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ABSTRACT:

GaoFen-7 (GF-7) satellite mission is further expanding the very high resolution 3D mapping application. Carrying the first civilian
Chinese sub-meter resolution stereo satellite sensors, GF-7 satellite was launched on November 7, 2019. With 0.65 meter reso-
lution on backward view and 0.8 meter resolution forward view, GF-7 has been designed to meet the demand of natural resource
monitoring, land surveying, and other mapping applications in China. The use of GF-7 for 3D city reconstruction is unfortunately
restricted by the fixed large stereo view angle of forward and backward cameras with +26 and −5 degrees respectively which is not
optimal for dense stereo matching in urban regions. In this paper we intensively evaluate the quality of the GF-7 datasets by per-
forming a series of urban monitoring applications, including road detection, building extraction and 3D reconstruction. In addition,
we propose a 3D reconstruction workflow which uses the land cover classification result to refine the stereo matching result. Six
sub-urban regions are selected from the available datasets in the middle of Germany. The results show that basic elements in urban
scenes like buildings and roads could be detected from GF-7 datasets with high accuracy. With the proposed workflow, a 3D city
model with a visually observed good quality can be delivered.

1. INTRODUCTION

The 3-dimensional (3D) urban object extraction and reconstruc-
tion are among the most essential remote sensing research top-
ics and are demanded for intelligent city management. Satel-
lite stereo imagery is until now the only solution for 3D city
monitoring of large regions in high spatial and temporal reso-
lution. Therefore, many countries have started their space pro-
gram with very high resolution (VHR) stereo satellites (Tian,
2013, Jérôme, 2019, Tang et al., 2020a).

Researches are exploring the potential of VHR satellite stereo
imagery since the last century. In 1997 Ridley et al. (Rid-
ley et al., 1997) have used airborne data to simulate the 1 m
panchromatic and 4 m resolution multi-spectral stereo data for
Digital Surface Model (DSM) generation, change detection and
3D urban modelling, which has proved the potential of using
1 meter resolution satellite data for national wide 3D building
modelling. The first civilian very high resolution along track
stereo satellite – IKONOS – was launched on 24. Septem-
ber 1999 (Dial et al., 2003), providing a resolution of 0.82 m
to 1 m. Limited to the image processing and stereo matching
techniques, the initial research using IKONOS data focused on
image radiometry and geometric evaluation. Stereo imagery
were mainly served for visualization and manually extraction
purpose (Dial et al., 2003, Baltsavias et al., 2001, Tao et al.,
2004). The automatic DSM generation approaches with differ-
ent matching techniques were proposed years later (Krauß et
al., 2005, Baltsavias et al., 2006, Zhang, Gruen, 2006). The ad-
vanced dense matching techniques and the available 0.5 meter
resolution WorldView-2 data have brought a new era for the au-
tomatic building 3D reconstruction (Tian et al., 2017). Former
Digital Globe, now Maxar has further improved the image reso-
lution to 31 cm in their WorldView-3 and Worldview-4 satellite
∗ Corresponding author, all authors have contributed equally

which were launched in 2014 and 2016, respectively. With the
launch of GeoEye in 2009 and Pléiades in 2011, more VHR
stereo satellite data are available. However, these VHR stereo
satellites only capture stereo data for some specific regions ac-
cording to demands, and are rather expensive. Therefore, the
related researches are still limited to specific small regions or-
dered as (multi-) stereo data. The specially designed stereo
satellites Cartosat-1 and ALOS/PRISM only provide 2.5 me-
ter resolution data. Cartosat-1 captures just panchromatic data,
and ALOS/PRISM is no more in operational mode. Therefore,
more stereo data are still demanded for a global 3D monitoring.

China has launched the first high resolution stereo satellite
Ziyuan-3 (ZY3) on 9 January 2012, with 2.1 meter resolution in
nadir view. The forward and backward camera that are inclined
at ±22○ can provide stereo images with a resolution of 3.5 meter
(Tang et al., 2020a). GF-7 is the first civilian sub-meter stereo
satellite in China. Different to the Ziyuan-3 series, GF-7 system
is composed of two cameras with forward and backward views,
respectively (Tang et al., 2020b).

Several applications and researches on GF-7 dataset are avail-
able. However, most of them are concentrating on the Laser Al-
timeter System (Tang et al., 2020b), positioning accuracy (Liu
et al., 2021). Although GF-7 stereo imagery have been available
since two years ago, the utilization of these data for 3D recon-
struction is restricted partly due to the large stereo view angle,
which brings extra difficulty in stereo matching over urban re-
gion. In the present paper, we examine the quality of nadir view
very high resolution multi-spectral data in the application of
building detection and road detection with state-of-the-art deep
neural networks, as well as the building 3D reconstruction re-
sults after the object-based refinement. A workflow has been
specially designed for GF-7 stereo imagery accordingly.
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Figure 1. Pansharpened images of the 6 selected test regions, each 4000 × 4000 m2

2. GF-7 DATASET

2.1 GF-7 mission

GF-7 has backward view cameras viewing a near nadir view
direction. It can provide backward panchromatic images with
0.65 meter resolution and four bands multi-spectral images with
2.6 meter resolution. The forward panchromatic image with 26○

inclination has a resolution of 0.8 meter (GF-7 Satellite, n.d.).
Detailed parameters of the GF-7 two-line stereo imagery are
shown in Table.1. As another highlight, GF-7 is equipped with
a laser altimeter system with 1.6 km × 1.6 km plot size. But
these data are not involved in this manuscript.

Item Parameters

Spectral Bands

Pan 0.45 ∼ 0.90 µm

MS
0.45 ∼ 0.52 µm
0.52 ∼ 0.59 µm
0.63 ∼ 0.69 µm
0.77 ∼ 0.89 µm

Forward inclination +26°
Backward inclination -5°

Resolution Pan Backward Pan: 0.65 m
Forward Pan: 0.8 m

MS Backward MS: 2.6 m
Swath Width 20 km

Table 1. Description of GF-7 two-line stereo imagery (GF-7
Satellite, n.d.).

2.2 Test regions

The test regions are located in Hesse , Germany, to the south
west of Frankfurt. Two scenes were captured on 21. July
2020 and provided for our experiment. We have selected six
urban/sub-urban regions with dense building distributions from
them. Each test region has a size of 4000 × 4000 m2 as shown
in Figure 1.

2.3 Data processing

We have followed a standard workflow for DSM generation
and orthoimages preparation without ground control points. A
coarse to fine matching procedure which has been proposed for
stereo satellite ZY-3 and Cartosat-1 data is adopted for GF-7
data (d’Angelo, 2013). To further improve the absolute accu-
racy of the Rational Polynomial Coefficients (RPCs) from the
GF-7 data, Shuttle Radar Topography Mission (SRTM) with a
resolution of 30 meter and geo-accuracy below 10 meter is used
as absolute geolocation references. This approach works well
over the selected regions as they are characterized by hilly ter-
rains. Afterwards, multi-ray tie points are automatically mea-
sured between the forward and backward panchromatic images
using pyramidal local least square matching. A bundle block
adjustment based on these tie points is performed (Grodecki,
Dial, 2003). After the Rational Polynomial Coefficient (RPC)
correction, DSMs are generated with Semi-Global matching,
which is still the most robust dense matching approach by con-
sidering both efficiency and accuracy(Xia et al., 2020). In this
step, we use the Census cost function as similarity measure.
The resulting DSM has 1 meter resolution, which is approxi-
mately two times of the original image resolution. In the end,
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the delta surface fill algorithm (Grohman et al., 2006) is per-
formed to fill the unmatched pixels with SRTM heights and gen-
erate the final DSM. It has to be noted that the whole DSM gen-
eration procedure is fully automatic without any manual pro-
cessing.

Orthophotos of the panchromatic and multispectral images are
generated with the filled DSM and refined RPC parameters. As
backward view cameras of GF-7 have nearly nadir view, the
quality of the orthophotos is benefiting from it. To fully exploit
the spatial resolution of GF-7, we carry out a Gram-Schmidt
pansharpening with ENVI software on the backward panchro-
matic and multispectral data (Laben, Brower, 2000). The pan-
sharpened images of 6 test regions are shown in Figure.1.

3. BUILDING FOOTPRINT EXTRACTION

3.1 Building segmentation

Building segmentation is one of the most crucial applications
of VHR satellite imagery. With image resolution or Ground
Sampling Distance (GSD) sufficient to exhibit ground objects
such as buildings and roads, it could provide accurate wide-
range coverage over the earth’s surface. Building footprints are
indispensable for urban planning, disaster relief, map services
etc. With the rise of deep learning based approaches, building
footprints can be extracted more accurately and efficiently for
use in innumerable disciplines. To evaluate the quality of GF-
7 satellite imagery, we carry out building footprint extraction
using a semantic segmentation deep learning model that was
trained with a public benchmark dataset.

We used an off-the-shelf neural network named High-
Resolution Network (HRNet) (Sun et al., 2019) for the building
segmentation, which maintains high-resolution representations
of the image through the network. Please refer to the origi-
nal paper for more details about the model. Currently no pub-
lic building segmentation dataset employs GF-7 imagery. We
use satellite images from the xBD dataset with similar spatial
resolution as training data(Gupta et al., 2019). Provided by
the Maxar Open Data Program, xBD dataset is originally cre-
ated for building damage classification. Specifically, the dataset
comprises of coregistered pre- and post-disaster VHS satellite
images. To train the building segmentation model, building
boundary ground truth is converted to building masks. The
ground sampling distance (GSD) is around 46 cm. The xBD
dataset has a geographical coverage including North America,
Southeast Asia, Portugal and Australia, encompassing various
building and landcover types.

We employ a simple pre-processing for GF-7 imagery in our
experiment. The 2 % and 98 % quantities of the images are
stretched to values between 0 and 255. In both training and test-
ing, images are tiled to patches of size 1024 × 1024 pixels2. In
testing, the output is a softmax probability map, and 50 % over-
lap is used when stitching. To eliminate the boundary effect,
we use a square weight matrix which weights down prediction
probability of pixels closer to the boundary.

3.2 Building footprint vectorization

Typically, state of the art building extraction methods gener-
ate pixel-wise building segmentation. However, these building
segments have to be converted into vector formats before they
can be directly used by the mapping agencies (Girard et al.,

2021). Manual identification and delineation of buildings from
VHR remote sensing imagery is extremely time-consuming and
unrealistic for large-scale datasets. Therefore we proposed an
automated footprint vectorization strategy to further refine the
building segmentation results. First, we extract initial building
corner points from the segmentation results; second, we recover
critical corner points that are wrongly removed in the first step;
finally, we adjust the position of these building corners via a
geometry-based optimization.

3.2.1 Polygon Initialization Although deep learning based
segmentation approaches can generally achieve good segmen-
tation results in terms of standard accuracy evaluation metrics,
they suffer from the limited localization ability of Convolu-
tional Neural Networks (CNNs) and often result in blob-like
segments, smooth corners and inaccurate object boundaries.
In this case, corner detection algorithms like the Harris and
Förstner detectors may remove many critical vertices. In order
to ensure the existence of potential building corners, we first
extract all the pixels on the boundary as candidates, and then
apply the Douglas-Peucker algorithm (Douglas, Peucker, 1973)
to filter out co-linear points. Afterwards, over-short edges, over-
sharp or over-smooth corners are further removed by giving pre-
defined thresholds. The remaining vertices are accepted as ini-
tial building corners.

3.2.2 Corner points recovery With a rigid threshold, the
Douglas-Peucker algorithm may often remove critical corners
due to the ”zig-zag” pattern of boundary lines. Considering the
fact that non-adjacent edges of a normal building are mostly
parallel, we assume that the edges have two or more dominant
tangent directions. In order to recover these critical corners, we
first detect the dominant tangent directions of the polygon by
voting the directions of all edges. Those edges that deviate far
from all the tangent directions are considered to have missing
corners, and a corner point will be added in between.

3.2.3 Geometry-based polygon optimization The posi-
tions of the corner points are further adjusted via optimization
based on geometry-based rules. The energy function is com-
posed by following terms:

● Alignment between the vectorized polygon and the build-
ing segmentation mask. The vectorized polygon is encour-
aged to be aligned with the original building mask, and the
deviation is measured by their chamfer distance (Borge-
fors, 1986).

Lpoly mask =
1

N

¿
ÁÁÀ ∑

l∈Lpoly

d2
I(l), (1)

where Lpoly denotes the edge model of the polygon, dI(l)
stands for the distance values where the edge model Lpoly

hits the distance image calculated from the building mask,
whereas N is the number of points in Lpoly .

● Orthogonality of the vectorized polygon. The vectorized
polygon is enforced to have regularized shapes, i.e., adja-
cent edges should be perpendicular with each other.

Lortho =
1

N

¿
ÁÁÀ N

∑
i

(θi − 90)2 (2)

Where θi denotes the tangent angle of an edge i and N is
the number of edges in a polygon.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Building extraction results in yellow and the reference masks (red) overlaid on orthophotos.

RoI Segmentation Vectorization
F1

Score[%]
IoU
[%]

F1
Score[%]

IoU
[%]

1 75.96 61.23 74.29 60.59
2 74.57 59.45 74.62 60.23
3 78.83 65.06 76.98 64.62
4 73.13 57.64 73.92 55.92
5 76.47 61.90 77.02 62.20
6 75.54 60.69 74.13 60.34

Table 2. F1 score and IoU results of building segmentation in
GF-7 satellite imagery.

● Consistency of tangent directions. Strict constraints of reg-
ularization may lead to zig-zac effect of the polygon, there-
fore we also encourage edges to align with at least one of
dominant tangent directions of the polygon.

Ltangent =
1

N

¿
ÁÁÀ N

∑
i

min
θj∈θD

((θi − θj)2) (3)

Where θi denotes the tangent angle of an edge i, θj the
tangent value of a dominant direction that belongs to the
set of all dominant directions θD , and N is the number of
edges in a polygon.

The total loss is a linear combination of the above losses with
individual coefficients:

Ltotal = Lpoly mask + λ1Lortho + λ2Ltangent, (4)

The hyperparameters λ1 and λ2 are manually tuned. In experi-
ment we set λ1 0.2 and λ2 0.5.

3.3 Evaluation

For evaluating the accuracy of the extracted building footprint,
we have corrected the building footprints from open street map
(OSM) to generate the reference datasets. We have refined the
co-registration between the OSM maps and our orthophtos and
manually edited the building polygons with conspicuous er-
rors. -The reference masks match well with the images from
both building locations and boundaries. As shown in Figure 2,
we have overlaid the extracted building footprint and reference
mask to the orthophoto. The building reference mask are shown
as red masks. Our extracted building boundaries are displayed
as yellow polygons. As can be seen, the prepared reference
masks have a generally high quality and match very well with
the orthophotos. Our approach could precisely extract the build-
ing boundaries for the buildings with regular shapes and large
size (Figure. 2 a-d). For the rectangular shaped buildings, our
footprint vectors match precisely to the OSM footprints with
sharp boundaries and right angles.After removed the ’zig-zag’
pattern of boundaries, our approach would still preserve the
main shape of the buildings with our corner points recovery
approach. However, for very dense distributed buildings, two
or more buildings will be recognised as one building (Figure. 2
e-h).

In addition, we calculate the F1 score and Jaccard index (in-
tersection over union, IoU) for the building masks generated
from the segmentation and vectorization step, respectively. The
results are summarized in Table. 2. It can be seen that the
vectorized footprints have comparable or even lower semantic
accuracy, this is because the improvement of regularity is at the
cost of semantic accuracy.

4. ROAD EXTRACTION

4.1 Road Segmentation

In the same way as buildings, extracting roads in remote sens-
ing imagery is critical for following the expansion of cities and
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Figure 3. Detected road masks of the six test regions

surveying the availability of transportation networks through-
out a country. Roads are however notably difficult to locate
and segment properly due to their usually thin outline and the
effect of occlusion from other higher objects like vegetation
and buildings (Demir et al., 2018, Henry et al., 2021b). The
most effective methods for tackling these challenges are fully-
convolutional neural networks (FCNs) (Long et al., 2015) and
especially models derived from the widely adopted U-Net ar-
chitecture: such methods have been successfully applied to
datasets like the Massachusetts Roads Datasets (Mnih, 2013,
Mosinska et al., 2018, Henry et al., 2021a), the 2018 Deep-
Globe Road Extraction Challenge (Demir et al., 2018, Zhou
et al., 2018) and the SpaceNet 3 Roads Extraction and Rout-
ing Challenge (MaxarTechnologies, 2018, Buslaev et al., 2018).
We use a Dense-U-Net-121 (Henry et al., 2021a), which is com-
posed of a Dense-Net-121 (Huang et al., 2017) encoder and a
decoder based on a mirrored Dense-Net-121.

4.2 Evaluation

Our model is trained on around 5000 images from the Deep-
Globe dataset (Demir et al., 2018), i.e. on 50 cm/px GSD im-
agery from south-eastern Asian regions. Although the images
from the GF-7 dataset are acquired at 60 cm/px, the ground res-
olution difference is small enough not to cause a significant per-
formance loss. We use same image patches as prepared in the
building segmentation step. To reduce the visibility of seams
between patches when stitching the results together, the road
probabilities are predicted, merged with pixel-wise max-voting
on the overlapping regions, and only then thresholded into 0s
and 1s.

The extracted road masks of all six test regions are shown in

Figure. 3. These regions feature various types of roads, from
asphalted streets to country roads as well as highways, with dif-
ferent widths and surrounded by a variety of contexts like res-
idential buildings, commercial and industrial areas, fields and
forests. Despite the challenges posed by these widely differ-
ent scenarios, the model demonstrated an equally good per-
formance on each of them. The extracted roads match match
the real-world topology in, width, smoothness and connectivity
across all images. A confusion with railways is visible in im-
age Figure. 3 (d) where a few road segments were wrongly pre-
dicted, but this is a know issue of such model. Models trained
on DeepGlobe indeed generalize well to other images and sce-
narios, but are still limited to the scenarios covered in the train-
ing set. Our model nonetheless performed well out-of-the-box,
as anticipated, showing that the GF-7 dataset’s images are sim-
ilar enough and of high enough quality to be used as a bench-
mark for training or testing road extraction once annotations
become available. Alternatively, readily available ground truth
could also be used if co-registrations offsets are small or can be
mitigated.

5. 3D RECONSTRUCTION

Though GF-7 has a sub-meter resolution and the ability to ob-
tain stereo view imagery, the large stereo view angle has largely
restricted the quality of the generated DSMs, especially in ur-
ban regions. To refine these DSMs, we firstly generate the nor-
malized DSM (nDSM) and digital terrain model (DTM) using
morphological top-hat reconstruction as mentioned in (Qin et
al., 2016). Afterward, we project the extracted building foot-
print vectors to the corresponding normalized DSM (nDSM),
with which we generate the a max building height image. So
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Figure 4. Comparison of the original generated DSM (a) and refined DSM (b).

(a) (b)

Figure 5. 3D view of the refined DSM model textured by the
orthophoto and road segmentation.

that every pixel inside a single building block receives the max
value of the corresponding building height regarding the refined
heights, which will be added to the DTM and deliver the final
refined DSM. In Figure. 4, the originally generated DSM and
and the refined DSM of test region-1 are shown in (a) and (b),
respectively. One can easily compare visually the quality of
these two DSMs. Especially in the refined DSM, most of the
buildings have correctly received a reasonable elevations that
are 5 to 15 meters higher than the elevation of roads. We have
only used the spectral images for building extraction and vec-
torization due to the limited quality of the initial DSM (Figure.
4 (a)).

A 3D city model view is visualized in Figure. 5 by texturing
the refined DSM with corresponding orthophoto and road seg-
ments.

6. CONCLUSION

In this paper, we evaluate the quality of the GF-7 stereo datasets
by applying of the state-of-art building footprint extraction,
road segmentation and 3D reconstruction approaches. With
0.65 meter resolution, the pansharpened orthophotos have com-
parable quality as other sub-meter resolution satellite data.
Thus, the building and road segmentation models which are
pretrained using respectively xdb and DeepGlobe benchmark
datasets perform well on GF-7 datasets. The vectorization step
proposed in this paper has further improved the building masks
and results in much sharper and more precise building foot-
prints in vector format. To improve the quality of the DSMs
that are derived from stereo matching, we presume that all pix-
els covered by a single roof should have a identical elevation
height, thus use the building footprint map to refine the gen-
erated DSM. Gable roof and complicated roof shapes are not
considered in our current work. The results are promising, a
primary 3D city model can be generated from our first results.
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