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ABSTRACT:

Vehicle instance segmentation is a major but challenging task in aerial remote sensing applications. More importantly, the current
majority methods use horizontal bounding boxes which does not tell much about the orientation of vehicles and often leads to
inaccurate mask proposals due to high background to foreground pixel-ratio. Given that the orientation of vehicles is important
for numerous applications like vehicle tracking, we introduce in this paper a deep neural network to detect and segment vehicles
using rotated bounding boxes in aerial images. Our method demonstrates that rotated instance segmentation improves the mask
predictions, especially when objects are not axis aligned or are touching. We evaluate our model on the ISPRS benchmark dataset
and our newly introduced UAV dataset for vehicle segmentation and show that we can significantly improve the mask accuracy
compared to instance segmentation using axis-aligned bounding boxes.

1. INTRODUCTION

There has been growing interest in the use of unmanned aer-
ial vehicles (UAVs) in engineering applications such as envir-
onmental monitoring, surveillance, and traffic monitoring, to
name a few. The availability of this solution has been benefi-
cial for various applications, because UAVs allow for an easy
and fast acquisition of detailed images of an area of interest
with resolutions tailored to the task. The application of interest
in this paper is traffic surveillance at critical points, e.g. dan-
gerous cross-roads. For such an application, UAVs could be
considered as a part of an infrastructure that can monitor that
dangerous spot. This might become even more relevant in the
context of autonomous driving, considering that autonomous
cars are expected to exchange information with other cars or
with some relevant objects of infrastructure, a scenario that has
also been investigated in (Schön et al., 2018).

In this setup, the goal of processing the images produced by
an UAV is the detection and tracking of all the vehicles in the
field of view of its camera. This paper focuses on the first step,
the detection of vehicles in high-resolution near-nadir-view im-
ages acquired by an UAV using a Convolutional Neural Net-
work (CNN). Classical methods of object detection deliver a
bounding box aligned with the image rows and columns for
every instance of an object in the scene (Pinheiro et al., 2015);
methods for instance segmentation additionally deliver a bin-
ary segmentation mask for every instance, indicating the set of
pixels inside the bounding box that belong to the object (He et
al., 2017).

Nevertheless, in near-nadir images, vehicles can be distributed
in arbitrary orientations, sometimes being densely packed in
areas of of high traffic. In such cases, axis-aligned bounding
boxes will usually contain other neighbouring objects and a
lot of background information, so using such boxes would not
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seem to be a natural choice for our problem. Vehicles typic-
ally have an almost rectangular footprint in near-nadir imagery,
and it would be a much more obvious choice to predict oriented
bounding boxes, i.e. rotated rectangles whose main orientation
is identical to the orientation of the car, in the detection step.
Such a representation of a vehicle by a rotated would already
represent the shape of the vehicle very well; however, the binary
mask which is predicted in instance segmentation would give an
even more detailed representation of the shape of the car never-
theless. If the representation of a car at instance level is given
by a rotated bounding box, we believe it is also preferable to
align the instance mask to be predicted to that rotated bounding
box, thus avoiding boxes with many background pixels. The
information about the rotation of the bounding boxes could be
extracted from the results of instance segmentation in a post-
processing step, e.g. by determining the minimum bounding
rectangle (MBR) from the binary mask. In this paper, we pur-
sue another strategy: the goal of this paper is to directly determ-
ine oriented bounding boxes and by a CNN and a binary mask
aligned with the rotated box. Knowledge about the orientation
of the vehicle will also be an important cue for tracking, which
will be tackled in future work. We want to investigate whether
using oriented bounding boxes would help in better perform-
ance and results for detection and segmentation of vehicles.

There are methods for predicting rotated bounding boxes in ob-
ject detection, e.g. (Liu et al., 2017) or (Jiang et al., 2017),
but instance segmentation was not carried out, and region pro-
posal is not based on a CNN. Mou and Zhu (2018) proposed a
semantic boundary-aware Res-FCN (Fully Convolutional Net-
work) for vehicle instance segmentation that does not use axis-
aligned bounding boxes; in fact, it does not use bounding boxes
at all, predicting object boundaries along with the instance
masks instead. Given the fact that vehicles can be represented
by rectangles quite well in near-nadir views, this would seem to
be a rather complex approach.

Our method detects vehicles in near-nadir images, e.g. ac-
quired from a UAV, and predicts a rotated bounding box for
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every detected instance along with a binary mask identifying
pixels belonging to the object. The method is based on Mask-
RCNN, proposed for instance segmentation in (He et al., 2017).
Our main methodological contribution is an extension of that
method to predict rotated bounding boxes and binary instance
masks aligned with the rotated boxes. This also requires a
modification of the training procedure. We also introduce a
new dataset consisting of high-resolution images acquired us-
ing a UAV and a reference for instance segmentation with ro-
tated bounding boxes. Using this new dataset and an existing
benchmark we evaluate the performance of bounding box pre-
diction and instance segmentation and show that it can achieve
good results.

2. RELATED WORK

2.1 Object Detection

The goal of object detection is to detect all instances of objects
belonging to some pre-defined classes of interest and to localize
them in the image, usually represented as bounding boxes with
confidence scores for the classes of interest and the background.
For vehicle detection in aerial images, early works relied on
the use of hand crafted visual features and classifiers. Shao et
al. (2012) detect vehicles from high resolution aerial images
using visual features such as histograms of oriented gradients
(HOG) (Dalal and Triggs, 2005) and local binary pattern (Ojala
et al., 2002). Moranduzzo and Melgani (2014) detect vehicles
by firstly using SIFT (Lowe, 1999) to detect vehicle interest
points and training a support vector machine to classify the de-
tected interest points according to whether they correspond to a
vehicle or not. However, these methods rely heavily on manual
feature engineering.

The use of deep learning, especially of CNNs, has achieved
amazing success in object detection. CNNs have a strong abil-
ity to learn image features (Zhao et al., 2019). Object detection
based on CNN is typically performed in two stages. In the first
stage, candidate regions that are likely to contain objects are
detected. In the second stage, the image content inside each
candidate box is used for classification and to improve the geo-
metrical accuracy of the bounding box by regression, usually
using two separate network branches, e.g. (Girshick, 2015; Ren
et al., 2017). The classification output may also assign a box to
the background class, in which case the candidate is discarded;
otherwise, the class label indicates the object type. Early work
used separate region proposal methods not based on CNN (Gir-
shick et al., 2014). This is also true for Fast R-CNN (Girshick,
2015), where a backbone CNN was incorporated to produces a
feature map for the entire image, from which the features inside
of the bounding boxes were extracted by a Region of Interest
(RoI) pooling layer. These features are processed by a CNN
with two branches, one for classification and one for bounding
box regression. Faster R-CNN (Ren et al., 2017) additionally
proposed a region proposal network (RPN), i.e. a CNN that
uses the feature map generated by a backbone network to pre-
dict candidate bounding boxes for Fast R-CNN. The RPN uses
a series of axis-aligned anchor boxes of different size and as-
pect ratio; each pixel in the input image is considered to be a
potential centre of a bounding box corresponding to each of the
anchors, and the RPN predicts an objectness score and regresses
the bounding box parameters for all of these potential bounding
boxes. After non-maxima suppression, the N proposals having
the best objectness scores are selected for further processing.
Feature Pyramid Networks (FPN) (Lin et al., 2017) generating

multi-scale feature maps to locate objects, to improve the object
detection results for cases in which objects may appear at very
different scale. However, using a backbone with less semantic
information affects the generated multi-scale features because
they will not be fully exploited. All the methods mentioned
such use axis-aligned bounding boxes. However, for applica-
tions like vehicle monitoring and tracking, the orientation of the
detected vehicles is a crucial piece of information. Yet, work on
detection of vehicles that also predicts the vehicle orientation,
which would be performed implicitly if rotated bounding boxes
were considered, has found less attention, and predicting the
orientation is still considered as a challenge.

2.2 Detection with Rotated Bounding Boxes

There are different strategies for orientation estimation of ob-
jects. A classical method is presented in (Liu and Mattyus,
2015), where a fast binary detector using integral channel fea-
tures in a soft-cascade structure is used to detect vehicles. After-
wards, HOG features are used to classify the orientations of the
detected vehicles. One of the disadvantages of this method is
that it is based on hand-crafted features. Deep learning methods
for oriented box detection have also been proposed. Han et al.
(2021) propose a rotation-equivariant detector for aerial object
detection that uses a backbone neural network which encodes
rotation equivariance and rotation invariance to extract rotation-
equivariant features, and propose rotation-invariant RoI Align
to extract rotation-invariant features from rotation-equivariant
features. Yi et al. (2021) describe oriented objects in the same
Cartesian coordinate system as boundary-aware vectors and use
an extended horizontal keypoint-based object detector to re-
gress them. Yang et al. (2019) detect rotated objects with a
single-stage detector using a progressive regression approach.
However, the exact orientation of the objects in (0, 2π] was not
given much importance in the mentioned deep learning meth-
ods.

Jiang et al. (2017) use an RPN based on axis-aligned anchors
for inferring axis aligned bounding boxes before regressing the
orientation. Xia et al. (2018) suggest to extend state-of-the-art
methods for object detection to regress a rotated bounding box
for objects of interest, and they also propose a benchmark data-
set (DOTA) for oriented object detection. Nonetheless, they
use axis-aligned anchors for the training of the RPN (instead
of rotated anchors used in our work), and they regress the co-
ordinates of the bounding box (i.e, the 8 coordinates of the 4
positions of the bounding box vertices in the image). Thus, the
bounding box regression is over-parameterized, which may be
problematic and result in rotated boxes that are not rectangular.
Ding et al. (2019) also introduces an approach for generating ro-
tated Region of Interests (RoI Transformer). It is based on the
output of axis-aligned RPN. First, the RoI Transformer learns
to transform an axis-aligned region of interest into a rotated re-
gion of interest. Afterwards, a second module extracts rotation-
invariant features from the rotated RoIs to be used for classi-
fication and regression. The authors claim that using rotated
anchors would result in too many anchors to be considered; this
may be true for a method designed for different target objects
with various sizes and aspect ratios. However, as we restrict
ourselves to a single object category (vehicles), we can restrict
the number of aspect ratios considered based on object know-
ledge, so that it becomes feasible to use rotated anchor boxes.
A CNN for ship detection, representing ships by rotated bound-
ing boxes, was introduced by Liu et al. (2017). Using rotated
region proposals extracted using the method presented in (Liu
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et al., 2016), a rotated region of interest pooling layer is applied
before regressing the bounding boxes. However, the region pro-
posal method is not based on a CNN.

2.3 Instance Segmentation

Many instance segmentation methods are based on Faster R-
CNN (Ren et al., 2017), expanding the network by a branch for
predicting a binary mask identifying pixels inside the bounding
boxes that correspond to the object of interest. An example is
Mask R-CNN (He et al., 2017). The architecture of the mask
prediction branch is similar to the decoder of a fully convolu-
tional network for semantic segmentation (Long et al., 2015).
Mask Scoring R-CNN (Huang et al., 2019) learns to determ-
ine the quality of the mask predictions, adapting the predicted
scores of the masks in a way that high scores are given to high
quality masks and lower scores are given to the lower quality
masks. YOLACT (Bolya et al., 2019) enhances the speed of
instance segmentation by using a linear combination of proto-
types for mask prediction and a fast version of non-maximum-
suppression. Shape priors are also used in (Kuo et al., 2019),
mainly with the goal to improve the generalization performance
of the model and to reduce the amount of training data.

However, all of the methods mentioned so far use axis-aligned
bounding boxes for instance segmentation. Mou and Zhu
(2018) proposed a semantic boundary-aware Res-FCN (Fully
Convolutional Network) to compute vehicle instance segment-
ation by predicting vehicle regions and their boundaries, not
considering rectangular bounding boxes at all. The network
residual blocks feature representations are upsampled in two
separate but identical branches to segment vehicles and their
boundaries. However, the heading of vehicle instances could
only be determined from the results in post-processing. In this
paper, we try to address the vehicle instance segmentation prob-
lem by a end-to-end learning framework using rotated bounding
boxes and binary object masks aligned with these rotated boxes.

3. METHODOLOGY

The goal of our method is to extract the instances of vehicles
from an aerial near-nadir view image. It is based on Mask-
RCNN (He et al., 2017), adapting it to predict a rotated bound-
ing box and a binary instance mask aligned with that box for
every detected instance and using an end-to-end training frame-
work. Figure 1 shows an overview of the network used in this
paper. The network uses a ResNet50 (He et al., 2016) backbone
to extract features from the image. Afterwards, a new rotated
region proposal network (RRPN) is used to extract a limited
number of RoIs that are to considered candidate regions for con-
taining vehicles. Similarly to the RPN in (He et al., 2017), the
RRPN is based on a set anchor boxes, considering every pixel
in the feature map generated by the backbone to be a potential
centre of one RoI per anchor, the shape of each of these can-
didates being defined by the anchor. The RRPN also regresses
box parameter updates relative to the anchor for every candid-
ate and selects the best candidates according to a classification
score. For each candidate object thus extracted by the RRPN,
a rotated RoI (RRoI) pooling layer extracts a feature map of a
fixed size aligned with the rotated bounding box of the candid-
ate. As in (He et al., 2017), this feature map is processed by
two network branches. The first one is a classification and re-
gression head that predicts whether a candidate corresponds to
a vehicle or not and improves the parameters of the bounding
box; the second one predicts a binary instance mask aligned

with the bounding box, which identifies pixels inside the box
that correspond to the vehicle.

The main modifications of our method compared to (He et al.,
2017) are the RRPN and the RRoI layer. Unlike the RPN (He
et al., 2017), the RRPN extracts RoI that are rotated with re-
spect to the image coordinate system. This is achieved by using
a set of anchors that represent rectangles of different orienta-
tions and sizes in the RRPN. As the only object type we are
interested in are vehicles, we exploit the knowledge about the
shape of vehicles to limit the number of used anchors with re-
spect to scales and aspect ratios. As a consequence of allowing
for rotated bounding boxes, RoI regression additionally has to
predict the orientation angle of the rectangle. This information
is used in the RRoI pooling layer to align the extracted features
with the rotated bounding boxes. Of course, the final bound-
ing box regression branch also has to refine five bounding box
parameters rather than four, as done in (He et al., 2017). The
rotated RoI features are fed the FCN branch, which predicts the
binary map of vehicle pixels inside the rotated bounding box,
which will also be aligned with the rotated box. In the follow-
ing subsections, we give more details about the main parts of
our framework and the training procedure.

3.1 Rotated Bounding Box Representation

As shown in Figure 2, every bounding box is represented by five
parameters, collected in a parameter vector b = (r, c, l1, l2, θ).
It contains the image coordinates of the vehicle centre (r, c),
the angle θ ∈ (0, 2π] representing the orientation of the main
vehicle axis relative to the x axis of the image coordinate sys-
tem, and the lengths l1 and l2 of the longer and the shorter semi-
axes of the oriented rectangular box, respectively. In general,
the direction of the main vehicle axis is defined to be the driv-
ing direction. In our experiments, we will also test our method
using data in which the driving direction of the vehicles is not
given in the reference data. In these cases, we restrict the ro-
tation angles to the interval (0,π], defining the main direction
of the vehicle to correspond to the longer semi-axis of the rect-
angle.

3.2 Rotated Region Proposal Network (RRPN)

Similarly to the RPN proposed in (Ren et al., 2017), the RRPN
uses a window of size 3 × 3 window that slides over the fea-
ture map generated by the backbone. The features inside the
window are resampled to a 256 dimensional vector, which is
passed to two fully connected layers. The first of these layers
computes a confidence score indicating whether the centre of
the 3 × 3 corresponds to an object described by a certain anchor
or not, and the second one regresses offsets of the five paramet-
ers of the bounding box with respect to the parameters derived
from the corresponding anchor. As we want to predict oriented
boxes, we use oriented anchors with different orientations and
sizes to feed the RRPN. Ding et al. (2019) claims that this res-
ults in a higher number of anchors compared to axis-aligned
boxes. However, we are interested in vehicles only, so that we
can exploit the knowledge about the typical shape of vehicles
to limit the number of used anchors with respect to scale and
aspect ratio. Unlike (He et al., 2017), we only use one aspect
ratio (l1 : l2 = 2 : 1), a small number of scales (1 or 2, depend-
ing on the dataset), but several rotations (11 or 6, depending on
whether we have a reference for the driving direction or not).

The classification layer generates two class scores (one for ob-
ject and one for no object) using the softmax function, and the
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Figure 1. The architecture of the proposed method.

Figure 2. Rotated Bounding Box representation.

box regression layer delivers a correction to each of the five
parameters per position and anchor. Similarly to (Ren et al.,
2017), cross-boundary predictions are removed in the training
phase, but only clipped to the image boundaries at inference
time. Then, non-maximum suppression is used to reduce the
number of proposed RRoIs. For every initial region proposal,
we check its overlap with other region proposals. We determine
the intersection over union (IoU) score of each overlapping pair
of candidate boxes; if a candidate has an IoU score larger than
0.75 with another box that has a higher classification score, it
is discarded. The remaining candidates are ranked according
to their scores for the foreground class, and the Nprop (set to
Nprop = 1000 in our experiments) best-ranked candidates are
selected as the proposed regions that are forwarded to the RRoI
pooling layer.

3.3 Rotated RoI Pooling

For every region proposals generated by the RRPN, a feature
map is extracted in the RRoI pooling layer. This feature map
has to be aligned with the proposed bounding box. The size of
the feature map ism × m (we usem = 14 in our experiments).
The bounding box is divided into a a grid ofm × m rectangular
bins the sides of which are parallel to the edges of the bounding
box. Using the feature map produced by the ResNet backbone
as input, for each of these bins we identify all input feature
vectors inside the rectangle boundaries, and one representative
feature vector is generated per bin using max-pooling among all
of these feature vectors. The output feature map corresponding
to the RRoI is transferred to the classification, box regression
and mask prediction heads of the CNN.

3.4 Classification and Bounding Box Regression

For the classification of vehicles, the fixed-sized feature map
from RoI Pooling is processed by a sequence of fully connec-
ted layers that are identical to the ones used in (Ren et al., 2017),
except for the number of nodes in the last layers of the output
branches. There are two such output branches. The first one
generates softmax scores for the classes vehicle and no vehicle,
whereas the second one predicts 5 real-valued numbers encod-
ing the bounding parameters.

3.5 Mask Prediction

The feature maps produced by the RRoI layer, having a spatial
dimension of m × m = 14 × 14, are fed into a sequence of
4 convolutional layers with rectified linear unit activation func-
tion (ReLU), followed by an upsampling layer with a factor 2,
using transposed convolution. Finally, a sigmoid activation is
applied to every pixel of the resultant feature map (spatial di-
mensions: 28 × 28) to get the score for the pixel to belong to
the foreground. Similar to (He et al., 2017), an affine transform-
ation is applied to the map of class scores thus generated to get a
new map that has square pixels at the geometrical resolution of
the input images, using bilinear resampling in this process. The
final binary mask of vehicle pixels is obtained by binarizing the
resampled score map using a threshold of 0.5.

3.6 Training

The training data consist of images with known rotated bound-
ing boxes enclosing vehicles and binary masks identifying
vehicle pixels inside the bounding boxes. We use a stratiefied
training procedure similarly to (Ren et al., 2017) and (He et
al., 2017), but using adapted versions of the loss functions.
The ResNet backbone is pre-trained on ImageNet (Deng et al.,
2009). The parameters of the RRPN and the classification and
box regression branches are initialized by the stratified proced-
ure of (Ren et al., 2017), in which one component of the CNN
is trained after the other, taking into account different compon-
ents of the loss function described below. After that, the results
of the RRPN are used to train the instance segmentation branch
of the network. Finally, similarly to (He et al., 2017), we fine-
tune the network using a combined loss function considering
all intermediate and final outputs, which is the reason why we
speak about end-to-end training. The multi-task loss Ltotal to
be minimized in training consist of four terms:

Ltotal = LRRPN + Lcls + Lreg + Lmask. (1)
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The four loss terms will be explained in the subsequent subsec-
tions.

3.6.1 RRPN Loss LRRPN : This loss is computed from the
output of the RRPN. Each proposed anchor is classified accord-
ing to whether it corresponds to an object bounding box or not,
and the parameters of the bounding box are regressed. For each
such anchor, we have to define whether it corresponds to an
object, i.e. to a sample for class foreground, or not, i.e. to a
sample for class background. As in (Ren et al., 2017), this is
decided according to its IoU score with the ground truth bound-
ing boxes. An anchor is assigned to the foreground if its IoU
with a ground truth box is higher than fgThresh = 0.7. If mul-
tiple anchors have such a large overlap with a ground truth box,
only the one having the highest IoU is maintained and the others
are discarded. On the other hand, an anchor is assigned to the
background if its IoU with any ground truth box is lower than
0.3. After removing candidates crossing the image boundaries
and non-maxima suppression, about 2000 candidate boxes are
extracted during training, similarly to (Ren et al., 2017), among
which there will be both positive and negative samples. These
2000 boxes are further reduced to 256 (i.e. 128 per class) by
random sampling.

The loss is based on this reduced set of samples for an input
image. It consists of two terms:

LRRPN = LRRPNcls + LRRPNreg . (2)

The first term, LRRPNcls, is computed at the end of the classi-
fication branch of the network (object vs. no object). Similarly
to the classification loss Lcls in (Ren et al., 2017), we use a log
loss for the binary classification task defined as:

LRRPNcls = − 1

N

N∑
i=1

li · log(pio) + (1− l) · log(pino), (3)

where li is the label of the sample i (1 for object anchors and 0
for no object anchors), pio and pino are the softmax outputs for
the object and no object classes, respectively, for that sample,
and N is the number of samples (256 if one image is processed
at a time in training).

The second term in eq. 2, LRRPNreg measures the level of
agreement of the bounding box parameters with the reference
in a way similar to the regression loss in (Ren et al., 2017). It
considers the differences of the known and the predicted offsets
of the bounding box compared to the anchor. These offsets tp
with p ∈ {r, c, l1, l2, θ} are defined as follows :

tc =
(c− ca)

l1a

tr =
(r − ra)

l2a
tl1 = log(l1)− log(l1a) (4)
tl2 = log(l2)− log(l2a)

tθ = θ − θa + s2π,

where (ca, ra, l1a, l2a, θa) are the parameters of the box cor-
responding to the anchor. Analogously, an offsets t∗p for every
parameter of a reference bounding box is defined. Taking these
definitions, for every parameter p ∈ {r, c, l1, l2, θ}, there is one
loss term measuring the difference ∆p = t∗p − tp between the

true and the predicted offsets. The parameter s ∈ Z is used to
ensure that tθ ∈ (0, 2π]. Similarly to the RPN regression loss
of (Ren et al., 2017), we use the loss

LRRPNreg =
1

Nreg
·
Nreg∑
n=1

∑
p∈{r,c,l1,l2,θ}

LH(∆pn), (5)

where ∆pn is the difference of the offsets of nth bounding box
and LH is the Huber loss function, referred to as smooth L1
loss in (Girshick, 2015):

LH(∆p) =

{
0.5∆p2 if |∆p| < 1
|∆p| − 0.5 otherwise (6)

The sum in eq. 5 is taken over the Nreg samples for the object
class. The main difference of this loss and the corresponding
one in (Ren et al., 2017) is that it includes a term for the offset
of the rotation angle of the bounding box.

3.6.2 Classification Loss Lcls: This loss is computed at the
end of the classification branch of the network. Similarly to
(Girshick, 2015), we use a log loss for the binary classification
task (vehicle vs. no vehicle):

Lcls = − 1

N

N∑
i=1

log(pi(Ci)), (7)

where pi(Ci) denotes the softmax output for the correct class
label Ci of the ith candidate box and N is the number of such
boxes.

3.6.3 Regression Loss Lreg: This loss is computed at the
end of the bounding box regression branch of the network. It is
similar to LRRPNreg in eq. 5:

Lreg =
1

Nreg
·
Nreg∑
n=1

∑
p∈{r,c,l1,l2,θ}

LH(∆p′n
). (8)

In eq. 8, all terms are identical to those of eq. 5, except of the
argument of the loss function LH . Here we use the differences
∆′p = p∗ − p of the predicted parameter p and the ground truth
value p∗, e.g. ∆′r = r∗ − r for the parameter r.

3.6.4 Mask Loss Lmask: This loss is computed at the end
of the branch for predicting the binary object masks. This
branch generates a mask of dimension o × o for each RRoI
(we use o=28). Similarly to (He et al., 2017), we use the bin-
ary cross-entropy loss for every pixel of the upsampled feature
maps for the rotated bounding box k:

Lmask = − 1

O

Nobj∑
k=1

∑
1≤i,j≤o

[lkij · log(pkij) + (9)

+(1− lkij) · log(1− pkij)],

where O = o2 · Nobj is the total number of terms in the sum,
Nobj is the number of object bounding boxes considered, (i, j)
identifies a cell in the feature maps, lkij is the true binary label of
that cell (1 for object and 0 for no object) for sample k, and pkij
is the corresponding sigmoid output for that pixel to correspond
to the foreground object.
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4. EXPERIMENTS AND RESULTS

4.1 Test Datasets

In our experiments, we use two datasets: the Potsdam dataset
from the ISPRS Semantic Labeling challenge (Wegner et al.,
2017) and a new dataset acquired by UAV specifically for this
project. The ISPRS dataset consists of 24 tiles (6000 × 6000
pixels each) with 5 cm spatial resolution and a reference for
pixel-wise classification of land cover. The reference data re-
quired by our method, in particular the rotated bounding box for
each car instance, were generated from the pixel-based annota-
tions for the class car provided by that benchmark. First, con-
nected components of car pixels were extracted. Afterwards, a
minimum bounding rectangle was determined for each of these
components to derive the rotated bounding box, defining the
rotation of the box to correspond to the longer semi-axis of
the rectangle in the interval (0, π]; this was done because the
driving direction of a car cannot be inferred from a label im-
age automatically. The results of this process were checked
interactively and corrected if required. Of course, the set of car
pixels forming the basis of the generation of the rotated bound-
ing box formed the reference for the binary instance masks. Al-
together, there were 31564 instances of cars in this dataset. For
all datasets used in the evaluation, we split the images into tiles
of 256 × 256 pixels.

The second dataset, to which we refer as the UAV dataset in
this paper, was generated following a measurement campaign
conducted by us. It covers the scenario of a UAV with a camera
hovering over a street intersection for the purpose of detecting
and tracking vehicles. It contains parked vehicles and vehicles
driving in different directions. In total, there are 3200 images
each with a size of 2592 × 2048 pixels and 3 cm spatial res-
olution, acquired at a frequency of 10 Hz from the hovering
UAV. The data were manually annotated. We differentiate two
subsets of this dataset. For the first subset, consisting of 2600
images, binary masks of vehicle pixels were digitized manually,
and the reference bounding boxes were generated in a way sim-
ilar to the ISPRS dataset, so that the rotation is defined to be
in the interval (0,π]. The number of car instances in this data-
set was 23429, and we refer to it as dataset UAV180. For the
second subset, consisting of the remaining 600 images, the ro-
tation of the bounding box was interactively corrected so that it
refers to the driving direction of vehicle. Thus, for this subset,
which consists of 4435 car instances, the angles are given in the
interval (0,2π]. We refer to it as dataset UAV360.

4.2 Test Setup

Training was based on the method described in section 3.6, us-
ing stochastic gradient descent with momentum and weight de-
cay for optimization. The weight decay and momentum para-
meters were set to 0.0001 and 0.9, respectively. As a backbone
we used ResNet-50 (He et al., 2016) pretrained on ImageNet
(Deng et al., 2009). The stratified training procedure was car-
ried out in a way similar to (He et al., 2017). In the final training
stage, in which the joint loss in eq. 1 was optimized, we trained
the models for 50 epochs. The number of training iterations per
epoch is identical to the number of image tiles, as in each iter-
ation one image tile of 256 × 256 pixels is used to update the
parameters. For the first 30 epochs, the learning rate was set to
0.001, afterwards it was decreased to 0.0001.

We applied augmentation to increase the number of samples
in the UAV dataset, taking random crops and applying random

scales in the range [0.9, 1.1] and a random rotations in [0, 360o).
For the subset UAV180, this resulted in a set with 32790 in-
stances; for the subset UAV360, the number of vehicle instances
in the augmented dataset was 6532. Each dataset was divded
into a training set consisting of 60% of data, 20% of the data
were used for validation, and the remaining 20% constituted the
test sets. In case of the UAV dataset, the split was applied by as-
signing the original images (before tiling) to respective subsets,
so that tiles generated by data augmentation would be assigned
to the corresponding set of original images.

We trained two variants of the CNN described in this paper
based on the available data. The first variant, referred to as
V180, was trained using the training data from the ISPRS and
the UAV180 datasets. Thus, in this variant, the rotations of the
bounding boxes are in the interval (0, π]. We used 12 anchors
in this variant, considering one aspect ratio (2:1), two scales (64
and 128 for l1, resp.), and six rotation angles (0o, 30o, 60o, 90o,
120o, 150o). This variant will be evaluated on the test sets of
the ISPRS and UAV180 datasets. The second variant, referred to
as V360, is trained to regress rotations in (0, 2π]. As the UAV360

dataset is quite small, we use a combination of all three train-
ing sets for training this model. In this case, we used eleven
anchors, considering the same aspect ratio as in V180, one scale
only (64), and eleven rotation angles (0o, 30o, 60o, 90o, 120o,
150o, 180o, 210o, 240o, 270o, 300o, 330o). The results are eval-
uated using the test set of the UAV360 dataset. The experiments
involving that second variant should show the capability of our
method to predict correct orientations related to the driving dir-
ection of vehicles.

As a baseline method for instance segmentation, we use a vari-
ant of our method that uses axis-alinged bounding boxes. The
resultant model, referred to as Vb, can be seen as a variant of
Mask R-CNN with a restricted set of two anchors (related to
an aspect ratio of 2:1 and two scales, identical to those used in
V180). In this case, no rotations were regressed, and the stand-
ard RoI pooling approach used in (He et al., 2017). The data
used to train this model were identical to those used for training
variant V180.

In the evaluation, we analyse three aspects of the performance:
object detection, segmentation of the instance masks, and pre-
diction of the orientation of the bounding box. In order to meas-
ure detection performance, we compare the predicted bounding
boxes to the reference bounding boxes. A predicted bounding
box is considered to be a true positive (TP) if it has an IoU
score with a reference box above 50%, otherwise it is con-
sidered to be a false positive (FP). Similarly, a false negative
(FN) is a reference box having an IoU smaller than 50% with
the predicted results. Based on the number of TP, FP and FN in-
stances, the precision, i.e. the percentage of detected instances
that correspond to an instance in the reference, and the recall,
i.e. the percentage of reference instances that were detected, is
determined; the F1 score, i.e. the harmonic mean of precision
and recall, is also reported. Additionnally, the mean Average
Precision (mAP) score is calculated by computing the area un-
der the precision-recall curve which is computed by calculating
the average value of precision and recall at every confidence
threshold. Similar to (He et al., 2017), IoU thresholds varying
from 50% to 95% by 5% step are used.

For assessing the quality of the predicted rotation angles, we
compute the cumulated differences between the predicted and
the reference angles and then determine a histogram of these
differences. As far as the evaluation of the binary masks is
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concerned, we define a TP pixel to be a pixel corresponding
to the vehicle in both, the reference and the predicted masks,
and FP and FN pixels analogously to the definitions given for
instances. In this case, all reference foreground pixels in FN
detections are considered to be FN pixels, and all foreground
pixels in masks predicted for FP detections are considered to be
FP pixels. Based on these definitions, we also determine preci-
sion, recall, the F1 score and mAP percentage on the basis of
all pixels in the test set.

4.3 Results and Discussion

As explained in the previous section, we trained and tested two
variants of our method. The evaluation of the results of the two
variants are described separately in the two subsequent sections.

4.3.1 Evaluation of the variant V180: In this variant, the
rotations of the bounding boxes are onyl given in the range
between (0, π]. Table 1 presents the evaluation metrics for ob-
ject detection achieved by this variant on the test sets from the
ISPRS and the UAV180 datasets described in section 4.1. The
evaluation metrics of the binary masks predicted in instance
segmentation are shown in table 2. In both cases, the metrics
achieved by our method (V180) are compared to the baseline
(Vb), which does not consider rotated bounding boxes.

As far as the performance in object detection is concerned, our
method V180 outperforms the baseline in when applied to the
ISPRS dataset by a relatively large margin, e.g. 3.4% in the F1
score and 2% in mAP percentage. When applied to the UAV180

test set, our method achieves a slightly larger precision and re-
call; the F1 score, which is a trade-off between the two values
is also slightly better for our approach, though only by a small
margin (0.9%), while the difference of the mAP percentages is
larger for our approach by 2.9%. In general, we consider the
detection performance to be relatively good.

Data ISPRS UAV180

Model Prec. Recall F1 mAP Prec. Recall F1 mAP
V180 81.4 74.2 77.6 45.0 82.6 75.4 78.8 49.1
Vb 76.5 72.1 74.2 43.0 81.7 74.5 77.9 46.2

Table 1. Precision (Prec.), Recall, F1 score and mAP for object
detection on the two test datasets, achieved by the variant V180

of our method and the baseline Vb.

Similar observations can be made for the pixel-wise evaluation
of the binary masks generated by our method and the baseline
(cf. table 2). Again our method achieves better metrics for the
ISPRS dataset, with a difference of 0.3% in the F1 score and
2.9% in the mAP percentage. It would seem that on that data-
set, the binary masks predicted by our method are more precise
compared to those of the baseline. For the UAV180 dataset, the
results are of a similar quality, with a large overall advantage of
our method (2.5% in F1 and 4.9% in mAP). Again, the quality
of the results is considered to be relatively good.

Data ISPRS UAV180

Model Prec. Recall F1 mAP Prec. Recall F1 mAP
V180 81.8 71.1 76.1 44.1 82.4 77.8 80.0 50.0
Vb 79.8 72.3 75.8 41.2 81.3 74.2 77.5 45.1

Table 2. Precision (Prec.), Recall, F1 score and mAP for the
binary masks predicted on the two test datasets by the variant

V180 of our method and the baseline Vb.

4.3.2 Evaluation of the variant V360: In this variant, the
rotations of the bounding boxes are given in the range between
(0, 2π], i.e. the predicted rotation refers to the driving direction
of the vehicles. Figure 3 and Figure 4 show some qualitative
results of V360 on UAV360 test images. Table 3 presents the
evaluation metrics for object detection achieved by this vari-
ant on the test sets from the UAV360 datasets described in sec-
tion 4.1. The evaluation metrics of the binary masks predicted
in instance segmentation are shown in table 4. Again, the met-
rics achieved by our method (V360) are compared to the baseline
(Vb), which does not consider rotated bounding boxes.

In object detection, our method (V360) performs better than the
baseline by 0.7% in the F1 score and 1% in mAP percent-
age. The evaluation of the predicted binary masks shows that
our model (V360) performs better compared to the axis-aligned
model, with difference in F1 score of about 2,6% and 1.4% in
mAP percentage. In general, the performance on the UAV360

dataset is slightly lower than the one of UAV180 in terms of
the detection quality, whereas it is a bit better in terms of a
prediction of the binary masks. Both models V180 and V360

show better results in predicting vehicle instances compared
with the baseline, and results demonstrates that models using
rotated bounding boxes outperform models using axis-aligned
boxes in the prediction of instance vehicle masks.

Figure 3. Qualitative results of V360 on UAV360 test images.
White arrows point to the predictions of vehicle headings.

Figure 4. Qualitative results of V360 on UAV360 test images.
Vehicle masks and oriented bounding boxes with heading are

shown.

model Precision Recall F1 mAP
V360 84.6 72.9 78.3 47.1
Vb 81.9 73.7 77.6 46.1

Table 3. Precision, Recall, F1 score and mAP for object
detection on the UAV360 dataset, achieved by the variant V360 of

our method and the baseline Vb.

In this set of experiments, we also evaluate the estimated rota-
tion angles of the bounding boxes. Figure 5 shows the cumulat-
ive histogram of the absolute differences between the predicted
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model Precision Recall F1 mAP
V360 87.4 77.6 82.2 51.3
Vb 84.2 75.5 79.6 49.9

Table 4. Precision, Recall, F1 score and mAP for the binary
masks predicted on the the UAV360 dataset by the variant V360

of our method and the baseline Vb.

and the reference angles. The results show that the majority
(around 80%) of the predicted angles are close to the true ones.
However, the histogram also shows that the majority of heading
angle errors are close to ±180o, which corresponds to cases in
which the rotation refers to the negative driving direction. On
the one hand, this may be due to the difficulty of the problem:
for some types of cars it may be difficult to infer the driving dir-
ection because they appear almost symmetrical in a near-nadir
view. On the other hand, this may also be due to the fact that
in the training process, the large majority of samples had angles
only defined in the interval (0, π]; further tests using an enlarged
dataset with reference angles in (0, 2π] will show whether this
assumption is correct. Figure 3 shows qualitative results of V360

on UAV360 test images, depicting predicted bounding box and
heading for each detected vehicle instance, and the white arrows
in the figure point to the wrong predictions of the headings.

Figure 5. Cumulative histogram of absolute differences between
estimated and reference angles. The abscissa gives the absolute

value of the angle difference in [degrees].

5. CONCLUSION

In this paper, we have proposed a CNN-based method for
vehicle instance segmentation using rotated bounding boxes to
represent vehicles. The method achieved reasonably good res-
ults in object detection and in the prediction of binary masks
when applied to data acquired from different platforms, includ-
ing UAV. An evaluation of the predicted orientation showed that
the correct orientation could be predicted in a large variety of
the cases, but some errors still remain.

In future work, we plan to increase the dataset with angles in
the range (0, 2π] and see whether this will improve the results
of the prediction. We slso want to analyse how the parameters
of the RRPN can affect the results. Our ultimate goal is to build
a method for tracking vehicles over time in the UAV images, for
which the predicted rotations will be particularly useful. The
tracking method does not only consider the observations from
the UAV, but also street views acquired by collaborating (po-
tentially autonomous) cars (Coenen and Rottensteiner, 2019).
In this context, we also plan to differentiate between different

vehicle types, which would lead to prior information about the
shape of a vehicle for 3D reconstruction from the UAV images.
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