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ABSTRACT:

In recent years, many methods have been proposed to improve the quality of the estimated trajectories for airborne or terrestrial
mapping platforms leveraging multi-sensor fusion. One of the motivating applications is, for example, the use laser scanners on
small unmanned aerial vehicles, where the typically employed low-cost MEMS inertial sensors do not allow for satisfactory direct
geo-referencing of the laser points. In this work we introduce ODyN, an online Dynamic Network solver that can fuses information
from cameras, GNSS and inertial sensors in a single adjustment. It can be employed to estimate a high-frequency trajectory for
precise direct geo-referencing, to improve photogrammetric reconstructions in challenging scenarios or to determine several types
of system calibration parameters. The presented solver is hosted by the University of Geneva and is free for anybody to use. In this
work we present a use case in airborne mapping where the obtained trajectory estimates are improved with respect to the recursive
smoothing approaches conventionally used in direct geo-referencing.

1. INTRODUCTION

The precise determination of the trajectory of an instrument is
an essential step in many remote sensing applications. For in-
stance, it is required to perform direct geo-referencing of raw
Light Detection and Ranging (LiDAR) measurements, where
the determined position and orientation of the laser scanner are
used to transform points from the laser frame to the desired
mapping frame, e.g., in national coordinates (Zhang, Shen,
2013). In photogrammetry, the trajectory solution derived from
Global Navigation Satellite Systems (GNSS) receivers and In-
ertial Measurement Units (IMUs) can be used in a bundle ad-
justment to increase the global accuracy of the reconstructed
three-dimensional models. This is often necessary in chal-
lenging scenarios such as corridor mapping (Rehak, Skaloud,
2016). Other applications can be found in magnetic anomaly
mapping (Gailler et al., 2021) and gravimetry (Skaloud et al.,
2015). Many such applications require that the trajectory is
estimated at high frequency, for example higher than 100 Hz,
in order to resolve the fast attitude dynamics or vibrations of
the carrier platform. This is particularly relevant in small Un-
manned Aerial Vehicles (UAVs) (Nex et al., 2022).

Currently, the only available method that can estimate a high-
frequency trajectory in absolute coordinates is the fusion of
inertial and GNSS observations. This is typically done by
means of recursive (Kalman) filters or smoothers (Titterton et
al., 2004), nowadays an established building block of most nav-
igation systems. However, while lightweight multi-frequency
GNSS receivers are available for an affordable price, low-grade
IMUs must be employed in many applications, e.g., in UAVs,
because of space, weight and cost limitations. Such IMUs
are characterized by time-correlated errors that have a com-
plex structure and can not be completely recovered with only
the auxiliary information provided by GNSS position/velocity
fixes. This often leads to trajectory estimates of unsatisfactory
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quality. In other cases, such as in traditional airborne mapping,
higher quality instruments are available but, because of the high
altitude, the residual errors may still result in unacceptable er-
rors when projected to the ground.

In recent years, many researchers have attempted to improve
the quality of trajectory estimation by leveraging multi-sensor
fusion: the idea is that, since further sensors are available, bey-
ond the IMU and the GNSS receiver, which are heterogeneous
and partially redundant, a more accurate trajectory can be de-
termined if all the available information could be somehow
considered together. A comprehensive review of the literat-
ure on the topic is out of the scope of the current work. We
cite approaches originating in Simultaneous Localization and
Mapping (SLAM) within the robotics community, e.g., (Cioffi,
Scaramuzza, 2020) and cascaded approaches in which the in-
formation fusion task is performed in multiple stages, for ex-
ample by first running a Kalman filter/smoother to fuse inertial
and GNSS readings, and then using a bundle adjustment to cor-
rect the trajectory based on image measurements (Hussnain et
al., 2021). Other approaches also include point-cloud registra-
tion steps to fuse LiDAR measurements (Li et al., 2019).

An alternative approach is referred to as Dynamic Net-
works (DNs) and was first proposed in (Colomina, Blazquez,
2004). This approach is extremely general and allows the fu-
sion of many types of sensor measurements in a single adjust-
ment step, provided that a suitable model can be formulated.
The advantages of DNs have been showcased, for example, in
photogrammetry (Cucci et al., 2017a) and, more recently, in
airborne laser scanning (Brun et al., 2022).

In this work we introduce ODyN, an Online Dynamic Network
solver based on the ROAMFREE open-source sensor fusion lib-
rary (Cucci, Matteucci, 2014). This solver is able to fuse in-
ertial, GNSS and image observations, implementing the very
same algorithm employed in (Cucci et al., 2017a). ODyN is
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Figure 1. The reference frames considered in ODyN. The
supported measurement types, GNSS position (x), IMU specific
force (f ) and angular velocity (ω) and image measurements (tp)

are highlighted in red.

freely available at1 and runs online in any web browser, thus
allowing users to obtain state of the art trajectory solutions for
their navigation and mapping problem without any particular
setup complexity. A user-friendly graphical interface allows
the import of raw measurement data and the configuration of
many advanced system calibration parameters, such as com-
plex stochastic models for the inertial sensor readings, as well
as conventional system and camera intrinsic calibration para-
meters typical of professional photogrammetry suites. While
not all the features of the underlying sensor fusion library are
currently exposed in the graphical user interface, we hope that
feedback from the community will help us to direct out efforts
towards the most interesting ones. We present ODyN by walking
the user through an example where we fuse raw measurements
from a low-cost MEMS IMU and a GNSS receiver with im-
age measurements for a challenging corridor mapping project.
We will employ the raw sensor and reference data previously
presented in (Vallet et al., 2020).

This work is organized as follows: a brief introduction to Dy-
namic Networks is given in Section 2. The concepts and con-
figuration steps necessary to employ ODyN are presented in Sec-
tion 3, the results are discussed in detail in Section 4 and 5 and
conclusion are drawn in Section 6.

2. DYNAMIC NETWORKS

Dynamic Networks are a general sensor fusion framework built
on an extension of conventional geodetic networks. They
were first introduced in (Colomina et al., 2004) and share
many similarities with modern visual-inertial SLAM solutions,
e.g., (Cioffi, Scaramuzza, 2020). In the following, we will sum-
marize the main concepts behind DNs from a user perspect-
ive while we refer the reader to the original publications, or
to (Cucci et al., 2017b), for a more in-depth discussion.

In DN, the objective is to determine a high-frequency trajectory
solution for the body frame b by fusing measurements of several

1ODyN: https://github.com/SMAC-Group/ODyN

different sensors moving rigidly with b (see Fig. 1). This sensor
fusion problem is formulated as a non-linear, weighted least-
squares adjustment in which the unknowns are samples of the
body frame trajectory, 3D coordinates of points in object space
(such as tie-points) and optionally system calibration paramet-
ers, such as boresights, lens distortion coefficients, IMU biases,
etc. Each raw sensor observation, such as the image coordin-
ates of a tie-point, or the specific force measurement at a certain
timestamp, forms a constraint between one or more unknowns.
All such constraints are formulated as:

f(iΘ, zi) = ei + ξi. (1)

where zi is the i-th sensor measurements, f is a possibly non-
linear function defining the measurement model for zi, iΘ is
the set of unknowns needed to evaluate f , ei is the residual
associated to the measurement zi and ξi is a zero-mean Gaus-
sian noise specifying the measurement uncertainty. A trivial
example is given by the constraint for the GNSS position ob-
servation at time t, zx;t:

bnt +Rn
b;tAtnb − zx;t = et + ξt, (2)

where bnt is the body frame position with respect to n at time t,
Rn

b;t is its orientation and Atnb is the GNSS lever-arm. In other
words, bnt + Rn

b;tAtnb, the predicted position of the GNSS an-
tenna based on the body frame position and orientation (which
are unknown) should match the sensor measurement up to the
measurement uncertainty. Note that Atnb can be considered
either a constant or an unknown in the case where we would
like to estimate the GNSS lever-arm. For the more subtle con-
straints for inertial sensor readings please see (Cucci, Skaloud,
2019), and (Cucci et al., 2017b) for image observation.

Minimizing the squared sum of all residual ei over all avail-
able measurements, weighted by the inverse covariance matrix
of ξi, allows us to obtain the maximum-likelihood estimate for
all unknowns. At the present stage, ODyN supports raw spe-
cific force and angular velocity observations as measured by an
IMU (f and ω in Fig. 1), GNSS position observations (x) and
tie-points (tp) found in camera images. Many other types of
sensors measurements can be considered in DNs, such as 3D
tie-points extracted from LiDAR point clouds, as in (Brun et
al., 2022), magnetometers, barometers, etc., and they may be
supported by ODyN in the future.

In general, all sensors are displaced and misaligned with re-
spect to the body frame b for which the navigation solution is
determined. For one sensor, its displacement and misaligne-
ment with respect to b are commonly referred as lever-arm and
boresight, respectively. Three sensor frames are considered in
ODyN: IMU, Cam, placed at the optical center of the camera,
and Atn, at the L1 or L2 phase center of the GNSS antenna (see
Fig. 1). Thus, three reference frame transformations need to be
specified: Γb

IMU, Γb
Cam and Γb

Atn. Taking the first as an example,
Γb

IMU = [Rb
IMU | IMUb], where Rb

IMU is the rotation transform-
ing vectors from the IMU to the b frame, the IMU boresight, and
IMUb is the origin of the IMU frame expressed in b, the IMU
lever-arm. In the case of Γb

Atn, only the lever-arm is important.

Please note that the definition of the body frame, sometimes re-
ferred to as “user” frame, is arbitrary and is fixed implicitly by
the other sensors transformations. Indeed, a common choice is
to set b .

= IMU or b .
= Cam, depending on the application. In

the latter case, we would have that Camb = 0 and Rb
Cam = I.

However, there are cases in which the user would like to de-
termine the navigation solution for another sensor frame, e.g.,
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a laser scanner, for which reason none of the previous choices
has been imposed in ODyN.

In order to solve a navigation or a photogrammetry problem, at
least a coarse initial value for all the reference frame transform-
ations has to be known a-priori. While lever-arms can be typ-
ically measured to sub-centimeter accuracy with simple mech-
anisms, this is much more complicated for boresights, and the
effect of boresight errors are often underestimated (Nex et al.,
2022). In DNs, the initial values can be refined by considering
them as unknown in the least-squares adjustment, and possibly
taking into account the uncertainty of the initial estimate, as
provided by the user. However, it is well known that not all
such parameters are observable in all circumstances, especially
if other calibration parameters, such as the camera intrinsic cal-
ibration, are estimated simultaneously.

3. ODYN, AN ONLINE DYNAMIC NETWORK
SOLVER

In this section we walk the user through the usage of ODyN by
discussing an example. We will employ ODyN to perform tightly
coupled fusion of raw IMU, GNSS and image measurements to
determine the high-frequency trajectory of a helicopter while
also estimating the unknown camera boresight Rb

Cam.

We consider the airborne dataset presented in (Vallet et al.,
2020). There, reference and lower-cost sensors (LiDARs, IMUs
and cameras) were rigidly mounted together on a vibration
dampened assembly and installed in a helicopter. During the
flight, the helicopter flew profiles close to the ground to mimic
a typical UAV flying altitude and at a speed similar to that of a
small multi-copter (around 12 m/s) over an area featuring vari-
ous terrain types including urban and rural areas, forest, crop-
lands, roads, railroads and power lines. We focus on two suc-
cessive flight lines depicted in Fig. 2 that are approximately 2
km long, for a total flight time of around 6 minutes. The joint
processing of all the sensor observations provided by the fol-
lowing sensors is performed with ODyN:

1. the Navchip v1 (Thales) MEMS IMU, the performance of
which is similar to popular commercial UAV-grade INSs
such as the APX15 (Applanix),

2. the Javad Delta TRE-3 GNSS receiver (after post-
processing in PPK mode),

3. the IXAR180 (PhaseOne) 80 megapixels camera with 42
mm lens, such that the Ground Sampling Distance (GSD)
is approximately 3 cm.

The required inputs and configuration settings are presented in
the following, while the results are discussed in Section 4.

3.1 Input measurements

In order to perform the DN adjustment, the user has to supply
the sensor measurements. In the case of simple inertial/GNSS
fusion, the minimum required inputs are:

1. Raw, timestamped IMU measurements (accelerometer
specific force and gyroscope angular velocity readings).
The IMU measurements must have a uniform sampling
rate and no missing samples are allowed.

2. Timestamped GNSS position measurements in WGS-84
ellipsoidal coordinates, either as provided by the GNSS
receiver or after post-processing (e.g., PPP or PPK). Gaps
or GNSS outage periods are allowed, the maximum length
of which depends on the quality of the IMU.

Figure 2. GNSS configuration panel. The GNSS measurements
provided as input are displayed on a map as a blue line. If

provided, checkpoints and Ground Control Points are displayed
as green and red dots, respectively. Approximate image

positions are also shown as orange dots.

If the user would like to consider image measurements as well,
as in (Cucci et al., 2017a), and in this example, further inputs
are required:

1. Image measurements (tie-points), extracted from raw im-
ages with an external tool such as Agisoft Metashape,
Pix4D or MicMac.

2. Image timestamps, e.g., mid exposure pulses time tagged
by the GNSS receiver.

3. (Optional) coordinates of known ground points, to be used
either as Ground Control Points (GCPs) or checkpoints.

The exact format of the input files is not specified here as it
is subject to evolve in time as more features are supported by
ODyN. We refer the reader to the documentation provided online.

We would like to stress the fact that all sensor measurements
need to be timestamped to the same reference time: delays
and clock jitter have the same disturbing effect of musicians
in an orchestra playing out of tempo. A common solution is to
leverage on the timing solution provided by the GNSS receiver,
either by using its the time-tagging feature, or by distributing
Pulse Per Second (PPS) signals around the payload for syn-
chronization. Accurate payload-wise measurement timestamp-
ing can nowadays be easily achieved, even in small UAVs,
thanks to the work presented in (Albrektsen, Johansen, 2018).

3.2 GNSS position

In the GNSS configuration panel, depicted in Fig. 2, the user
is required to specify the GNSS lever-arm, i.e., the position of
the GNSS antenna expressed in the body frame b, Atnb. ODyN is
capable of refining the initial guess for the GNSS lever arm, tak-
ing into account the assumed uncertainty of the value provided
by the user. The assumed standard deviation of the error in
GNSS position measurements is also required.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2022-153-2022 | © Author(s) 2022. CC BY 4.0 License.

 
155



Figure 3. IMU configuration panel.

A map is produced to allow the user to assess that the input
data has been loaded correctly. This map displays the GNSS
trajectory and the GCPs/Checkpoints (as red and green dots,
respectively) and the coarse image positions (orange dots).

3.3 Inertial Measurement Unit

In the IMU configuration panel, depicted in Fig. 3, the user is
required to specify the transformation between the body frame
b and the IMU frame, Γb

IMU, separated into the lever-arm and
boresight parameters. Again, the solver can refine the provided
initial values. In ODyN all rotations are parameterized with a
Hamiltonian unit quaternion, as opposed to, e.g., Euler angles,
to avoid possible sources of confusion in the rotation order.

A more subtle section of the IMU configuration allows the user
to specify the noise model for the inertial sensor readings. ODyN
assumes a stochastic model for the inertial measurement errors
which is composed by the sum of:

1. A white noise, parameterized by its Power Spectral Dens-
ity (PSD), in continuous time units.

2. (Optional) A first-order Gauss-Markov process, whose
parameters are the correlation time, in seconds, and the
PSD of the driving noise, again in continuous time units.

3. An offset, which is constant for every measurement, typ-
ically referred as a Random Constant (RC) and useful to
model, for example, the turn-on bias of the device.

Accurate knowledge of the noise properties of the device at
hand is known to be fundamental in inertial navigation and it
is the key to obtain optimal results with Dynamic Networks.
There is vast literature on inertial sensor calibration and many
methods exist to determine appropriate values, the state of the

art being the Generalized Method of Wavelet Moments (Guer-
rier et al., 2013). All such methods work by analyzing long
sequences of static inertial data, e.g., collected by placing the
device on a stable and vibration dampened surface and leaving
it to record for long time periods (hours). If such sequences are
not available, the user can refer to the device datasheet, where
at least the white noise PSD is reported. The IMU configura-
tion panel plots the theoretical Allan variance (El-Sheimy et al.,
2007) implied by the specified noise parameters, which can be
compared with the one provided by the manufacturer.

3.4 Camera

The camera configuration panel, depicted in Fig. 4, allows the
user to configure the typical photogrammetric parameters, in-
cluding camera intrinsic and extrinsic calibration, image meas-
urement precision and ground control points. As in the case
of the IMU, the user is required to specify the transformation
between the body frame b and the Cam frame, Γb

Cam, separated
into the lever-arm and boresight parameters.

In this example, we do not know the boresight for the camera,
except that its axes are coarsely aligned with the body frame
ones. Therefore, we set Rb

Cam = I by specifying an identity
quaternion for the camera boresight. Moreover, we flag the op-
tion that enables camera boresight estimation and we specify
that the initial value is estimated to be correct up to σ = 1 de-
gree, please see again Fig. 4.

The camera model employed by ODyN is the traditional pinhole
camera model, with Brown-Conrady tangential, radial distor-
tion, non-uniform scaling and skewing (Cledat et al., 2020, Sec-
tion 2.1). The model applies to frame cameras and corresponds
to the one considered by many computer vision software pack-
ages, such as OpenCV, and photogrammetric software, such as
Agisoft Metashape. In particular the naming conventions and
the units have been chosen to match exactly the latter for direct
compatibility2. An interactive plot of the distortions implied by
the supplied parameters is interactively produced by the inter-
face on the right part of the panel.

In the lower section of the camera configuration panel, a table
shows the supplied ground control points. We select four to be
used as GCPs, leaving the others as checkpoints. This choice is
reflected by the point colors in Fig. 2.

4. RESULTS

Once all the input and configuration have been supplied, the
processing can be triggered. The solution time depends on the
size of the project and the time complexity is polynomial in
the number of IMU measurements and tie-points. However,
thanks to the use of a highly efficient solver for least-squares
problems (Kümmerle et al., 2011), computing the solution for a
typical UAV flight (20− 30 minutes) takes only few minutes; it
took only 44 s to solve the presented example. The processing
is done on the server side and duration is not affected by the
performances of the user computer.

After the processing has been completed, several outputs are
displayed by ODyN to allow the user to assess the quality of the
determined trajectory. Those are presented in the following.

2Agisoft Metashape user manual: https://www.agisoft.com/

pdf/metashape_1_7_en.pdf, Appendix C. Camera models
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Figure 4. Camera configuration panel.

4.1 Estimated parameters

The values for all the calibration parameters that the user re-
quired to estimate are presented in a table, together with their
uncertainty. The correlation matrix between the estimated para-
meters is also reported. In this example, three calibration para-

meters are estimated: the accelerometer and gyroscope random-
constants, or turn-on biases, and the camera boresight, please
see Fig. 5. Under the hood, the latent Gauss-Markov noise pro-
cesses for the gyroscope and the accelerometer were also estim-
ated, as they were enabled in the IMU configuration panel, see
Fig. 3, and are not displayed since they have limited meaning
for most of the users.

Figure 5. Estimated parameters and their absolute correlation
matrix.

From the output, it is observed that the camera boresight re-
mains correlated with the accelerometer turn-on bias to a large
extent, meaning that these two parameters can not be entirely
resolved. Intuitively, a small increment in the boresight roll (or
pitch) can be compensated by an appropriate increment in the
turn-on bias y (or x) component. This behaviour is expected
since the flight time is short (6 minutes) and the image geo-
metry is very weak. A dedicated calibration flight, with mul-
tiple cross flight lines at different elevations and ground control
points, should have been performed in order to better decorrel-
ate the camera boresight from the other unknowns (including
camera position and orientations). The reported uncertainty for
the estimated boresight, which correspond to the roll (x), pitch
(y) and yaw (z) components of the boresight, in radians, is in
this case ≈ 0.25◦ for roll and pitch and ≈ 0.75◦ for yaw. Since
small rotations are commutative, the specific Euler angle con-
vention is not important.

4.2 Tie-points coordinates

The positions of the tie-points are displayed on a map along
with the estimated trajectory, please see Fig. 6. The tie-points
are color coded based on the estimated height. The East portion
of the surveyed area is covered by vegetation, and few tie-points
could be detected or matched there. In this example, the image
coordinates of the tie-points (only those) were obtained with
Agisoft Metashape.

4.3 GNSS residuals

The residuals associated to the GNSS position observations are
displayed as a function of time, please see Fig. 7. In iner-
tial navigation, it is customary to look at this plot since it en-
ables the discovery of possible inaccuracies in system calibra-
tion parameters. For example, an error in the X−Y component
of the GNSS lever-arm would result in patterns in the X − Y
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Figure 6. Map of the estimated tie-points positions, in a local
Euclidean reference frame. The estimated trajectory is

highlighted in red.

residuals, which should otherwise be zero-mean, Gaussian dis-
tributed and uncorrelated in time. In this example, small oscilla-
tions in the Z component are visible, however, the magnitude is
consistent with the assumed uncertainty of GNSS observations
σZ = 3 cm.

Figure 7. Residuals for the GNSS position observations.

4.4 Checkpoint residuals

If any checkpoints are provided, the difference between the es-
timated and the given coordinates are displayed as histogram,
please see Fig. 8. The interface allows the display of the check-
point residuals in terms of mm or GSD units. For each point
we consider the mean GSD of all images in which the point is
visible, calculated in the neighbourhood of that specific point to
account for an uneven terrain or flight height above ground.

We can observe that unbiased ground coordinates were determ-
ined, with X , Y , Z mean errors being far smaller than the GSD,
despite the the weak geometry of the flight, the unknown cam-
era boresight and the poor tie-points distribution. In this ex-
ample, checkpoints were numbered increasingly from West to
East. This foresight allow us to look for dome effects, at least
along the direction of the flight lines, for which we found no
particular evidence in Fig. 8.

5. EVALUATION

For the presented dataset, a navigation-grade AIRINS (iXblue)
IMU provides the reference trajectory with an orientation ac-
curacy better than 0.003◦. This allow us to quantify the quality
of the trajectory estimated with ODyN.

Figure 8. Histogram of the X , Y , Z residuals at the provided
checkpoints (in m) and related statistics (in GSD units).

We consider the case presented in the previous section, (us-
ing four GCPs and unknown camera boresight, referred to as
ODyN-1 in the following) and we also repeat the processing em-
ploying a value for Rb

Cam determined in a previous calibration
flight. This case is named ODyN-2. As the standard solution
for direct geo-referencing, we also consider the trajectory ob-
tained integrating the Navchip v1 IMU with GNSS observations
in a Kalman smoother (in our case Posproc, from Applanix), re-
ferred to as KS in the following (Tab. 1). The position error is
omitted because it is similar for all cases and matches the ex-
pected GNSS positioning accuracy.

KS ODyN-1 ODyN-2

Mean 0.009 0.011 0.005

STD 0.038 0.026 0.026

RMSE 0.039 0.028 0.026

Mean -0.039 -0.024 -0.009

STD 0.041 0.024 0.024

RMSE 0.056 0.034 0.026

Mean -0.081 -0.095 -0.001

STD 0.172 0.068 0.058

RMSE 0.190 0.117 0.058

Roll
(º)

Pitch
(º)

Yaw
(º)

Table 1. Statistics of estimated orientation errors.

From Tab. 1 it is observed that by fusing image observations
with raw inertial readings with ODyN it is possible to obtain
orientation estimates that are more accurate (mean error) and
between two and three times more precise (STD) than using a
Kalman smoother (and thus only considering inertial readings).
This holds even if the camera boresight need to be estimated.
The residual mean error in ODyN-1 corresponds to the error in
boresight estimation, which is difficult in this case because of
the weak flight geometry. If the value determined from a pre-
vious calibration flight is employed, the mean error drops to
levels that are comparable to the reference trajectory accuracy.
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6. CONCLUSIONS

In this work we have introduced ODyN and showcased the ad-
vantages of the Dynamic Network approach to sensor fusion
over conventional direct geo-referencing methodologies. We
encourage feedback from the community to motivate us to
maintain and further develop the solver, for example by expos-
ing further features that are already supported by the underly-
ing dynamic network. Some of these features include three-
dimensional tie-points extracted from LiDAR point-clouds, cal-
ibration of sensor synchronization delays, and other navigation
sensors such as magnetometers and barometers. We also plan
to further enrich the suite of tools analyses, including for ex-
ample the calculation of redundancy numbers, internal and ex-
ternal reliability, etc., extremely significant in rigorous uncer-
tainty quantification of all the estimated quantities.
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