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ABSTRACT:

We propose a novel method to generate a single image product from a multi-image strip acquired by a push-frame satellite imaging
system. The images of the push-frame strips are combined into a large scale mosaic simulating a perfect sensor geometry. The
local camera models of the input images are leveraged to produce a new localization model that covers the output mosaic entirely.
Among other applications, this simplifies the task of stereo reconstruction enormously: instead of treating multiple stereo pairs
of small images, it is possible to reconstruct the entire area covered by the push-frame acquisition using a single pair of mosaics
incorporating all the images. We test our method using strips of SkySat L1B scenes and denote the output images as L1B+. To
evaluate the quality of the L1B+ images and their localization models, the stereo reconstructions obtained with L1B+ are compared
with those obtained with L1B and with a lidar reference model.

1. INTRODUCTION

Push-frame satellite imaging systems acquire a continuous strip
of small and partially overlapping images as the satellite moves
(Aati and Avouac, 2020, Planet, 2021). Small satellite (Small-
Sat) constellations, such as SkySat and PlanetScope from Planet
or Aleph-1 from Satellogic, use a push-frame imaging mode
to cover large areas of interest, beyond the limited footprint of
their telescope. The resulting image collections are a product
of great interest: small satellites can orbit at low altitudes and
offer very high resolution, in direct competition with well-
established large satellite providers. While the latter are capable
of covering large areas with a single shot, the derived products
are also more expensive. SmallSat constellations can also af-
ford many more units, resulting in shorter revisit times (Sandau
et al., 2010). However, despite their economic and technical ap-
peal, the highly fragmented nature of push-frame acquisitions
may discourage their use for some applications targeting areas
of interest of several km2 (Xue et al., 2008).

We propose a novel method to exploit push-frame image collec-
tions from SmallSat acquisitions, which circumvents the diffi-
culties of working with such fragmented data. The method com-
bines the multiple images of a strip acquired by a push-frame
system into a single mosaic image, as if it had been acquired
by an instrument with perfect sensor geometry (Figure 1). The
local camera models of the input images are leveraged to pro-
duce a new localization model that covers the output mosaic en-
tirely. The resulting image and localization model can be treated
as new product, which we denote L1B+.

Our contributions are:

• A method capable of assembling the frames and camera
models of strips of partially overlapping satellite images.

• An evaluation of the method based on an application
of major interest: stereo reconstruction. We validate the
method using strips of SkySat L1B scenes. The 3D models
obtained with the L1B+ products are compared with those
obtained with L1B and with a lidar reference model.
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Figure 1. We combine the multiple images of each strip acquired
by the push-frame system to produce large scale mosaics. The

resulting perfect sensor images and their localization models can
be used to greatly simplify the task of large scale stereo

reconstruction from push-frame satellite imagery.

2. RELATED WORK

SmallSat push-frame imagery is used in a wide range of remote
sensing applications, including topography extraction (Aati and
Avouac, 2020, Bhushan et al., 2021, d’Angelo and Reinartz,
2021), super-resolution products (Nguyen et al., 2021, Anger et
al., 2020) and various tasks demanding short revisit times, such
as monitoring of natural phenomena (Cannistra et al., 2021) or
commercial assets (Marí et al., 2021b, d’Autume et al., 2020).
This paper focuses on the task of 3D reconstruction, but the
proposed method can be beneficial for any of these applications.

Topography extraction from high resolution satellite images is
typically performed using stereo pipelines (Beyer et al., 2018,
de Franchis et al., 2014a), capable of producing highly ac-
curate photogrammetric digital surface models (DSMs). These
pipelines take as input one pair of images and their geometric
camera models, represented with the rational polynomial coef-
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ficients (RPC) model. The RPC model represents the image
acquisition system by means of a pair of rational polynomial
functions that approximate the mapping from 3D space points
to 2D image pixels: P : R3 → R2, the projection function;
and its inverse L : R2×R → R3, the localization function. The
RPC camera models allow to represent unconventional geomet-
ric models such as that of push-broom scanners. Push-broom
cameras are not projective as the optical center changes from
line to line. However, for satellite images they can be approx-
imated locally by affine models (de Franchis et al., 2014b). This
is exploited by stereo pipelines (de Franchis et al., 2014a, Beyer
et al., 2018), which cut the images into small tiles that can be
stereo-rectified and processed independently. This insight mo-
tivates our merged camera model for push-frame images and its
usefulness in the stereo context.

Image collections acquired by push-frame systems cannot be
directly plugged into the state-of-the-art 3D reconstruction
pipelines, as the task becomes a multi-view problem in which
each image will contribute only to some part of the final re-
construction. The majority of solutions that can be found in the
literature address the reconstruction of an area of interest ob-
served by multiple overlapping satellite images as a two-stage
multi-view stereo (MVS) problem (Facciolo et al., 2017, Gong
and Fritsch, 2018, Bhushan et al., 2021). In the first stage, a
series of local models are computed, resulting from independ-
ent executions of a stereo reconstruction pipeline using differ-
ent input pairs. In the second stage, the local models are fused to
obtain the complete reconstruction of the area. This two-stage
approach requires significant pre- and post-processing work.

The pre-processing tasks of satellite MVS require the selection
of an optimal set of stereo pairs, to minimize the number of
local models to be reconstructed and all the derived workload.
In addition to the amount of geographic footprint overlap, the
incidence angles of the cameras, the angle between both views
and the acquisition dates have proven to be important to select
suitable stereo pairs (Facciolo et al., 2017, Gong and Fritsch,
2018, Marí et al., 2019, Gómez et al., 2022). Another classic
pre-processing step is the correction of camera positions and
orientations, in order to make the multiple views geometrically
consistent. Bundle adjustment algorithms have so far stood out
as the best practice to correct the inaccuracies of the RPC mod-
els (Triggs et al., 1999, Grodecki and Dial, 2003, Marí et al.,
2021a). The corrected RPC models produced by the bundle ad-
justment methods minimize the reprojection error of a set of
reference points observed across the different images. The dif-
ferential advantage of adding a camera correction step prior to
stereo reconstruction is that local models computed from inde-
pendent pairs are, in principle, natively registered in the object
space.

The post-processing tasks of satellite MVS revolve around the
fusion step. Assuming that all local models are aligned, the
usual procedure is to discretize the area of interest and apply
a mean or median filter on each 2D cell to establish the fi-
nal altitude. However, the result of the fusion is usually largely
improvable and several works have introduced heuristics (Fac-
ciolo et al., 2017, Qin, 2017) or deep learning refinement
strategies (Stucker and Schindler, 2020) to minimize artifacts
caused by outliers, vegetation or inexact geometry registration.
In awareness of the complexity of the process, the NASA Ames
pipeline (Beyer et al., 2018) has been expanded with the addi-
tion of optional processing tools including bundle adjustment
and point cloud registration algorithms.

correction of
camera models

image mosaicing

perfect sensor
localization

model generation

Figure 2. Diagram of the presented methodology.

In the context of 3D reconstruction from push-frame images,
we eliminate much of the previous pre- and post-processing
work by addressing the root of the problem: the format of the
data. The input images are combined to simplify the MVS
problem into an ideal scenario with a single input pair. The
proposed perfect sensor geometry model for push-frame strips
takes inspiration from large push-broom satellites such as in the
Pléiades-HR constellation. Due to the complexity of the focal
plane, the Pléiades-HR raw products should be considered as
25 sub-products with their local geometrical models (Baillarin
et al., 2010). However, for the sake of usability, the final im-
ages emulate the geometry of an ideal push-broom linear array.
The Pléiades-HR perfect sensor geometry models are derived
from the raw image, the rigorous sensor model of the satel-
lite and a coarse elevation model of the area (Baillarin et al.,
2010). Another existing tool that follows a similar philosophy
is the dg_mosaic from the Ames pipeline, which can mosaic
multiple subscenes derived from the same parent Maxar push-
broom product and create a new RPC model for it (Shean et al.,
2016). In this work we address a more generic problem, as the
input scenes do not originally belong to a common image.

3. METHODOLOGY

Given a push-frame strip S1 of N small footprint images (also
known as scenes), we propose a method to generate a single
and equivalent large footprint image, denoted S+

1 , along with
its perfect sensor localization model. In this work, we assume
that the input images are radiometrically calibrated and cloud-
free. As shown in Figure 2, the method consists of three main
steps, which are detailed in the following subsections.

3.1 Correction of camera models

First of all, it is necessary to ensure that the local RPC camera
models of all the scenes in S1 are geometrically consistent. That
is, 3D points in object space project to corresponding points in
each image. Enforcing the consistency will ease the subsequent
mosaicing step and it will be fundamental to produce the per-
fect sensor localization model of the mosaic S+

1 . This is tradi-
tionally achieved by bundle adjustment in a multi-view setting.
However, since the baseline between the consecutive cameras
of the same strip is too small for 3D vision purposes, some ad-
ditional information is needed. To this end, we employ a sec-
ondary strip S2 covering the same area of interest observed by
S1 but from another point of view. SkySat stereo or tri-stereo
products can provide the secondary strip S2. Given the collec-
tion of 2·N scenes in S1 and S2, the bundle adjustment meth-
odology proposed in (Marí et al., 2021a) is applied to perform
a relative correction of their local RPC models. Each correc-
ted RPC model results from composing the original projection
function with a corrective rotation transform around the estim-
ated camera center. The corrective rotation compensates for the
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main source of inaccuracies, which is the inexact knowledge of
the attitude angles. The reference points used by the bundle ad-
justment are automatically generated from correspondences of
SIFT keypoints (Lowe, 2004).

Note that the camera correction step does not restrict the scope
of the presented method to stereo push-frame acquisitions. It
is also possible to correct the camera models of S1 without a
secondary strip if a basemap with reference DSM or a set of
ground control points (GCPs) are available. GCPs are points
with known 3D coordinates whose position in the images is also
available (Grodecki and Dial, 2003).

3.2 Image mosaicing

Once the camera models are corrected, each scene Ii in S1 is
warped into a common image space using a 2D projective trans-
form Hi. A rough estimate of Hi is first obtained by establish-
ing 2D point correspondences between the i-th scene and the
central scene of the strip, i.e. the N

2
-th scene. Instead of using

classic feature matching techniques, we take advantage of the
corrected RPC models computed in the previous step to initial-
ize Hi (Section 3.2.1). Then, each Hi is refined into Ĥi using
an image registration method (Baker and Matthews, 2001, Bri-
and et al., 2018) (Section 3.2.2). Lastly, the output mosaic S+

1

is obtained by averaging all the warped scenes as determined
by the corresponding Ĥi. A high-order Spline interpolation is
used to perform the warping (we use order 5).

3.2.1 Image warping initialization For each scene Ii, a
regular grid of 10×10 2D points is localized in the 3D space
using the i-th RPC localization function Li and the average
altitude of the area, havg. The average altitude havg of the area
may be only an approximation, for instance a rough estimation
can be obtained using the SRTM data (Farr et al., 2007). Each
grid point is then reprojected into the image space of the cent-
ral scene of the strip, using the corresponding RPC projection
function PN

2
. The reprojection results in a set of 2D corres-

pondences between a point x from each scene Ii and its homo-
logous x̂, located in the mosaic image space, where the central
scene of the strip remains in the center. Equation 1 summarizes
the previous procedure:

x̂ = PN
2
(Li(x, havg)) where i ∈ [1, N ]. (1)

The correspondences x ↔ x̂ are then used to fit (using a classic
DLT algorithm (Hartley and Zisserman, 2004)) homographic
transformations Hi ∈ R3×3 such that x̂ = Hix.

Note that in the case of the strip scenes that do not overlap with
the central scene, we simply localize and reproject recursively
along the neighboring frames, in the direction of the central
scene, until we reach the latter.

3.2.2 Image warping refinement The correspondences
used to compute the transform Hi are inaccurate because the
havg value used for the reprojection is not the exact altitude
of the points seen in the image. However, the estimated trans-
formations are useful to initialize an image-based registration
method. The inverse compositional algorithm (ICA) is used to
refine the coefficients of Hi, so that the warps of consecutive
frames are precisely aligned. This assures the pixel consistency
of the aligned scenes before merging them into the S+

1 mosaic.
The benefits of ICA to register push-frame satellite acquisitions
has been previously studied by (Anger et al., 2020, Briand et
al., 2018).

Figure 3. Residual difference in the overlap region after the
alignment of two consecutive SkySat L1B scenes of the same

push-frame strip. Top to bottom: using the initial transform Hi,
using the refined transform Ĥi. The same scaling and colormap

have been used for both residuals.

Consider two scenes I and I ′ of S1 such that I ′ has to be aligned
onto I to construct the mosaic S+

1 . Let H and H ′ be the ini-
tial homographies associated to I and I ′ respectively, which are
computed as described in Section 3.2.1. Using ICA, we first re-
fine H ′ ◦ H−1 such that the warped version of I ′ using this
transformation is perfectly aligned onto I . This defines the re-
fined homography R. Using the refined transform, we define
the relative correction factor C such that R = H ′ ◦ C. Fig-
ure 3 shows the residual difference after alignment with and
without the refinement step. Observe that the refined transform-
ation achieves a much better alignment. In this example, the
RMSE without refinement is 19.37 and with refinement 5.71,
thus confirming the visual result.

We then define by recurrence the set of refined transforms
Ĥi = Hi ◦ Ci, where Ci corresponds to the composition of
all necessary correcting factors from the reference image (the
central scene) to the i-th image in S1.

3.3 Perfect sensor geometry localization model

After completion of the mosaic S+
1 , the corrected camera mod-

els of the scenes that form the mosaic can be used to produce
a perfect sensor localization model that follows the RPC stand-
ard and is valid throughout the entire S+

1 . The output camera
model, denoted RPC+

S1
, is generated by Algorithm 1.

The main idea of Algorithm 1 is to draw a regular grid of 2D
points covering S+

1 , which is localized at different heights in the
3D space. By default, we use (N ·M)×(3·M) points, where N
is the number of scenes and M = 10. Given a 2D point x̂ ∈ S+

1 ,
the corresponding 3D point X̂ at height h is obtained as

X̂ = Li(Ĥ
−1
i x̂, h), (2)

where Ĥ−1
i is the inverse warping transform that transforms

x̂ to its original small scene space, and Li is the localization
function of that scene. We set the range of altitudes [hmin, hmax]
by taking the maximum and minimum altitudes of the reference
points used by the bundle adjustment (Marí et al., 2021a) and
adding an extra margin of ±100 meters.

Thanks to the corrected camera models, the different local RPC
functions are highly consistent in the object space. This implies
that the localization of the grid will result in a reasonably reg-
ular point cloud in the object space, without major discontinu-
ities due to RPC inaccuracies. Furthermore, when a point x̂ is
seen in two overlapping scenes Ii and Ij , it can be localized in
object space, with (2), using either Li or Lj . Since the scenes
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Algorithm 1: Perfect sensor localization model generation

Input : 1 strip S1 of N partially overlapping scenes Ii,
with their local RPCi camera models (i ∈ [1, N ]).
S+
1 , the mosaic image of S1,

and the matrices Ĥi that warp scene Ii onto S+
1

Output: 1 RPC+
S1

camera model covering the entire S+
1

1. Build G2D, in the image space:
Draw a regular grid of (N·M)×(3·M) 2D points on S+

1

2. Build G3D, in the object space:
Mark all the points of G2D as non-visited
for h in 3·M uniformly spaced altitudes ∈ [hmin, hmax]

for each scene Ii in S1

Localize at h the non-visited points of G2D seen in
scene Ii, using (2), and mark them as visited

3. Use the (N·M)×(3·M)×(3·M) correspondences
G2D ↔ G3D as input for (Akiki et al., 2021) to fit RPC+

S1

are registered and the RPC models adjusted, both choices will
yield essentially the same 3D points for a range of altitudes
centered around the surface. However, for points far from the
surface we should start to observe a parallax due to the fact that
the scenes are acquired from different positions along the orbit.
This parallax can be quantified. Assuming the SkySat paramet-
ers (baseline between views ∼1.5 km and altitude ∼500 km), in
order to observe parallax of 1 pixel (assuming a resolution of
0.6 m/pixel) an elevation change of about 200m ≈ 500

1.5
· 0.6m

should be present in the scene. This points to a limitation of
the present method for images containing very large elevation
changes. However, in our experiments (including the mountain-
ous site of the Morenci mine, see Section 4) we did not observe
any artifacts due to parallax.

The previous procedure results into a set of 2D-to-3D point cor-
respondences between S+

1 and the object space, thus the RPC
fitting algorithm from (Akiki et al., 2021) can be applied to pro-
duce the final RPC+

S1
model.

Using the 2D-to-3D correspondences generated earlier with (2)
we can define the fitting errors e associated to the RPC+

S1
model

as the reprojection distances:

e = ∥x̂− P
S+
1
(X̂)∥2, (3)

where e is in pixel units and P
S+
1

is the projection function
of the perfect sensor localization model. Figure 4(b) illustrates
the usual distribution of errors e across the 3D points used to
fit RPC+

S1
. We observe that the error is small in the proximity

of the surface, which can be inferred from the reference key-
points (seen as blue dots) used in the bundle adjustment (Sec-
tion 3.1). This is reasonable as the surface points are registered
in the merged product. Larger errors are observed approach-
ing the altitude extrema of the volume, but only in bands that
correspond to the overlap of two consecutive scenes. We attrib-
ute this to the fact that there is no guarantee that the RPCs of
neighboring scenes are geometrically consistent away from the
registered surface points. Inside the convex hull that contains
all the reference points, e reaches average values ∼0.2 pixels,
of the same order as the average reprojection error of the bundle
adjustment (Marí et al., 2021a). Note that the 3D points used by
the bundle adjustment highlight the part of the volume where
the surface observed by S+

1 is located.

4. EXPERIMENTS

4.1 Data

We applied our method to two SkySat L1B stereo acquisitions,
each providing two multi-image strips of the same area, with a
time difference of a few seconds. One acquisition covers part of
the city of Antibes (France) and the other covers the Morenci
mine (United States). The two landscapes are very different:
urbanized and flat terrain in the case of Antibes, as opposed to
the mountainous and bare terrain of the mine.

SkySat L1B scenes have a nadir resolution of 0.58-0.86 m/pixel
and a total size of 1349×3199 pixels. Each scene is delivered
with an RPC camera model. The geometric accuracy of the L1B
RPC models is of 30-50 m, with SkySats orbiting at altitudes of
400-500 km (Planet, 2021). Our proposed L1B+ mosaics ex-
tend the footprint of the original L1B images and incorporate
a consistent RPC model. In this paper, we present experiments
using N = 3 and N = 5 scenes per strip but the method can gen-
eralize to strips with more scenes. Using SkySat L1B scenes,
we observed no deformation or misalignment in the output mo-
saics with strips with a number of scenes up to N = 13.

The SkySat acquisition platform has three staggered sensors,
resulting in the push-frame system simultaneously acquiring
three multi-image strips. Note that in this work we assemble
images from only one of the sensors at a time.

4.2 Stereo reconstruction based evaluation

To validate the quality of the L1B+ images and their camera
models, we evaluate them in the context of stereo reconstruc-
tion from two push-frame strips S1 and S2. For this purpose,
we used the open-source satellite stereo pipeline S2P1 (de Fran-
chis et al., 2014a), to reconstruct the areas of Antibes and the
Morenci mine covered by the SkySat acquisitions, both using
the original L1B scenes and the L1B+ mosaics, i.e. S+

1 and
S+
2 .

As explained in Section 2, for the case of the L1B scenes the 3D
reconstruction is a multi-view problem. We use the MVS meth-
odology described in (Marí et al., 2021b) to solve it. Following
the selection of P suitable pairs of scenes, S2P is employed
to reconstruct P independent local DSMs, using the corrected
RPCs of the L1B scenes (Section 3.1). The P local models are
lastly fused by taking the mean altitude at each cell of the DSM.
In the conducted experiments, P = 5 for N = 3, while P = 9 for
N = 5.

In contrast with the above, the L1B+ products allow to recon-
struct each area with a single execution of S2P, using as input
the two perfect sensor images and their localization models.

4.3 Discussion

Table 1 lists the mean absolute error (MAE) between the DSMs
obtained with the L1B+ and L1B products. In addition, we
computed the MAE of each model with respect to a ground-
truth (GT) lidar model covering a subregion of the observed
areas. Since the acquisition dates of the lidar and the SkySat
images are not coincident, we manually annotated the parts of
the surface models that are expected to be coherent.

1 https://github.com/centreborelli/s2p
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Figure 4. (a) 3D grid used for RPC fitting, for a strip of 3 scenes. The z coordinate is the altitude of the points in meters, while x and y
correspond to their projection in the image plane. Point colors depend on the scene of the strip that was used to localize each 3D point.

(b) Error of the perfect sensor localization model across the 3D grid, in pixel units. The reference points used by the bundle
adjustment (Marí et al., 2021a) in the prior correction of the local RPCs are shown in blue. (c) Front view of the error distribution.
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Figure 5. Qualitative results for SkySat stereo reconstruction, using 5 scenes from the input strips, i.e. N = 5. Left to right: (a) L1B+

images. (b) L1B+ derived DSMs. The size of the reconstructed area is indicated in square kilometers. The red boundary delimits the
region for which a lidar model is available. The green boundaries delimit the regions of overlap between two local models used to

derive the equivalent L1B DSM. The double-headed arrow indicates the length covered in the experiments with N = 3. (c) Absolute
difference between the L1B+ and L1B DSMs. The black rectangular outline delimits a subregion of interest inspected in Figure 6.

MAE [m]

SkySat strip IDs N L1B+-L1B L1B+-GT L1B-GT

s107_20210705T131230Z
s107_20210705T131300Z

(Antibes)

3 0.325 1.214 1.270

5 0.331 1.204 1.248

s4_20190127T175119Z
s4_20190127T175154Z

(Morenci)

3 0.391 0.781 0.854

5 0.395 0.745 0.780

Table 1. Quantitative results of the stereo reconstruction based
evaluation, using 3 or 5 scenes from the input strips. Left to
right: MAE, in meters, between the L1B+ and L1B derived

DSMs, and MAE of each DSM with respect to a GT lidar model.

Figure 5 shows the L1B+ images for N = 5, the resulting L1B+

DSMs and the absolute difference with respect to the equival-
ent L1B DSMs. In Figure 5(c), we can see that the absolute
difference between L1B and L1B+ DSMs is below 0.3 m in
the majority of the surface points (the average corresponds to
the L1B+-L1B column of Table 1). However, there are parts of
the area where this difference increases and approaches values
close to 1 m. These traces are a consequence of the fusion of
local models that is needed to generate the L1B DSM. In fact,
the traces coincide in great measure with the green boundaries
in Figure 5(b), which indicate the areas of overlap between the

local models used to produce the L1B DSM. The local mod-
els do not match perfectly, because the correction of the camera
models registers their geometries with an accuracy < 1 m, but a
residual remains (Marí et al., 2021a). Consequently, the average
altitude retained by the fusion process is subject to a certain de-
gree of bias, especially in these overlapping zones. In the case
of Antibes, the areas showing the largest differences follow a
pattern of horizontal stripes, because the local geometries con-
sist of overlapping planes (flat terrain), which are stacked along
the vertical axis. In the case of the Morenci mine the pattern
is more irregular, with curves caused by non-exactly coincident
mountain shapes and peaks due to the presence of outliers near
the open pit (close to the upper left corner).

In Figure 6, we selected two subregions where the altitude dif-
ferences between the L1B+ and the L1B DSMs exhibit a strong
increase. In accordance with the above observations, we can see
that such differences are indeed caused by biases in the L1B
DSM. By using L1B+ products we eliminate the cause of such
biases, i.e. the need to register and merge any local models, so
the discontinuities disappear in a natural way.

The last two columns of Table 1 indicate that the L1B+ DSMs
improve the accuracy of the L1B ones, as they exhibit smaller
differences with respect to the lidar. The MAE values obtained
with L1B+ are quite stable too, regardless of whether 3 or 5
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L1B+−L1B
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L1B+−L1B

L1B

L1B+L1B+

Figure 6. Detailed view of the L1B+ DSMs and a subregion of interest. The inspection of the subregions shows that, in absence of
outliers, the largest differences between L1B+ and L1B DSMs coincide with small altitude discontinuities (circled in green) in the

L1B model. The colormap is different in the subregion images with respect to the complete DSM to improve the contrast between local
altitude values. The L1B+−L1B images represent the absolute difference between altitudes, with the same colormap of Figure 5(c).

images per strip are used. We attribute to the aforementioned
misalignment between local geometries the fact that the MAE
of L1B DSMs with respect to lidar tends to be slightly larger
and more irregular.

Lastly, Table 1 shows that the MAE with respect to the lidar is
higher for Antibes. This last observation is mainly explained by
the presence of vegetation and the edges of the buildings, which
are not as sharp in the photogrammetric DSM. Both vegetation
and buildings are absent in the Morenci landscape.

5. CONCLUSION

We have presented a method to generate large scale images
from fragmented push-frame satellite acquisitions. A perfect
sensor localization model is generated for the output images.
We denote the resulting product L1B+. The method is valid-
ated using two SkySat stereo acquisitions of L1B scenes.

The use of L1B+ offers several advantages over SkySat L1B
scenes. In this paper we focused on the benefits for 3D recon-
struction, which becomes significantly faster and simpler. We
avoid the need to handle multiple stereo pairs and to merge a
collection of local models, a common drawback in 3D recon-
struction from push-frame imagery. The L1B+ products make
it possible to reconstruct areas of interest of several km2 with a
single execution of a satellite stereo reconstruction pipeline. We
also notice accuracy improvements in the L1B+ derived DSMs,
mainly due to the disappearance of any biases caused by the fu-
sion of local models that is necessary with the L1B scenes.

Future work will focus on extending this methodology to as-
semble images from all three SkySat sensors at once, combining
scenes from three multi-image strips instead of one. The gen-
eralization capability of the method should also be investigated
using push-frame acquisitions from other satellites.
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