms all other methods. Furthermore compar-
ing the results in table 3 with table 1 and table 2 we can see, that
the DeepLIO network was able to learn a sophisticated mapping
to fuse both feature streams to improve its estimation capabilit-
ies compared to the other sub-networks. The estimated global
trajectories in fig. 4 validate these results.

7. CONCLUSION AND OUTLOOK

In this paper, we proposed a novel modular deep-learning-based
fusion framework DeepLIO for robust odometry estimation us-
ing LiDAR and IMU sensors. Furthermore, also a loss function
based on homeostatic uncertainty, which also considers both
global and local motion was introduced. In contrast to most
other deep-learning fusion methods, where two state vectors
are concatenated together, we proposed a self-adaptive fusion
strategy based on (Chen et al., 2019), so that the fusion-layer
can learn to weight each input based on its modality, which is
learned during the training. We also showed that our method
evaluated on the KITTI odometry dataset outperforms both
learning-based and model-based methods regarding orientation
estimation and shows minor differences regarding position es-
timation. A reason for this may be the considerable amount
of information loss during the quantization process of the point
clouds. Therefore in a further extension of this work, we will
investigate the effect of using raw point clouds and scene flow
estimation on the accuracy of odometry estimation.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

52

Table 3. Comparison of odometry results of DeepLIO and other methods.

Sequences
00 01 02 04 05 06 07 08 09 10 mean† mean∗

trel
DeepLIO 1.6 5.9 1.96 3.7 1.24 1.97 1.92 2.34 4.4 4.0 2.57 4.2

ICP-po2po 10.54 88.48 11.8 99 14.5 21.51 25.49 10.61 10.83 20.71 # 31.34
ICP-po2pl 6.77 91.9 6.89 98.61 4.77 2.9 4.71 6.48 7.79 6.76 # 23.75

LOAM 1.1 2.79 1.54 1.45 0.75 0.72 0.69 1.18 1.2 1.51 # 1.29
LO-Net 1.47 1.36 1.52 0.51 1.04 0.71 1.7 2.12 1.37 1.8 1.3 1.58

rrel
DeepLIO 0.38 0.19 0.23 0.12 0.21 0.14 0.32 0.34 0.21 0.51 0.19 0.36

ICP-po2po 4.72 11.52 4.06 4.17 5.65 4.25 12.94 4.47 3.96 6.58 # 6.23
ICP-po2pl 2.84 10.83 2.4 1.13 2.09 1.28 2.72 2.45 2.74 2.66 # 3.1

LOAM 0.53 0.55 0.55 0.5 0.38 0.39 0.5 0.44 0.48 0.57 # 0.48
LO-Net 0.72 0.47 0.71 0.65 0.69 0.5 0.89 0.77 0.58 0.93 0.67 0.75

† Average translational t(%) and rotational r(°/100) RMSE on training set.
∗ Average translational t(%) and rotational r(°/100) RMSE on test set.
These methods are not trainable, so that we take their overall odometry results as a test reuslt.

400 300 200 100 0 100 200 300
x (m)

700

600

500

400

300

200

100

0

y
(m

)

GT
DeepLIO
DeepLO
DeepIO

100 0 100 200 300 400 500
x (m)

500

400

300

200

100

0

100

y
(m

)

GT
DeepLIO
DeepLO
DeepIO

100 0 100 200 300 400 500
x (m)

100

0

100

200

300

400

500

y
(m

)

GT
DeepLIO
DeepLO
DeepIO

(a) (b) (c)

Figure 4. Trajectory comparison of DeepLIO, DeepLO and DeepIO, a) Seq. 00 of the training set, b,c) Seq. 09-10 of the test set
plotted using (Grupp, 2017)

.

REFERENCES

Besl, P. J., McKay, N. D., 1992. A Method for Registration of 3-
D Shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D.,
Neira, J., Reid, I., Leonard, J. J., 2016. Past, present, and future
of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Transactions on Robotics.

Chen, C., Rosa, S., Miao, Y., Lu, C. X., Wu, W., Markham,
A., Trigoni, N., 2019. Selective sensor fusion for neural visual-
inertial odometry.

Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y., 2014.
On the properties of neural machine translation: Encoder-
decoder approaches.

Cho, Y., Kim, G., Kim, A., 2019. Deeplo: Geometry-aware
deep lidar odometry.

Chu, T., Guo, N., Backén, S., Akos, D., 2012. Monocular
camera/IMU/GNSS integration for ground vehicle navigation
in challenging GNSS environments. Sensors.

Clark, R., Wang, S., Wen, H., Markham, A., Trigoni, N., 2017.
Vinet: Visual-inertial odometry as a sequence-to-sequence
learning problem.

Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C.,
Golkov, V., van der Smagt, P., Cremers, D., Brox, T., 2015.
Flownet: Learning optical flow with convolutional networks.

Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets
Robotics: The KITTI Dataset. International Journal of Robot-
ics Research (IJRR).

Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for
autonomous driving? the kitti vision benchmark suite. 2012
IEEE Conference on Computer Vision and Pattern Recognition,
3354–3361.

Grupp, M., 2017. evo: Python package for the evaluation of
odometry and slam.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learn-
ing for image recognition. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recogni-
tion.

Hochreiter, S., Schmidhuber, J., 1997. Long Short-term
Memory. Neural computation, 9, 1735-80.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

53

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-Excitation Net-
works. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally,
W., Keutzer, K., 2017. SqueezeNet: AlexNet-level accur-
acy with 50x fewer parameters and ¡1MB model size. ArXiv,
abs/1602.07360.

Kendall, A., Cipolla, R., 2017. Geometric loss functions for
camera pose regression with deep learning.

Kendall, A., Gal, Y., 2017. What uncertainties do we need in
bayesian deep learning for computer vision?

Kendall, A., Gal, Y., Cipolla, R., 2017. Multi-task learning
using uncertainty to weigh losses for scene geometry and se-
mantics.

Kendall, A., Grimes, M., Cipolla, R., 2015. Posenet: A convo-
lutional network for real-time 6-dof camera relocalization.

Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic
optimization.

Klein, G., Murray, D., 2007. Parallel tracking and mapping for
small AR workspaces. 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, ISMAR.

Li, Q., Chen, S., Wang, C., Li, X., Wen, C., Cheng, M., Li, J.,
2019. Lo-net: Deep real-time lidar odometry.

Milioto, A., Vizzo, I., Behley, J., Stachniss, C., 2019. Rangenet
++: Fast and accurate lidar semantic segmentation. 2019
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 4213–4220.

Moosmann, F., 2013. Interlacing self-localization, moving ob-
ject tracking and mapping for 3d range sensors.

Nicolai, A., Skeele, R., Eriksen, C., Hollinger, G. A., 2016.
Deep learning for laser based odometry estimation.

Nistér, D., Naroditsky, O., Bergen, J., 2004. Visual odometry.
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition.

Nützi, G., Weiss, S., Scaramuzza, D., Siegwart, R., 2011. Fu-
sion of IMU and vision for absolute scale estimation in mon-
ocular SLAM. Journal of Intelligent and Robotic Systems: The-
ory and Applications.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chint-
ala, S., 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information Pro-
cessing Systems 32.

Roca, D., Armesto, J., Lagüela, S., Dı́az Vilariño, L., 2014.
Lidar-equipped uav for building information modelling. XL-5.

Segal, A. V., Haehnel, D., Thrun, S., 2010. Generalized-ICP.
Robotics: Science and Systems.

Serafin, J., Grisetti, G., 2015. Nicp: Dense normal based point
cloud registration. 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 742–749.

Tang, J., Chen, Y., Niu, X., Wang, L., Chen, L., Liu, J., Shi, C.,
Hyyppä, J., 2015. LiDAR scan matching aided inertial navig-
ation system in GNSS-denied environments. Sensors (Switzer-
land).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all
you need. Advances in Neural Information Processing Systems.

Velas, M., Spanel, M., Hradis, M., Herout, A., 2018. CNN for
IMU assisted odometry estimation using velodyne LiDAR. 18th
IEEE International Conference on Autonomous Robot Systems
and Competitions, ICARSC 2018.

Wang, S., Clark, R., Wen, H., Trigoni, N., 2017.
DeepVO: Towards end-to-end visual odometry with deep Re-
current Convolutional Neural Networks. 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA).
http://dx.doi.org/10.1109/ICRA.2017.7989236.

Wang, W., Saputra, M. R. U., Zhao, P., Gusmao, P., Yang, B.,
Chen, C., Markham, A., Trigoni, N., 2019. DeepPCO: End-to-
End Point Cloud Odometry through Deep Parallel Neural Net-
work. IEEE International Conference on Intelligent Robots and
Systems.

Wang, Y., Shi, T., Yun, P., Tai, L., Liu, M., 2018. Pointseg:
Real-time semantic segmentation based on 3d lidar point cloud.

Xue, H., Fu, H., Dai, B., 2019. IMU-aided high-frequency lidar
odometry for autonomous driving. Applied Sciences (Switzer-
land).

Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R., 2018.
LEGO: Learning Edge with Geometry all at Once by Watching
Videos. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.

Ye, H., Chen, Y., Liu, M., 2019. Tightly coupled 3D Lidar iner-
tial odometry and mapping. Proceedings - IEEE International
Conference on Robotics and Automation.

Zhang, J., Singh, S., 2014. Loam: Lidar odometry and mapping
in real-time.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

54

	Introduction
	Related Works
	Model-based Lidar-(Inertial) Odometry Estimation
	Learning-based Lidar-(Inertial) Odometry Estimation

	Data Representation
	Spherical Projection
	Normal Estimation

	DeepLIO Architecture
	LiDAR Feature Network
	IMU Feature Network
	Fusion Network
	Odometry Network

	Loss Functions
	Global and Local Loss
	Homoscedastic Weighted Sum Loss

	Experiments
	KITTI Odometry Dataset
	Implementation details
	Evaluating DeepIO
	Evaluating DeepLO
	Evaluating DeepLIO

	Conclusion and Outlook

