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ABSTRACT 

Thermal anomaly detection has an important role in remote sensing. One of the most widely used instruments for this task is a Thermal 
InfraRed (TIR) camera. In this work, thermal anomaly detection is formulated as a salient region detection, which is motivated by the 
assumption that a hot region often attracts attention of the human eye in thermal infrared images. Using TIR and optical images together, 
our working hypothesis is defined in the following manner: a hot region that appears as a salient region only in the TIR image and not 
in the optical image is a thermal anomaly. This work presents a two-step classification method for thermal anomaly detection based on 
an information fusion of saliency maps derived from both, TIR and optical images. Information fusion, based on the Dempster-Shafer 
evidence theory, is used in the first phase to find the location of regions suspected to be thermal anomalies. This classification problem 
is formulated as a multi-class problem and is carried out in an unsupervised manner on a pixel level. In the following phase, classifi-
cation is formulated as a binary region-based problem in order to differentiate between normal temperature variations and thermal 
anomalies, while Random Forest (RF) is chosen as the classifier. In the seconds phase, the classification results from the previous phase 
are used as features along with temperature information and height details, which are obtained from a Digital Surface Model (DSM). 
We tested the approach using a dataset, which was collected from a UAV with TIR and optical cameras for monitoring District Heating 
Systems (DHS). Despite some limitations outlined in the paper, the presented innovative method to identify thermal anomalies has 
achieved up to 98.7 percent overall accuracy. 

1. INTRODUCTION

Anomaly detection is the identification of unusual elements, oc-
currences or observations, which raise suspicions because of a 
significant deviation from the majority of data or expected be-
haviour. In the context of thermal anomaly detection, the goal is 
to identify regions with irregular temperatures that deviate from 
their surroundings. Despite the fact that cold spots may also be 
viewed as thermal anomalies, this study concentrates exclusively 
on hot spot detection as thermal anomalies. 

This study is based on the assumption that a hot spot, a region 
(group of pixels) in a Thermal InfraRed (TIR) image with higher 
average temperature than a surrounding area, is salient, i.e. at-
tracts attention of the human eye in thermal images. On the other 
hand, an entity in an optical image, being a physical body or a 
region, that stands out relative to its neighbourhood, should be 
salient also. The background of this study is the detection of leak-
ages of underground district heating systems (DHS). Such leak-
ages produce hot areas underneath the surface and possibly ther-
mal anomalies on the surface, which typically cannot be detected 
in the visible spectrum from above. We note, in passing, that a 
poorly insulated roof of a building is also being detected using 
our approach. It is, however, easy to separate the two cases, as 
we assume to have access to height data also. 

The main hypothesis proposed here is therefore that a hot spot, 
that appears as a salient region only in the TIR image and is not 
salient in the optical image, is a thermal anomaly. As seen in the 
following chapters, this hypothesis tends to be valid with a num-
ber of exceptions only. Chapter 3 shows that our saliency map (a 
modified version of the saliency model proposed by Itti et al. 
(1998a)) may be considered as a belief function in the sense of 
the Dempster-Shafer Theory (DST, Dempster, 1967; Shafer, 
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1976). One of the key advantages of DST is that it can explicitly 
deal with class unions in a classification problem. Rottensteiner 
et al. (2005) was one of the first to demonstrate that DST can be 
used in an unsupervised pixel classification of high-resolution re-
motely sensed data of different origins. In the context of this 
work, DST is used to identify candidates for thermal anomalies 
by combining information from TIR and optical images in the 
form of their corresponding saliency maps on a pixel-per-pixel 
basis. To reduce the resulting high number of false alarms, we 
then carry out a second binary, supervised region-based classifi-
cation, based on the Random Forest (RF) classifier (Breiman, 
2001). During this phase, thermal anomaly candidates detected 
by DST and their respective surroundings are treated as regions. 
The classification is based on the temperature measured with the 
TIR camera, height information in terms of a Digital Surface 
Model (DSM) and the classification results of DST. The rational 
for using height information is twofold: (a) persons, cars and 
other objects which can cause false alarms stand out with respect 
to the ground surface and can thus be detected in the height data, 
(b) in the presence of height discontinuities, e.g. at the border of
buildings, a region detected by DST typically has a mixed ther-
mal signal coming from both, the roof and the neighbouring
ground. As a consequence, thermal anomalies in such parts of the
image are bound to be false alarms, too.

The paper is organized in the following way: Chapter 2 gives an 
overview of the related work on leakage detection in DHS and 
how saliency analysis is applicable in such particular case. Chap-
ter 3 introduces the developed method, while Chapter 4 presents 
the experiments, the dataset and the findings. The final chapter 
sets out conclusions and open questions for future work. 
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2. RELATED WORK 

A traditional District Heating System (DHS) uses the concept of 
co-generation and distribution of heat produced as waste heat 
during the generation of electricity. A maintenance plan of a DHS 
is focused on a statistical evaluation of the hazards to the net-
work. The problem of underground leakage can be remedied by 
thermal infrared (TIR) airborne imaging of DHSs, which pre-
vents interference with the operating cycle. This technology 
makes it possible to detect surface temperature variations. UAV-
based thermography provides a rapid response for thermal anom-
aly detection and localization with relatively low cost compared 
to manned flight thermography. A common problem of both, air-
borne and UAV-based thermography is that besides leakages a 
number of other objects also exhibit local temperature maxima. 
Examples are recently parked cars, chimneys on a roof, pedestri-
ans or street lamps. Thus, when using only TIR images, the prob-
ability of high false alarms is rather high. 

First methods for large-scale monitoring by manned flight ther-
mography were already studied many decades ago, e.g. by Ljung-
berg et al. (1988) and Axelsson (1988). Friman et al. (2014) pre-
sent a system for the automated analysis of TIR images to find 
leaks in DHS pipes. Leakages are located by choosing the warm-
est, in the range of 0.005% to 0.5%, of all pixels over the pipe. 
As the authors suggest, one way to minimize the number of false 
alarms is to eliminate candidate leak detections in close proxim-
ity to buildings, accounting to about 20% of all false alarms. In 
order to reduce the false alarm rate associated with abnormal tem-
peratures around buildings, buildings are masked out using a wa-
tershed transformation followed by a classification step based on 
Adaboost. Also Berg et al. (2014) address the problem of reduc-
ing the false alarm rate among potential leakages in district heat-
ing networks, detected in airborne TIR images. A region-based 
shape representation of the detection and proximity to buildings 
are used for false alarm reduction. Nonetheless, false alarms in 
existing methods remain the most difficult problem. 

Zhong et al. (2019) present a saliency-based DHS leakage detec-
tion method; an infrared saliency map is created to enhance the 
leakage targets, while the pipeline location comes from a Geo-
graphic Information System (GIS). A local saliency map shows 
small image regions distinct with respect to their local neighbour-
hoods, where intensity and orientation features are adopted in the 
saliency analysis. On the other hand, a global saliency map rep-
resents saliency by calculation of the seldomness of features 
across the entire scene. In the final step, adaptive target segmen-
tation by maximum entropy permits the automatic detection of 
potential leakage targets in the fused saliency map.  

Researchers have used various theories or methods to describe 
and create saliency maps for different applications. Saliency 
models analyse the distinctiveness of image regions with respect 
to their local neighbourhoods (Borji, 2012). The first saliency 
computational model was developed by Itti et al. (1998a), who 
built a saliency map by implementing local centre-surround op-
erations on low-level visual features. Harel et al. (2006) used 
graph algorithms and dissimilarity measurements to derive their 
graph-based visual saliency (GBVS) model. The attention by in-
formation maximization model (AIM) developed by Bruce and 
Tsotsos (2005) is calculated by quantifying the auto-information 
on each local image patch. Qi et al. (2013) were of the first to 
establish the link between thermal target detection and saliency 
detection. In their work, the authors formulate the problem of 
small infrared target detection as salient region detection, which 
was inspired by the fact that a small target can often attract atten-
tion of human eyes in infrared images. 

There are two reasons for using the saliency model suggested by 
Itti et al. (1998a) in this study. The first is the ease with which the 
original model could be changed to serve the purpose of detecting 
hot spots. The second justification is based on the advantage that 
the size of the area to be detected can be controlled by choosing 
the centre and surrounding scales of the model: a detailed discus-
sion can be found in the following sections. In addition, the cur-
rent study demonstrates how the combination of TIR and optical 
image data, in form of their saliency maps, can be used to detect 
thermal anomalies. 

3. ANOMALY DETECTION 

3.1. Terminology and overview 

This chapter introduces and discusses a method for thermal 
anomaly detection based on saliency analysis with TIR and opti-
cal images as information sources. Prior to the discussion of the 
details of the method, basic terminology and assumptions are pre-
sented:  

 Hot spot – region (connected group of pixels) in a TIR im-
age that has higher average temperature than the surround-
ing area. Taking into account that part of image processing 
is done on raw pixel values, a hot spot is also a region with 
higher intensity values than its surroundings, since the TIR 
camera in use is configured to display hotter temperatures 
as higher intensity. 

 Cold spot – region (connected group of pixels) in a TIR 
image that has lower average temperature than the sur-
rounding area. 

 Salient region – a certain a part of an image, that may depict 
an entity or be a region, that appears to an observer to be 
distinct from its surroundings. Following this definition, 
cold and hot spots are salient regions. 

 Thermal anomaly – a hot spot that occurs as a salient region 
only in the TIR image and not in the optical image. 

 
Figure 1: Method overview (see text for details) 

The developed method, as outlined in Figure 1, consists 
of three main components: 

 Photogrammetric processing – the processing was carried 
out employing rigorous photogrammetric techniques (see 
Sledz et al., 2018; 2020 for details) for the TIR and optical 
images captured from an UAV. The products of photo-
grammetric processing are: a thermal orthomosaic contain-
ing intensity values (raw sensor data), which are then con-
verted to temperature values; an optical orthomosaic with 
the same Ground Sampling Distance (GSD) as the thermal 
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one and a DSM, which is derived from optical images, in a 
raster form with the same GSD as the thermal orthomosaic. 

 Classification phase one – this step consists of a saliency 
computation and a multi-class DST-based per-pixel classi-
fication. Note, that while this separation of the different 
functional components suggests that saliency maps are 
computed from the orthomosaics, we actually derive sali-
ency maps from the images instead, and then project the 
saliency maps into object space. The outcome of this step 
are regions containing thermal irregularities, which need be 
further investigated. The details are presented and dis-
cussed in the section 3.3. 

 Classification phase two – this step comprises a binary re-
gion-based classification of the thermal irregularities from 
the preceding stage, making use also of a DSM, see section 
3.4. The main purpose of this second stage is the reduction 
of false alarms. 

3.2. Saliency analysis 

3.2.1 The method according to Itti et al. (1998): Saliency anal-
ysis highlights regions in a picture that stand out from their neigh-
bours. A saliency map is the result of an image transformation 
that assigns a unique quality to each pixel in an image based on 
the degree to which the pixel varies in its neighbourhood.  

The model to compute a saliency map relates to the so-called 
"feature integration theory", which describes human visual 
search strategies. Multiple spatial locations compete for saliency 
within each map, and only locations that locally stand out from 
their surroundings will sustain. The computation consists of a 
number of steps: (i) feature representation in the form of image 
pyramids of colour, intensity and orientation (obtained by Gabor 
filters with different orientation angles); (ii) a centre-surrounding 
difference between pyramids entries (see eq. (1)), (iii) cross-scale 
addition and normalization for the construction of the final sali-
ency map. 

Nine spatial scales, 𝜎 ∈ ሾ0, . . ,8ሿ, are created by progressively 
low-pass filtering and subsampling the input image, yielding hor-
izontal and vertical image-reduction factors ranging from 1:1 
(scale zero, 𝜎 ൌ 0) to 1:256 (scale eight, 𝜎 ൌ 8) in eight octaves. 
Each feature is computed by a set of “centre-surround” differ-
ences (see eq. (1)). Centre-surround difference ⊖ is computed by 
interpolating the image at scale s to the finer scale c, represented 
by Iୡሺsሻ in eq. (1), and then subtracting the images. The centre is 
a pixel at scale c, c ϵ {2, 3, 4}, and the surround is the correspond-
ing pixel at scale s = c +δ, with δ ϵ {3, 4}. Using several scales 
not only for c but also for s yields truly multiscale features, by 
including different size ratios between the centre and surround 
regions.  

Iሺc, sሻ ൌ |Iሺcሻ ⊖ Iሺsሻ| ൌ |Iሺcሻ െ Iୡሺsሻ| ( 1 ) 

One challenge in integrating the different feature maps of colour, 
intensity and orientation is that they represent non-commensura-
ble modalities with different dynamic range. In addition, salient 
regions, which appear strongly in only a few maps, may be ob-
scured by noise or by the less-salient regions in the remaining 
maps, and thus get lost. To address this difficulty, Itti et al 
(1998a) employs a map normalization operator 𝑁ሺ∙ሻ described by 
eq. (2). Such an operator globally promotes maps in which there 
are a small number of high peaks, while globally suppressing 
maps containing multiple comparable responses. 

𝑁൫𝐼௠௔௣൯ ൌ 〈𝐼௠௔௣〉଴
ெ ∙ ሺ𝑀 െ 𝑚ഥሻଶ ( 2 ) 

where 〈𝐼௠௔௣〉଴
ெ stands for the normalization of the values be-

tween ൣ𝑚𝑖𝑛൫𝐼௠௔௣൯, 𝑚𝑎𝑥൫𝐼௠௔௣൯൧ of the map to a fixed range of 

ሾ0, … , 𝑀ሿ, in order to eliminate modality-dependent amplitude 
differences (without loss of generality M can be set to 1). 𝑚ഥ  is 
the average of all local maxima in a 3*3 pixel neighbourhood.  

Feature maps of colour, intensity and orientation are combined 
into three results (called “conspicuity maps” by Itti et al., 1998) 
at scale σ = 4. They are obtained through across-scale addition, 
which consists of downscaling or upscaling each map to scale 4 
and point-by-point addition. In the end, the saliency map is cal-
culated as an average of normalized conspicuity maps. 

3.2.2 The method used in this work: First, since the TIR images 
are single-channel images, the saliency map is determined solely 
on the basis of intensity and orientation features, colour features 
are not used. Also, while the original approach aims to identify 
regions that are more likely to attract visual attention (these could 
be bright or dark), the purpose of saliency analysis usage in this 
work is to find hot spots. Hot spots are characterised by a higher 
temperature (not a lower one) and therefore appear brighter than 
its surroundings. However, the scale-difference operation, shown 
in eq. (1), uses absolute differences to be sensitive to positive 
(bright) and to negative (dark) changes. In order to only detect 
bright regions, the equation is modified as shown in eq. (3), in-
troducing a threshold 𝑡ℎௗ௜௙௙. To extract only bright regions the 
value for 𝑡ℎௗ௜௙௙ is set to 0. When 𝑡ℎௗ௜௙௙ is set to minus infinity 
eqs. (1) and (3) are identical. Figure 2 demonstrates the effect of 
𝑡ℎௗ௜௙௙ during saliency computation. The picture in the centre 
shows the saliency map overlaid on the input image 
with 𝑡ℎௗ௜௙௙ ൌ െ∞, being compatible with the original method. It 
can be seen that, beside the hot street lamp, that is highlighted by 
red circles, the cold garbage bins, that are highlighted by yellow 
circles, are also salient. This is the direct influence of the absolute 
operator introduced in the eq. (1). However, when  𝑡ℎௗ௜௙௙ ൌ 0 
(see right image at Figure 2) the garbage bins are no longer sali-
ent. On the other hand, the surface under the garbage bins is hot-
ter and, as the consequence, it is detected as salient.  

Iሺc, sሻ ൌ หmax൫Iሺcሻ െ Iୡሺsሻ , 𝑡ℎௗ௜௙௙൯ห ( 3 ) 

 
Figure 2: Influence of 𝑡ℎௗ௜௙௙ on saliency computation. The sali-
ency map overlay, shown in the centre and right images has the 

following interpretation: no colour represents zero saliency, 
blue-greenish represents weak saliency, red represents high sali-

ency. 

Another extension of the original method concerns the normali-
zation: the original approach attempts to identify a region that is 
most likely to attract visual attention, in terms of its importance 
related to other objects in a scene. This is done by map normali-
zation, i.e. by comparing the global maximum M of the entire 
map with the average of all local maxima 𝑚ഥ. When the difference 
is significant, M stands out, and during the subsequent combina-
tion with other maps contributes the most to the final saliency 
result, i.e. the map is strongly promoted. When the difference is 
negligible, the map does not contain anything special and there-
fore will only marginally contribute to the final saliency result. 

In contrast, our aim is to also preserve smaller differences in tem-
perature, which tend to be small local peaks in the maps. This 
goal can be reached by restricting the initial normalization range 
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from ൣ𝑚𝑖𝑛൫𝐼௠௔௣൯, 𝑚𝑎𝑥൫𝐼௠௔௣൯൧ to ൣ𝑝𝑟൫𝐼𝑚𝑎𝑝, 𝑝𝑚𝑖𝑛൯, 𝑝𝑟൫𝐼𝑚𝑎𝑝, 𝑝𝑚𝑎𝑥൯൧, 

where 𝑝𝑟 stands for percentile and 𝑝௠௔௫ and 𝑝௠௜௡ are the per-
centile values of the  𝐼௠௔௣. While the use of 𝑝௠௔௫ less than 100 
is intended to promote local peaks, the use of 𝑝௠௜௡ higher than 0 
results in supressing noise. Figure 3 demonstrates the influence 
of the various limits involved in normalization (the meaning of 
the colours is the same as in Figure 2). It should be noted, that for 
the results shown in Figure 3,  𝑡ℎௗ௜௙௙ is set to zero. The upper left 
picture is the input image with four hot entities: the group of peo-
ple (top, in the middle), the square manhole (top, left), the round 
manhole (centre) and a hot spot (centre, right) that was cause by 
the DHS. The upper right picture shows the outcome of the usage 
of 𝑁ሺ∙ሻ as proposed by Itti et al. (1998a): the outcome is that only 
the group of people is salient and the rest of the hot entities is not. 
The left picture at the bottom shows the outcome for 𝑝௠௔௫ ൌ
99%. The outcome shows the desired result: all four entities are 
salient. The right picture at the bottom row shows the outcome 
where, in addition, 𝑝௠௜௡ = 1%. All four entities are still salient 
and the result contains less noise, visible in terms of less bluish 
effects of the overlay. It should be noted that the saliency map is 
thus very sensitive to the selection of 𝑝௠௔௫. Typically, a change 
of 𝑝௠௔௫ by 1 percent can lead to a significant change. The choice 
of 𝑝௠௜௡, however, is much less critical.  

 

Figure 3: Effect of the normalization limits on the saliency com-
putation (for the meaning of colour, see caption of Figure 2). 

During this study, it was found that optical images should also be 
viewed differently than in the original approach from the saliency 
analysis point of view. While Itti et al., (1998) seek to identify 
locations that should attract visual attention, one of the purposes 
of this study is to find the same salient regions in TIR and optical 
images. Itti's approach handles all three types of features (colour, 
intensity and orientation) in the same way. The consequence is 
that if one of the features obtains a highest score, colour for ex-
ample, the others will be suppressed. Figure 4 demonstrates the 
example of the scene where two cars are observed. When the col-
our features are in use as seen in the central image of Figure 4, 
the red car has the highest score and thus the grey car is not con-
sidered to be salient. Our goal, on the other hand, is to have both 
cars as salient regions. To address this issue, this study suggests 
the use of the max. and min. intensity across all three colour chan-
nels, 𝐼௠௔௫  and 𝐼௠௜௡  as shown in eq. (4) and (5). 𝐼௠௔௫  is respon-
sible for the detection of bright regions, while 𝐼௠௜௡  is responsible 

for the identification of dark regions. The right image in Figure 4 
shows the effect when Imax is used: both cars are salient in the 
same way. 

 

Figure 4 Saliency map comparison of the effect of the diffrent 
input types. For the meaning of colour, see caption of Figure 2. 

𝐼௠௔௫ሺ𝑥, 𝑦ሻ ൌ max
௖ ∈ ሼோ௘ௗ,஻௟௨௘,ீ௥௘௘௡ሽ

𝐼௢௣ሺ𝑥, 𝑦, 𝑐ሻ  ( 4 ) 

    

𝐼௠௜௡ሺ𝑥, 𝑦ሻ ൌ mın
௖ ∈ ሼோ௘ௗ,𝐵𝑙𝑢𝑒,ீ௥௘௘௡ሽ

𝐼𝑜𝑝ሺ𝑥, 𝑦, 𝑐ሻതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത  ( 5 ) 

where ሺ𝑥, 𝑦ሻ are the image coordinates and ഥ  stands for the com-
plement operator. The complement of an image is computed by 
subtracting pixel values from the maximum possible value of the 
image. 

3.3. Classification phase one 

3.3.1 Introduction to Dempster-Shafer Theory: The detection 
and localization of thermal anomalies is considered as a classifi-
cation problem based on saliency maps as input. The classifica-
tion relies on a fusion of information sources based on the Demp-
ster-Shafer Theory (DST, Dempster, 1967; Shafer, 1976). DST 
has been introduced as an expansion of probabilistic estimation 
that can accommodate imprecise and incomplete knowledge as 
well as data conflicts. An important property of this theory is its 
capability to consider also unions of classes. We use N mutually 
exclusive classes 𝐶௜ with 1 ൑ 𝑖 ൑ 𝑁: 

Θ ൌ ሼ𝐶ଵ, 𝐶ଶ, … , 𝐶ேሽ  ( 6 ) 

with Θ the so-called frame of discernment. In the current work, 
N is equal to four and Θ is described by: 

 𝐶௔ – class that represents a thermal anomaly candidate. 
 𝐶௛ – class that represents a hot spot. 
 𝐶௖ – class that represents a cold spot. 
 𝐶௕ – class that represents a thermal background.  

In DST, the state space is defined as the power set of Θ. This set, 
usually referred as 2஀, contains all subsets of Θ and the empty 
set ∅. In DS theory, a probability mass mሺ𝐴ሻ is then assigned to 
every element 𝐴 ∈ 2஀ by an information source such that 0 ൑
mሺ𝐴ሻ ൑ 1, mሺ∅ሻ ൌ 0 and ∑ mሺ𝐴ሻ ൌ 1஺∈ଶ౸ . Imprecise infor-
mation can be handled by assigning a non-zero probability mass 
to the union of two or more classes. If P data sources are availa-
ble, the probability mass m௜ሺ𝐵௜ሻ has to be defined for each data 
source i with 1 ൑ i ൑ 𝑃 and for all elements 𝐵௜ ∈ 2஀. The DST 
allows the fusion of these probability masses from a variety of 
data sources to compute a combined probability mass for each 
𝐴 ∈ 2஀ according to eq. (7): 

𝑚ሺ𝐴ሻ ൌ
∑ ሺ∏ m௜ሺ𝐵௜ሻଵஸ୧ஸ௉ ሻ஻భ∩஻మ∩…∩஻೛ୀ஺

1 െ ∑ ሺ∏ m௜ሺ𝐵௜ሻଵஸ୧ஸ௉ ሻ஻భ∩஻మ∩…∩஻೛ୀ∅
  ( 7 ) 

 
Two parameters, support and plausibility (see eqs. (8) and (9)), 
can be defined for all 𝐴 ∈ 2஀. The support for A aggregates all 
probability masses that directly provide evidence for A, while the 
plausibility aggregates all probability masses that do not directly 
provide evidence against A. 
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𝑠𝑝ሺ𝐴ሻ ൌ ෍ mሺ𝐵ሻ
஻⊆஺

  ( 8 ) 

 

𝑝𝑙ሺ𝐴ሻ ൌ ෍ mሺ𝐵ሻ ൌ 1 െ 𝑠𝑝ሺ𝐴̅ሻ
஻∩஺ஷ∅

  ( 9 ) 

 
The classification requires a hard decision for only one class 𝐶௜, 
which implies a mapping from the state space 2஀ back to Θ. A 
number of different functions have been defined in the literature 
for such mapping. The three most prominent mapping functions 
are the maximum support rule (eq. 10), the maximum plausibility 
rule (eq. 11) and the maximum mean rule (eq. 12). 

D ൌ 𝑎𝑟𝑔max
୅∈஀

𝑠𝑝ሺ𝐴ሻ  ( 10 ) 

D ൌ 𝑎𝑟𝑔max
୅∈஀

𝑝𝑙ሺ𝐴ሻ  ( 11 ) 

D ൌ 𝑎𝑟𝑔max
୅∈஀

൫𝑠𝑝ሺ𝐴ሻ ൅ 𝑝𝑙ሺ𝐴ሻ൯  ( 12 ) 

 
3.3.2. DST approach used in this work: Three information 
sources are introduced in this work for the given problem of ther-
mal anomaly detection: 

 𝑆௛௢௧ – an information source that represents hot tempera-
tures, described by a belief function 𝑃௛ ൌ 𝑆𝑀்ூோ, 
whereas 𝑆𝑀்ூோ is the saliency map of the TIR orthomosaic.  

 𝑆௖௢௟ௗ – an information source that represents cold temper-
atures, described by a belief function 𝑃௖ ൌ 𝑆𝑀்ூோതതതതത, 
whereas 𝑆𝑀்ூோതതതതത is the saliency map of the complement of 
the TIR orthomosaic. 

 𝑆௢ – an information source that represents salient regions 
from the optical orthomosaic. It is described by a belief 
function given in eq. (13). 

𝑃௢ ൌ 𝑚𝑎𝑥ሺ𝑆𝑀௠௔௫, 𝑆𝑀௠௜௡ሻ  ( 13 ) 

         where 𝑆𝑀௠௔௫ 𝑎𝑛𝑑 𝑆𝑀௠௜௡ are: 

o 𝑆𝑀௠௔௫ – a saliency map that represents bright re-
gions in the optical orthomosaic, that is calculated 
from the 𝐼௠௔௫. 

o 𝑆𝑀௠௜௡ – a saliency map that represents dark re-
gions in the optical orthomosaic, that is calculated 
from the 𝐼௠௜௡. 

 

Table 1 shows all subsets of 2஀ and their probability masses. The 
justification for the assignment of the belief functions for each 
subset of the 2஀ is as follows: 

 High values of 𝑃௢ are an evidence for a salient region in the 
optical image. Such a region can be hot (e.g., a manhole 
that is marked by “2” in Figure 5), cold (e.g., garbage bins 
that are marked by “4” in Figure 5) or a part of thermal 
background (e.g., a road marking, that has the same tem-
perature as the surroundings, that is marked by “3” in Fig-
ure 5). Therefore, 𝑃௢ is assigned as the probability of the 
union of 𝐶௛, 𝐶௖ and 𝐶௕. Low values of 𝑃௢ provide evidence 
for thermal background or a thermal anomaly. Thus, 
ሺ1 െ 𝑃௢ሻ is assigned as the probability of the union of 𝐶௔ 
and 𝐶௕. As can be seen from the numerator of the combined 
probability mass of 𝐶௕ in Table 1, 𝑆௢ does not provide any 
evidence for a decision regarding thermal background.  

 High values of 𝑃௖ are an evidence for a cold region (e.g., 
garbage bins that are marked by “4” in Figure 5), thus 𝑃௖ is 
assigned to 𝐶௖. Low values of 𝑃௖ provide evidence for ther-
mal background, a hotspot or a thermal anomaly. Then, 
ሺ1 െ 𝑃௖ሻ is assigned as the probability of the union of 
𝐶௔, 𝐶௛ and 𝐶௕. 

 High values of 𝑃௛ are an evidence for a hot region, that can 
come from a hotspot (a manhole that is marked by “2” in 
Figure 5) or a thermal anomaly (heat signature that is 
marked by “1” in Figure 5). Therefore, 𝑃௛ is assigned as 
the probability mass of the union of the 𝐶௛ and 𝐶௔. Low 
values of the 𝑃௛ provide evidence for thermal background 
or a cold region, thus ሺ1 െ 𝑃௛ሻ is assigned as the probabil-
ity of the union of the 𝐶௖ and 𝐶௕. 

Given the fact that the combined probability masses for all sub-
sets of 2஀ in Table 1, that include a union of one or more classes 
from Θ, are equal to zero, support and plausibility of all classes 
are equal. This means that the three decision rules described by 
eqs. (10) to (12) yield the same outcome. After per-pixel classi-
fication, connected components of the 𝐶௔ class pixels are gener-
ated and are considered as candidate regions for thermal anom-
aly. Regions with a size of less than 50 pixels are rejected, be-
cause we found empirically that they are too small to provide 
enough details, particularly with regard to their surroundings. 

  

Figure 5 Saliency map exmaples (for the meaning of the colours, see caption of Figure 2) 
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3.4. Classification phase two 

While the first classification phase may be seen as a detection and 
localization stage with the main purpose is not to miss any ther-
mal anomalies, the second classification phase is important to re-
duce the resulting false alarms among thermal anomaly candi-
dates. We define the problem as a binary classification in order 
to distinguish only between thermal anomalies and normal tem-
perature variations. In comparison to the first phase, the candi-
dates for thermal anomaly are now viewed as regions rather than 
single pixels. Each thermal anomaly candidate, which is detected 
in the classification phase one, is characterised by a set of features 
that are extracted from different sources of information. The in-
formation sources for the second classification phase are the clas-
sification results of phase one, the TIR orthomosaic, now with 
temperature values, and the DSM. The DSM comes into play to 
provide information on height variations, which may indicate 
people or cars and thus false alarms, or height discontinuities, e.g. 
at the outline of a building, where the temperature signal is a mix-
ture of (at least) two surfaces and thus unreliable. 

3.4.1 Feature extraction: While modern deep learning methods 
learn the features to be used for classification, such approaches 
need a lot of training data, which in our case are not available.  
Therefore, in this work, features are defined in a more classical 
way. Region-based features are calculated for each thermal 
anomaly candidate detected in the previous stage and its sur-
roundings. The surrounding area is calculated by morphological 
filtering as follows: 

𝑠𝑢𝑟𝑟 ൌ ሺ𝑜𝑏𝑗 ⊗ 𝑠𝑒ଵሻ & ሺ𝑜𝑏𝚥 ⊗ 𝑠𝑒ଶሻതതതതതതതതതതതതതതതത   ( 14 ) 

where 𝑜𝑏𝑗 is a binary image of a single thermal anomaly candi-
date, ⊗ is morphological dilation, & stands for the binary “and” 
operation and ഥ  stands for binary complement. 𝑠𝑒ଵ and 𝑠𝑒ଶ are 
circular structuring elements with 𝑟ଵ ൌ 1.5 ∙ 𝑟௠௜௡ and 𝑟ଶ ൌ 3 ∙
𝑟௠௜௡. 𝑟௠௜௡ is the smaller principle axis of the candidate region.  

 

 

The usage of 𝑠𝑒ଶ ensures that there is no overlap between object 
and its surroundings. The surroundings can thus be considered as 
a, possibly deformed, ring. The surroundings are then divided 
into 8 segments by intersection with 8 rays evenly spaced with 
respect to their direction, and each segment is represented by its 
average source value. Examples for the area of the surroundings 
and the resulting segments are shown in Figure 6 in yellow in the 
bottom left and right sub-images. 

The following group of features is defined so that a thermal 
anomaly candidate, which is characterized by its average temper-
ature value 𝑡௢௕௝, stands out against its surroundings, character-
ized by the vector 𝒕௦௨௥௥ of the average temperatures of the sur-
rounding segments. The employed features are 𝑡ௗ௜௙௙ି௠௔௫, 
𝑡ௗ௜௙௙ି௠௜௡ and 𝑡ௗ௜௙௙ିௗ௦௠. 𝑡ௗ௜௙௙ି௠௔௫ stand for maximum temper-
ature difference between the area of the thermal anomaly candi-
date and its surroundings and is described by eq. (15). 𝑡ௗ௜௙௙ି௠௜௡ 
stands for minimum temperature difference between the area and 
its surroundings and is described by eq. (16). 𝑡ௗ௜௙௙ିௗ௦௠ describes 
the temperature difference between the thermal anomaly candi-
date and the surrounding segment, for which the DSM value 
(𝑑𝑠𝑚௦௨௥௥ሺ𝑗ሻ) is closest to the average height of the thermal 
anomaly candidate area (𝑑𝑠𝑚௢௕௝ሻ. The formulation of this fea-
ture is shown in eq. (17). This feature encourages the fact that the 
difference in temperature should be measured on the same height 
as far as possible, as it makes little sense to take into account the 
difference in temperature between, e.g., the ground surface and 
the roof of a building. 

𝑡ௗ௜௙௙ି௠௔௫ ൌ 𝑡௢௕௝ െ 𝒕௦௨௥௥ሺ𝑖ሻ, 𝑤ℎ𝑒𝑟𝑒  
𝑖 ൌ argmin

௝∈ሾ଴,ଵ,..,଻ሿ
൫𝒕௦௨௥௥ሺ𝑗ሻ൯ 

( 15 )

𝑡ௗ௜௙௙ି௠௜௡ ൌ 𝑡௢௕௝ െ 𝒕௦௨௥௥ሺ𝑖ሻ, 𝑤ℎ𝑒𝑟𝑒  
𝑖 ൌ argmax

௝∈ሾ଴,ଵ,..,଻ሿ
൫𝒕௦௨௥௥ሺ𝑗ሻ൯ 

( 16 )

   

Table 1 Probabilty masses of 𝐴 ∈ 2௵

                                 Source 
Element of 2ఏ  

𝑆௛௢௧ 𝑆௖௢௟ௗ 𝑆௢ Combined probability mass mሺAሻ

𝐶௔ 0 0 0 𝑃௛ሺ1 െ 𝑃௖ሻሺ1 െ 𝑃௢ሻ

1 െ ൫𝑃௛𝑃௖ ൅ ሺ1 െ 𝑃௛ሻ𝑃௖ሺ1 െ 𝑃௢ሻ൯
𝐶௛ 0 0 0 𝑃௛ሺ1 െ 𝑃௖ሻ𝑃௢

1 െ ൫𝑃௛𝑃௖ ൅ ሺ1 െ 𝑃௛ሻ𝑃௖ሺ1 െ 𝑃௢ሻ൯
𝐶௖ 0 𝑷𝒄 0 ሺ1 െ 𝑃௛ሻ𝑃௖𝑃௢

1 െ ൫𝑃௛𝑃௖ ൅ ሺ1 െ 𝑃௛ሻ𝑃௖ሺ1 െ 𝑃௢ሻ൯
𝐶௕ 0 0 0 ሺ1 െ 𝑃௛ሻሺ1 െ 𝑃௖ሻ

1 െ ൫𝑃௛𝑃௖ ൅ ሺ1 െ 𝑃௛ሻ𝑃௖ሺ1 െ 𝑃௢ሻ൯

𝐶௔ ∪ 𝐶௛ 𝑷𝒉 0 0 0 
𝐶௔ ∪ 𝐶௖ 0 0 0 0 
𝐶௔ ∪ 𝐶௕ 0 0 ሺ𝟏 െ 𝑷𝒐ሻ 0 
𝐶௛ ∪ 𝐶௖ 0 0 0 0 
𝐶௛ ∪ 𝐶௕ 0 0 0 0 
𝐶௖ ∪ 𝐶௕ ሺ𝟏 െ 𝑷𝒉ሻ 0 0 0 

𝐶௔ ∪ 𝐶௛ ∪ 𝐶௖ 0 0 0 0 
𝐶௔ ∪ 𝐶௛ ∪ 𝐶௕ 0 ሺ𝟏 െ 𝑷𝒄ሻ 0 0 
𝐶௔ ∪ 𝐶௖ ∪ 𝐶௕ 0 0 0 0 
𝐶௛ ∪ 𝐶௖ ∪ 𝐶௕ 0 0 𝑷𝒐 0 

𝐶௔ ∪ 𝐶௛ ∪ 𝐶௖ ∪ 𝐶௕ 0 0 0 0 
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𝑡ௗ௜௙௙ିௗ௦௠ ൌ 𝑡௢௕௝ െ  𝒕௦௨௥௥ሺ𝑖ሻ, where 
𝑖 ൌ argmin

௝∈ሾ଴,ଵ,..,଻ሿ
ห𝑑𝑠𝑚௦௨௥௥ሺ𝑗ሻ െ 𝑑𝑠𝑚௢௕௝ห 

( 17 )

As discussed before (see left image in Figure 2), one of the pos-
sibilities that triggers false alarms is a cold body of class  𝐶௖ next 
to a surface of average temperature (thus hotter than the cold 
body). This surface will then be salient and will be considered a 
thermal anomaly candidate. To identify such false alarms we use 
the distance between the thermal anomaly candidate and the near-
est cold object. First, for each pixel of the candidate, we compute 
the distance x to the nearest pixel belonging to a cold object 𝐶௖. 
In order to normalise the distances we then apply the sigmoid 
function (see eq. 18) to all x. In the sigmoid function, 𝛼 is the 
slope and b represents the value of x where the function has a 
value of 0.5. In order to give smaller x values a higher weight, we 
choose a value 𝑎 ൏ 0. Finally, the feature (𝑑௖௢௟ௗି௢௕௝), that re-
flects the proximity of the thermal anomaly candidate to a cold 
region, is computed as the average of the values f(x) for all pixels 
belonging to the candidate. 

𝑓ሺ𝒙ሻ ൌ
1

1 ൅ 𝑒ି௔ሺ௫ି௕ሻ 
( 18 ) 

Ideally, a thermal anomaly is surrounded only by a uniform tem-
perature environment, which should be defined by DST as ther-
mal background 𝐶௕. However, there are instances where other 
classes occur in the surroundings of the thermal anomaly candi-
date. The pixel-wise class distribution (ℎ௖௟௔௦௦) of the surround-
ings of the candidate region, represented as the normalized histo-
gram, provides such an information and is therefore defined as 
yet another feature (note, that here, the surrounding area is 
viewed as a whole entity and not as a set of segments). 

The last source of information used to extract features is the 
DSM. As was discussed above, temperature differences between 
areas belonging to different heights can trigger false alarms. 
Therefore, we require thermal anomaly candidates to lie on a 
plane. The main aim of the next feature is to characterize thermal 
anomaly candidates detected by DST, in terms of height variation 
of the candidate area and its surroundings. To describe these var-
iations, we compute point, line and area regions from the DSM 
according to Förstner (1994). Then, the number of pixels belong-
ing to each region type in the candidate area and its surroundings, 
respectively, which come in the form of normalised histograms 
ℎௗ௦௠ି௢௕௝ and ℎௗ௦௠ି௦௨௥௥, is considered as the feature to be used 
in the classification. Figure 6 gives an example of false alarm (re-
gion marked with red in the bottom left image), which is caused 
by a difference in temperature between the ground surface and 
the building roof. In such case, ℎௗ௦௠ି௢௕௝ ideally includes entries 
only for area regions (see the bottom right image in Figure 6), 
while in comparison, ℎௗ௦௠ି௦௨௥௥ also has entries for line regions.   

Altogether, each thermal anomaly candidate is described by a 
feature vector. Table 2 summarize the structure of the feature 
vector. 

Table 2 Feature vector 

Feature Size Feature Size 
𝒕𝒅𝒊𝒇𝒇ି𝒎𝒂𝒙 1 𝒉𝒄𝒍𝒂𝒔𝒔ି𝒔𝒖𝒓𝒓 4 
𝒕𝒅𝒊𝒇𝒇ି𝒎𝒊𝒏 1 𝒉𝒅𝒔𝒎ି𝒐𝒃𝒋 3 
𝒕𝒅𝒊𝒇𝒇ି𝒅𝒔𝒎 1 𝒉𝒅𝒔𝒎ି𝒔𝒖𝒓𝒓 3 
𝒅𝒄𝒐𝒍𝒅ି𝒐𝒃𝒋 1   

 

 

Figure 6: Feature selection - example of the a false alarm: 
thermal anomaly candidate close to a building. The bottom right 
image shows the description of height variations: area regions 
are marked in blue, line regions in green and point regions in 

red. 

3.4.2 Classification: The supervised classification itself is for-
mulated as a binary problem in order to differentiate between 
thermal anomalies and normal temperature variations. We use the 
standard Random Forest (RF) classifier, as it has achieved prom-
ising results in preliminary tests. The dataset is formed by all 
thermal anomaly candidates from the phase one classification. 
For each of these candidates, a label has been assigned manually, 
showing whether it is a thermal anomaly or it may be categorized 
as a normal temperature variation. 

4. EXPERIMENTS AND RESULTS 

4.1. Objectives 

The main goal of the experimental part is, of course, to confirm 
the main hypothesis on which this study is based. In addition, it 
is important to understand the effect of the saliency model pa-
rameters and their relationship to the TIR and the optical images, 
the influence of the different training methods for the supervised 
learning of the second phase, and the influence of the temperature 
of the thermal anomaly candidates on the results of the classifi-
cation.  

The criteria to measure the success of the experiments obviously 
depend on the application. In DHS monitoring, the cost of miss-
ing an existing pipe leakage is very high. On the other hand, the 
cost of false positives, the time spent by a human operator to val-
idate the origin of an observed thermal anomaly, could be con-
sidered to be low.  

The proposed method is based on two classification phases, and 
the success criteria for each one are slightly different. In the first 
phase, ideally all real thermal anomalies should be detected and 
a higher number of false positive alarms is acceptable. The crite-
ria for the second classification phase is to reduce these false pos-
itive alarms as much as possible, while ideally keeping all real 
anomalies.  

4.2. Data and processing strategy 

The data was acquired by a DJI M200 UAV, a vertical take-off 
and landing (VTOL) quadcopter fitted with a GNSS receiver, an 
inertial measurement unit (IMU) and a barometer. The camera 
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system in use was the XT2 DJI Zenmuse. It is a gimbal-stabilized 
camera setup, which rigidly combines a dual-sensor design of 
FLIR radiometric thermal imager and a CMOS optical camera. 

A total of 11 flights have been carried out in various regions of 
Hannover, Germany. Flight planning was based on the TIR cam-
era because of a lower GSD. Based on a pixel size of 17 μm and 
a focal length of 13 mm, the flight height was set to 40 meters 
above ground, resulting in a GSD of 5.2 cm for the TIR images 
(the corresponding GSD of the optical camera was 0.95 cm). 

Rigorous photogrammetric processing was carried out using 
Agisoft Metashape2 including GNSS measurements for the posi-
tions of the image projection centres. A detailed explanation of 
the photogrammetric processing and the results can be found at 
Sledz et al. (2020).  

As noted by Sledz et al. (2020), this particular dataset lacks real 
water leakages. On the other hand, the working hypothesis is true 
not only of DHS-related leaks. It was therefore decided to con-
centrate on the detection of all available thermal anomalies in the 
current dataset. As the consequence, in this work no GIS data 
were used to limit the search space for thermal anomalies around 
the pipe locations, as was done by Sledz et al. (2020). 

The Saliency Model Implementation Library for Experimental 
Research (SMILER) by Wloka et al. (2018) is a software pack-
age, which provides an open, standardized, and extensible frame-
work for computational saliency models. This software package 
was used in all relevant parts of this study to compute the saliency 
map and served a starting point for the required modifications. 

4.3. Results 

4.3.1 Saliency analysis and classification phase one: The size 
of the region detected by the saliency analysis depends on the 
"centre-surround" difference step in the saliency model. Itti et al. 
(1998a) use central scales of c ϵ {2, 3, 4}, and a surrounding scale 
s = c +δ, with δ ϵ {3, 4}. As Zhong et al. (2019) also pointed out, 
the values for c and s influence the size of detectable regions. By 
selecting a larger value for c, larger objects become salient, and 
small objects are not salient anymore. The following configura-
tions have been used in the current study: 

 For the TIR images, which come with a resolution of 
512x640 pixels, saliency scales are selected as c ϵ {1, 2, 3, 
4} and δ ϵ {3, 4}. 

 For the optical images, which come with a resolution of 
3000x4000 pixels, the selected values c ϵ {3, 4, 5, 6} and δ 
ϵ {3, 4}. 

The choice of the larger values of c during saliency map calcula-
tion for optical images is based on the fact, that the optical camera 
has higher GSD. The need to align the TIR and optical represen-
tations in object space entails such the selection. 

After a series of experiments, it was concluded that the best way 
to calculate a saliency map of an orthomosaic is to use orthopro-
jection of saliency maps of single images. Such an approach en-
sures that a region with smaller temperature changes do not com-
pete with a region from a different section of the entire scene, 
thus preserving local saliency, i.e. saliency per input image. 

Figure 7 and Figure 8 show examples of the phase one classifi-
cation results. The figures are constructed in a following manner: 
to the left is part of an optical orthomosaic, the corresponding of 
the TIR orthomosaic is shown in the centre, classification results 
are shown as an overlay on the TIR orthomosaic to the right. The 

                                                            
2 https://www.agisoft.com/ 

classification results are indicated by the following colours: ther-
mal anomaly candidates 𝐶௔ are shown in red, 𝐶௔ smaller than 50 
pixels in magenta, cold spots 𝐶௖ in blue, hot spots 𝐶௛ in yellow; 
thermal background 𝐶௕ is not shown in colour. It can be seen, that 
the thermal anomalies (marked by red dotted circles), as defined 
by the working hypothesis, are indeed identified correctly. Cold 
entities such as the garbage bins in Figure 7 or the car roofs in 
Figure 8 are also identified correctly as 𝐶௖. Hot items such as the 
manhole in Figure 7 or the car’s engine hoods in Figure 8 are 
classified correctly as 𝐶௛. Areas without major temperature fluc-
tuations are classified as thermal background 𝐶௕. 

 
Figure 7: Phase one classification results – scene 1 

 
Figure 8: Phase one classification results – scene 2 

Classification evaluation of DST was performed manually: each 
thermal anomaly candidate was visually inspected using the TIR 
and the optical image. It should be noted that as we are only in-
terested in thermal anomalies, only the results for 𝐶௔ were vali-
dated, while the remaining parts of the images were checked for 
non-detected thermal anomalies.  Overall, the findings are satis-
factory, from the 1390 detected thermal anomaly candidates 59 
out of 60 true thermal anomalies were found, resulting in a recall 
of 98% and a precision of 4% for the thermal anomaly class. The 
low precision follows our expectation and underlines the need of 
the second classification phase in order to eliminate the false 
alarms.  

In spite of this positive outcome, the suggested DST classifica-
tion has its own limitations: 

 The change in intensity of the optical image induced by 
shadows may be considered as salient, if it has appropriate 
size. A thermal anomaly underneath this region is then in-
correctly classified as a hot spot (𝐶௛). Figure 9 shows an 
example of a bad roof insulation that creates a heat escape 
and at the same time part of the roof looks much brighter 
than the surroundings due the partial shadow in the optical 
image, which is considered salient in the optical image. The 
consequence is that the true thermal anomaly is incorrectly 
classified as a hot spot (marked as yellow) and not as ther-
mal anomaly. 

 The suggested technique relies on high-quality optical im-
ages in terms of contrast, so that objects on the surface 
stand out as salient regions. However, this is not always the 
case. Figure 10 shows an example of a manhole, which is 
visible in the TIR image, but not in the corresponding opti-
cal one due to low illumination. As a result, this area is only 
salient in the TIR image and thus classified incorrectly as 
thermal anomaly, thus it is a false alarm. 
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Figure 9: False classification by DST caused by the shadows. 

 
Figure 10: False classification by DST as a consequence of low 

contrast in the optical image 

4.3.2 Classification phase two: The thermal anomaly candi-
dates, which were detected by DST, form the dataset for the sec-
ond classification phase. This phase distinguishes between ther-
mal anomalies, which are defined as class 1, and the rest of the 
cases, which are defined as class 0. Table 4 depicts the number 
of cases for the two classes depending on the temperature differ-
ence between the region and the surroundings, based on the fea-
ture 𝑡ௗ௜௙௙ି௠௜௡ ; it can be seen that the two classes occur with sig-
nificantly different frequency. The RF parameters are chosen by 
random search in parameter space: number of trees with a span 
of ሾ5,250ሿ and step of five, depth of a tree with a span 
of ሾ10,220ሿ and step of five, minimum number of samples re-
quired for a leaf node with a span of ሾ2,25ሿ and step of two, num-
ber of features to consider when looking for the best split with a 
span of ሾ2,25ሿ and step of two. The evaluation was carried out by 
k-fold cross validation, with five folds. One of the benefits of RF 
is that the probability of a classified entity (a region is our case) 
to belong to each of the classes can be (indirectly) estimated. In 
the case of a binary classification, the selection of the resulting 
class is made by selecting the one with the highest probability. In 
other words, a hard threshold of 0.5 is being used. However, a 
better outcome may be obtained by adjusting this threshold. 
Every classification result for the test portion was fine-tuned by 
adjusting the probability threshold of class 1 (anomaly class) to 
the point where False Positive Rate (FPR) and False Negative 
Rate (FNR) are equal. Despite what was mentioned earlier for the 
case of DHS, the intersection between FPR and FNR is chosen 
as the optimal point here due to the lack of knowledge of the ac-
tual costs of each misclassification. 

In order to investigate the influence of the unbalanced dataset, 
two separate experiments were conducted, as can be seen in Ta-
ble 5. Class 0 was under-sampled in both experiments: 20% was 
used for training and 80% for testing (instead of the opposite, 
which is considered as no under-sampling). In contrast to class 0, 
class 1 was treated differently: in experiment #1 80% was used 

for training and 20% for testing, while in experiment #2 for train-
ing 80% was selected and then over-sampled by the Synthetic 
Minority Oversampling Technique (SMOTE, Chawla et al., 
2002) to reach the number of the class 0 training samples. The 
remaining 20 percent of class 1 were used as the test portion in 
both experiments. 

In order to determine the effect of the thermal anomaly tempera-
ture threshold on the ability to yield correct results, different da-
tasets were prepared with regard to the feature (𝑡ௗ௜௙௙ି௠௜௡), as 
shown in Table 4. These thresholds were chosen on the basis of 
the particular dataset at hand, whereas they could differ in other 
scenarios. As can be seen this dataset is highly unbalanced re-
gardless of the difference used. 

Table 4 Classes distribution in the datasets 

Anomaly threshold 
Non-Anomaly 

(class 0) 
Anomaly 
(class 1) 

𝑡ௗ௜௙௙ି௠௜௡ ൐ 0℃ 1331 59 
𝑡ௗ௜௙௙ି௠௜௡ ൐ 0.5℃ 1332 58 
𝑡ௗ௜௙௙ି௠௜௡ ൐ 1℃ 1339 51 

𝑡ௗ௜௙௙ି௠௜௡ ൐ 1.5℃ 1351 39 
 

Table 5 Cross validation configuration of the two experiments 

  
  

Experiment #1 Experiment #2 

Train 
Class 0 20% 20% 
Class 1 80% SMOTE(80%) 

Test 
Class 0 80% 80% 
Class 1 20% 20% 

 
Table 3 presents RF classification results of experiment #1 and 
#2. The results are shown as an average of the 5-fold cross vali-
dation. It can be seen that with higher anomaly threshold the true 
positive rate (TPR) of the classification reaches 100%. It should 
also be noted that for thermal anomalies with 𝑡ௗ௜௙௙ି௠௜௡ > 0.5 °C, 
TPR stands at least at 92 percent. FPR is also closely associated 
with 𝑡ௗ௜௙௙ି௠௜௡ in a way that it is decreased with a higher thresh-
old. From the point of view of TPR, SMOTE only has a marginal 
advantage, visible with higher thermal anomaly threshold only. 

 

 

 

 

 

 

Table 3 Cross validation classification results 

 Experiment #1 Experiment #2 

Anomaly 
threshold 

 Predicted 0 Predicted 1  Predicted 0 Predicted 1 

𝑡ௗ௜௙௙ି௠௜௡ ൐ 0℃ 
Actual 0 TNR = 89.5% FPR = 10.5% Actual 0 TNR = 88.3% FPR = 11.7% 
Actual 1 FNR = 15.6% TPR = 84.4% Actual 1 FNR = 13.3% TPR = 86.7% 

𝑡ௗ௜௙௙ି௠௜௡ ൐ 0.5℃ 
Actual 0 TNR = 94.7% FPR = 5.3% Actual 0 TNR = 96.5% FPR = 3.5% 
Actual 1 FNR = 4.0% TPR = 96.0% Actual 1 FNR = 8.0% TPR = 92.0% 

𝑡ௗ௜௙௙ି௠௜௡ ൐ 1.0℃ 
Actual 0 TNR = 98.6% FPR = 1.4% Actual 0 TNR = 99.0% FPR = 1.0% 
Actual 1 0FNR = 5.0% TPR = 95.0% Actual 1 FNR = 5.0% TPR = 95.0% 

𝑡ௗ௜௙௙ି௠௜௡ ൐ 1.5℃ 
Actual 0 TNR = 95.4% FPR = 4.6% Actual 0 TNR = 98.7% FPR = 1.3% 
Actual 1 FNR = 0.0% TPR = 100.0% Actual 1 FNR = 0.0% TPR = 100.0% 
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5. CONCLUSION AND DISCUSSION 

This paper suggests a two-phase classification approach for ther-
mal anomaly detection from a combination of thermal, optical 
and height data.  In the core of this work stands the hypothesis 
that thermal anomalies occur as a salient region only in the TIR 
image and not in the optical image. In general, thermal anomalies 
are typically rare events. As the consequence, there is an issue 
with the high false alarm rate, which we tackle successfully. 

The first classification phase is based on DST classification, 
where the belief functions come in the form of saliency maps of 
the TIR and the optical image data. It was shown that a modifi-
cation of the saliency model proposed by Itti et al. (1998) pro-
vides an effective tool for hot spot detection. In the second clas-
sification phase false alarms are reduced: anomaly candidates 
from the first phase and their surroundings are viewed as inde-
pendent entities. Measured temperature values, height infor-
mation derived from a DSM and the classification results of the 
DST step are used in a binary Random Forest classification to 
distinguish thermal anomalies from normal temperature varia-
tions. 

It is shown that saliency maps of the TIR and optical images, 
when used as belief functions in DST, can provide a valuable 
classification tool. Nevertheless, despite the good results of the 
DST classification, the proposed approach has its own limitations 
outlined in 4.3.1. In order to address these limitations, the optical 
camera should be of high quality in terms of contrast, as it may 
need to be operated in low illumination conditions. 

In future work, we will investigate the use of Convolutional Neu-
ral Nets (CNNs), which have been shown to be a very effective 
tool for a variety of classification tasks, but require vast amounts 
of training data. Also, semantic segmentation of optical images, 
which can be used to help identify objects such as cars, chimneys, 
manholes, and other structures will be investigated. Afterwards 
the heat signature of these objects can be confirmed by thermal 
data. Following the current working hypothesis, heat signatures 
that are not assigned to any observed object can then be consid-
ered a thermal anomaly.  
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