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ABSTRACT:

In the context of image orientation, it is commonly assumed that the environment is completely static. This is why dynamic elements
are typically filtered out using robust estimation procedures. Especially in urban areas, however, many such dynamic elements are
present in the environment, which leads to a noticeable amount of errors that have to be detected via robust adjustment. This problem
is even more evident in the case of cooperative image orientation using dynamic objects as ground control points (GCPs), because
such dynamic objects carry the relevant information. One way to deal with this challenge is to detect these dynamic objects prior to
the adjustment and to process the related image points separately. To do so, a novel methodology to distinguish dynamic and static
image points in stereoscopic image sequences is introduced in this paper, using a neural network for the detection of potentially
dynamic objects and additional checks via forward intersection. To investigate the effects of the consideration of dynamic points in
the adjustment, an image sequence of an inner-city traffic scenario is used; image orientation, as well as the 3D coordinates of tie
points, are calculated via a robust bundle adjustment. It is shown that compared to a solution without considering dynamic points,
errors in the tie points are significantly reduced, while the median of the precision of all 3D coordinates of the tie points is improved.

1. INTRODUCTION

Precise and reliable positioning is one of the main pre-requisites
for automated driving. Densely built-up areas, in particular, still
present challenges for classic positioning methods such as those
offered by global navigation satellite systems (GNSSs). For this
reason, additional sensors are commonly adopted to improve
positioning and to detect possible errors (Garcia-Fernandez and
Schön, 2019). Besides laser scanners, passive optical sensors,
such as RGB cameras, are increasingly used for this purpose,
which have the advantage of relatively low cost. In general,
positioning using cameras is not only relevant for automated
driving-related applications in urban areas (Cavegn et al., 2016;
Cavegn, 2020), but also in drone navigation (Stoven-Dubois et
al., 2018) and robotics (Zou et al., 2019).

Apart from the support provided by additional sensors, the co-
operation of several vehicles can also be employed to improve
positioning. Cameras allow to recognise moving cooperating
participants as dynamic ground control points (GCPs)1. Dy-
namic GCPs are moving traffic participants that communicate
their position information to other traffic participants, which
can then use this information to improve their own position-
ing (Trusheim et al., 2021). This is especially beneficial if the
own positioning ability is weak or does not exist at all, for ex-
ample, in the case of poor or no GNSS signal (Molina et al.,
2017; Stoven-Dubois et al., 2018; Trusheim and Heipke, 2020).

In most cases, a bundle block adjustment or a graph-based
SLAM procedure is used to determine the 6 degrees of freedom
(DoF) orientation of each image. However, as these algorithms
involve the assumption of a static environment, complications

∗ Corresponding author
1 We use the term ”dynamic” instead of ”kinematic”, which is used in

(Molina et al., 2017), because of the possibility to also include meas-
urements of inertial measurements units (IMUs) in our model.

arise, especially in the case of traffic scenarios in which several
dynamic objects are involved. In addition, in cooperative
sensing dynamic objects can cover large parts of the image, es-
pecially in a convoy formation (Trusheim et al., 2021). While a
robust adjustment can help to find such errors, this solution may
fail if the majority of tie points are dynamic. Therefore, more
and more approaches use selection functions that categorise the
points into static and dynamic ones, using geometric criteria
as well as neural networks, before performing an adjustment
(Bescos et al., 2018, 2021; Zhao et al., 2021).

In this paper, an approach is presented to identify dynamic parts
of a scene and thus dynamic points in synchronised stereoscopic
image sequences showing urban traffic. First, feature extrac-
tion is performed, and in parallel a neural network is employed
to extract dynamic objects; the two results are then superim-
posed to distinguish between points associated with potentially
dynamic objects and the static environment. Based on the tie
points in the static environment, initial image orientations are
calculated for every epoch, i.e., every frame of the image se-
quences. The 3D coordinates of potentially dynamic points are
then calculated per epoch via forward intersection and are sub-
sequently analysed for movement. Points that are found to be
static (e.g. points on parked cars) are added to the point cloud
of the static environment for a final bundle adjustment.

The main contribution of this paper is a novel method to sep-
arate dynamic and static image points of a stereoscopic image
sequence showing ego-motion. The separation is done using a
Convolutional Neural Network (CNN) to detect potentially dy-
namic image regions, which are further checked for position
stability. Furthermore, we investigate the effects of dynamic
points on the image orientation results computed via bundle
adjustment with dynamic GCPs. For this purpose, three vari-
ants have been evaluated: (a) all feature points without any pre-
selection are used as tie points, (b) only the feature points in
the static environment are used as tie points, (c) feature points

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2022-169-2022 | © Author(s) 2022. CC BY 4.0 License.

 
169



located on potentially dynamic objects but found to be static are
added to the points of variant (b) and are also used as tie points.

The remainder of this work is structured as follows: In Section
2 an overview of related literature is given. This is followed by
a detailed description of the methodology in Section 3. The data
set and the experimental setup are presented in Section 4. The
results of the experiments are shown and discussed in Section
5. Finally, the work is concluded and an outlook on promising
directions for future work is given in Section 6.

2. RELATED WORK

Optical sensors can provide important information for the task
of positioning in areas that are challenging for GNSS sensors.
For instance, it is shown in (Cavegn et al., 2016) and (Cavegn,
2020) that the errors of checkpoints of approximately 40 cm
achieved by a GNSS/IMU sensor combination could be im-
proved by a factor of 10 using image orientation. These results
show the potential of combining traditional localisation sensors
with visual observations. However, GCPs were used to achieve
these results, which are not always available.

One possibility to improve the accuracy and reliability of image
orientation is the integration of several cameras. This approach
is frequently employed in robotics, as shown in the survey of
Zou et al. (2019). One example is CoSLAM (Zou and Tan,
2013) in which images from several cameras are used in a com-
mon bundle adjustment to calculate the 3D coordinates of tie
points located in the static environment and to build a common
map; the authors find that image coordinates of tie points of
individual moving objects can be removed by outlier detection.
There are also applications for road traffic mapping. In (Stoven-
Dubois et al., 2020), for example, it is shown that by jointly
recording a map by several vehicles equipped with GNSS re-
ceivers and monoscopic cameras, the residuals of checkpoints,
which in this case consist of road signs, can be reduced from up
to 10m to approximately 2m.

The cooperation with other traffic participants can open up fur-
ther opportunities. Stoven-Dubois et al. (2018) introduce an
unmanned aerial vehicle (UAV) tandem system for surveying
objects in GNSS denied areas. A so-called surveying UAV flies
next to the object to be surveyed and takes images. Because
of the proximity to the object, the GNSS signal of this drone
may be weak or totally absent, therefore this UAV is tracked by
another UAV that flies at a higher altitude with a good GNSS
signal. MapKITE (Molina et al., 2017; Nahon et al., 2019) also
uses a tandem system. The authors combine a terrestrial mobile
mapping van with a UAV. The van has a much higher payload
and, thus, can carry heavier and also more accurate equipment.
In that approach, the UAV uses the vehicle as a kinematic GCP.
For accurate automated localisation, a circular target is placed
on the vehicle roof. As the drone can profit from the highly
accurate localisation of the van, better geo-referencing of the
image data of the drone is achieved as a result. In (Trusheim
and Heipke, 2020) and (Trusheim et al., 2021) we discuss the
usability of similar dynamic GCPs in the context of road traffic
scenarios. We compare the precision of different cooperation
methods: (a) sharing all image data among the cooperating
vehicles and employing a centralised bundle adjustment, and
(b) using one vehicle as dynamic GCP for the observations of
the other vehicle. It is shown that both methods offer a preci-
sion improvement of more than 20 % compared to a baseline
with a non-cooperating approach. While the improvement due

to the centralised bundle adjustment was slightly higher, such
an approach needs more data exchange.

Moreover, it has been shown in the literature that image co-
ordinates of points located on dynamic objects cannot always
be eliminated before image orientation, which decreases the
quality of the results. This problem is addressed in (Zhao et
al., 2021). The authors detect dynamic image regions by com-
bining object detection using Mask R-CNN (He et al., 2017)
and optical flow in indoor scenarios. Mask R-CNN is used to
detect movable objects such as people. The remaining parts of
the image are checked for potential movements via optical flow.
The authors state that they are able to improve the accuracy and
robustness of the image orientations in a dynamic indoor scen-
ario compared to ORB-SLAM2 (Mur-Artal and Tardós, 2017),
a well-known visual SLAM method. Bescos et al. (2018) use a
similar approach for image sequences showing traffic scenarios.
Instead of using optical flow, they employ RGB-D images and
an approach based on multi-view geometry to detect and elim-
inate potentially moving objects (e.g., cars). The authors report
that they are able to improve the image orientation compared
to ORB-SLAM2 in scenarios in which nearly all detected in-
stances are actually moving. Bescos et al. (2021) detect cars
using a CNN and subsequently represent them by sets of points
identified by some point extraction method. Each set is then
assigned a motion model, which is integrated into a bundle ad-
justment. The authors state that the image orientation is slightly
degraded compared to ORB-SLAM in cases in which many cars
are not moving, due to the higher number of parameters to be
estimated. In contrast, our method subdivides the image regions
detected as being potentially dynamic by the CNN into dynamic
and static regions, and subsequently only uses points located in
the static regions or in the static environment as tie points in the
bundle adjustment. In this way, significantly fewer parameters
are needed.

3. IDENTIFICATION AND PROCESSING OF
DYNAMIC POINTS

This section describes the procedure used to detect the dynamic
points in the total set of conjugate points. Figure 1 shows the
pipeline developed for our method. Note that our method uses
synchronised image sequences recorded by a stereo camera as
input data. Each of the frames in such a sequence is considered
as an epoch and associated with a timestamp. In the first step,
the images of the whole sequence of both cameras of the stereo
setup are classified into areas showing potentially dynamic ob-
jects and those showing static environment using an object de-
tection approach. All objects which are traffic participants (e.g.,
cars, bicycles or pedestrians) are assumed to be potentially dy-
namic, while everything else is assumed to be part of the static
environment. In parallel, feature points are detected in all of
these images. These feature points are superimposed with the
detected objects, resulting in a division of feature points belong-
ing to the static environment and to potentially dynamic objects.
The points assigned to the static environment are then matched
to derive conjugate points and are employed to calculate initial
exterior orientations in a common coordinate system. Using
these orientation parameters, the potentially dynamic points are
transformed into the common object coordinate system by for-
ward intersection using the two images of the stereo camera for
each epoch separately. Point tracking is used to assign points
observed over multiple epochs to tracks. The transformed co-
ordinates of all point observations belonging to one track are
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Figure 1. This flowchart shows the procedure used in this paper
to identify points on dynamic objects. Blue solid boxes refer to

processing steps and green dashed boxes to data.

then analysed to separate static from moving points. These in-
dividual steps are described in more detail in the subsequent
sections.

3.1 Object Detection

Object detection is used to find instances of potentially moving
objects. Neural networks are suitable for this purpose and many
models exist in the literature that have been trained on large-
scale data sets such as Common Objects in Context (COCO)
(Lin et al., 2014). This data set contains the object types that
are of interest for our work, such as cars, pedestrians and cyc-
lists. In this work, the You Only Look Once (YOLOv4) ap-
proach (Bochkovskiy et al., 2020), pre-trained on COCO, is
used. YOLOv4 detects objects and represents them by rect-
angular axis-parallel boxes. The algorithm produces state-of-
the-art results and provides real-time capability. Object detec-
tion is applied independently for both images of the stereo cam-
era in every epoch. Regions inside these boxes are marked as
being potentially dynamic, and regions outside the boxes are
declared to correspond to the static environment. This is a re-
latively coarse simplification, as the boxes also contain static
background.

3.2 Feature Detection

We use the well-known SIFT operator (Lowe, 2004) for feature
detection. To ensure that the feature points are evenly distrib-
uted across the image, which leads to better stability of the ad-
justment results, the image is first subdivided into sub-regions

of uniform size. Then each sub-region in the image is norm-
alised to detect possible feature points also in areas with low
contrast. Normalised grey values gni are computed using the
maximum gmax and the minimum gmin grey value of each sub-
region with the pixel index i:

gni =
gi − gmin

gmax − gmin
· 255. (1)

Subsequently, SIFT feature points are detected and described
in these sub-regions independently. The detected feature points
x are then sorted based on the contrast value D (x). The n
best feature points in every sub-region of the image are chosen
for further processing. The selected points are divided into po-
tentially dynamic and static image points based on the type of
region they are located in (see Sec. 3.1).

3.3 Image Orientation and 3D Coordinates of Potentially
Dynamic Points

Using bundle adjustment, the points of the static environment
are used to calculate initial image orientations for all epochs in
a common (global) coordinate system2. Subsequently, in every
epoch, the potentially dynamic image points of the stereoscopic
image pair are matched and 3D coordinates are computed via
forward intersection.

3.4 Separation of Static and Dynamic Points

To check whether the potentially dynamic points are indeed dy-
namic, they are tracked in image space over time. For this pur-
pose, the detected feature points, of which 3D coordinates were
calculated via forward intersection (see Sec. 3.3), are assigned
to tracks.

Beginning from a starting frame t0 of the image sequence of the
left camera of the stereo setup, the points in the current frame
are compared to the points in a second frame of the same cam-
era, having a temporal distance τ . The comparison is based on
the SIFT descriptor. This is repeated for multiple frames, until
τ reaches a pre-defiend maximum value τmax. A large valued
τmax ensures that a feature point can be tracked over long dis-
tances even if it is occluded in between, but also increases the
required computation time. The starting frame is then moved
one frame forward in time. The point identification numbers
(IDs) of points that have already been assigned to tracks in the
previous step are kept, so that tracks that have already been star-
ted are continued.

To determine if a point is static or dynamic, the RMSE prmse

between all point observations pi assigned to a track and the
centre of gravity p of these observations in the global coordinate
system is calculated:

prmse =

√√√√√ n∑
i=1

(|p− pi|)2

n− 1
, (2)

where n is the number of point observations assigned to a track,
p is a vector of 3D coordinates in one epoch and i is the index
of the point in the track.

Besides the point IDs also the object IDs are kept consistent
over time to allow to correctly recognise dynamic objects (see
2 Matching and bundle adjustment were carried out using COLMAP,

(Schönberger et al., 2016; Schönberger and Frahm, 2016)
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Figure 2. Propagation of object IDs from one frame to the next.
Point IDs are shown by a number and object IDs by colour, grey

indicates that no object ID is assigned.

Fig. 2). For this purpose, points that are located in image re-
gions showing a potentially dynamic object are assigned the
ID of this object, in addition to their point ID. Based on the
concept of feature tracking, the point ID is used to propagate
the object ID assigned to a point to its correspondence in the
next frame. As far as the determination of an object ID is con-
cerned, there are two cases: If one or more points associated
with an object were already assigned an object ID in an earlier
frame, the most frequent object ID is adopted and assigned to
all points associated with this object in the current frame (see
Fig. 2 red and green objects). If, on the other hand, none of the
points that are located within the image region showing an ob-
ject were assigned an object ID in an earlier frame, a new object
ID is assigned (see Fig. 2 blue object).

Figure 2 shows an example of such a propagation of the object
IDs. The objects are represented by boxes. The process starts
with frame tn which shows two objects (green and red), each
with three points assigned to it. The next frame tn+1 shows
three objects with unknown object IDs and five points (grey).
Some of the points in frame tnn+ 1 were already associated
an object having an object ID from frame tn (green: 1 and 2;
red: 5). Through these points the object IDs are propagated
to the objects of frame tn+1. Also, points situated on these
objects which where not yet connected to an object, are now
associated to this object (green: 9; red: 7 and 8). One image
region shows an object which has no points assigned that were
associated with any object in the earlier frame (grey: 11 and
10). Therefore, this object is assigned a new object ID (blue).

The mean of the RMSE values (prmse,j , with index j) of all k
tracks associated to an object, weighted by the track length (i.e.
the number of points nj) ormse, is finally used to determine
whether the whole object is dynamic or static:

ormse =

k∑
j=1

prmse,j · nj

k∑
j=1

nj

. (3)

If this value exceeds a threshold λ, all points of this object are
classified as dynamic, otherwise as static.

3.5 Cooperative Image Orientation using Dynamic GCPs

For the calculation of the exterior orientations of the stereo cam-
era as well as the 3D coordinates of the tie points, a bundle ad-
justment based on the methodology we introduced in our pre-
vious work (Trusheim et al., 2021) is used. In this method, the
six elements of exterior orientation are modelled as functions
of time with equally spaced anchor points as support and lin-
ear interpolation in between. As the stereo camera is part of a
multi-sensor platform mounted on a vehicle (see also below),
the transformation from the image to the global coordinate sys-
tem is split into two 6 DoF transformations: a constant trans-

formation between the camera coordinate system and the plat-
form coordinate system, the parameters of which are determ-
ined in a pre-calibration, and a second transformation between
the platform coordinate system and a global coordinate system,
which is time-dependent. For the remaining parts of the paper,
we refer to the first transformation as mounting calibration and
to the second transformation as exterior orientation.

The unknowns of this method are the 3D object space coordin-
ates of the static tie points as well as the six orientation para-
meters for each anchor point in the global coordinate system.
Three types of observations are introduced to compute these
unknowns:

1. The image coordinates of the static conjugate points are
used as tie points.

2. The image coordinates of so-called marker points. Marker
points are points on a cooperating vehicle with known 3D
coordinates in the vehicle’s coordinate system. The im-
age coordinates and the marker IDs are observed with an
algorithm based on a blob detector (Mallick, 2015).

3. The 3D coordinates of the positions of a GNSS-antenna
on the platform, given in the global system. These co-
ordinates are introduced to define the geodetic datum and
to prevent a block drift. Due to the small number of ob-
servations of GNSS coordinates compared to the number
tie points, they have only a minor influence on the overall
block stability.

4. EXPERIMENTS

We performed three experiments corresponding to three scen-
arios that differ in the way in which points associated with po-
tentially dynamic objects are treated in the bundle adjustment:

1. In the first scenario all detected conjugate feature points
are used as potential tie points in the adjustment (see
Sec. 3.2). This scenario is similar to the approach of our
previous work (Trusheim et al., 2021), as no pre-selection
takes place; it is used as a baseline.

2. In the second scenario, only feature points associated with
the static environment are used as potential tie points in
the adjustment (see Sec. 3.3). Thus, all points that are as-
sociated with potentially dynamic objects are eliminated.

3. In the third scenario, the point set that is associated with
potentially dynamic objects is split into a set of dynamic
points (e.g., points on driving cars) (see Sec. 3.4) and a set
of static points (e.g., points on parked cars), and the obser-
vations of these static points, as well as the points of the
static environment, are used as tie points in the adjustment.

To calculate the results, a robust adjustment is employed, which
eliminates observations with too large residuals during the ad-
justment process (Klein and Förstner, 1984). In the stochastic
model, different accuracies were assumed for the different types
of observations. The quantitative evaluation of the results of the
different scenarios is based on the precision, derived by error
propagation provided by the bundle adjustment.
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Figure 3. The trajectory driven by the two vehicles, represented
by the GNSS observations and the 3D tie points. A satellite

image of the area is used as background.

4.1 Data Acquisition

The data has been recorded during a measurement campaign
with two vehicles equipped with multi-sensor platforms con-
sisting of a stereoscopic camera system and a GNSS antenna.
For the experiments, a road section was chosen in which the two
vehicles moved in a tandem formation, one behind the other, in
an inner-city area including a car park. In this configuration, the
front vehicle is visible in the image of the rear vehicle for most
of the track and can be used as a dynamic GCP. Therefore, the
rear vehicle will be referred to as vehicle and the front vehicle
as dynamic GCP in the following. For the experiments only im-
ages observed by the stereoscopic camera system of the vehicle
are used.

The total length of the trajectory is 170m. It consists of three
90o left turns and one 90o right turn, see also Figure 3; the
vehicle needed approximately 50 s for the whole trajectory and
reached a maximum velocity of 4.5 m

s
. The frequency of the

image acquisition was 5Hz. Therefore, the maximum distance
between two images is 0.9m and the maximum displacement
of a 3D tie point in a distance of 20m is 43 px in horizontal
and 28 px in vertical image direction; such displacements can
typically be handled by matching algorithms.

The stereoscopic system consists of two Grasshopper 3 USB
cameras. They acquired images of 1920 × 1200 pixels and
have a pixel size of 5.85µm × 5.85µm. The focal length is
11.3mm, equivalent to 1930 pixels. Image acquisition was ini-
tiated by an external trigger signal provided to both cameras and
to a raspberry pi equipped with a GNSS antenna which saved
the GNSS time. Thus, all sensor data is given in the same time
system. The GNSS positions were captured using geodetic re-
ceivers Septentrio PolaRx5e with a Javad GrAnt G5T antenna at
a frequency of 1Hz. The campaign was carried out on Aug. 25,
2020, at 5 pm, thus relatively late in the day. The sky was over-
cast, which led to somewhat challenging lighting conditions.
In Figure 4, an example frame is shown, whereby the dynamic
GCP is visible; the markers can be seen mounted on the back
of that vehicle.

4.2 Experimental Setup

The complete trajectory of the vehicle is modelled by anchor
points distributed every 0.25 s. This leads to a total amount of
197 anchor points.

Figure 4. Image taken by one of the cameras of the vehicle at the
beginning of the trajectory; the vehicle corresponding to the

dynamic GCP can be seen in the centre of the image.

For the trajectory of the dynamic GCP, anchor points were set
every 1 s, i.e., corresponding to the frequency of the GNSS ob-
servations. Only the images observed by the vehicle closest in
time to the GNSS observation of the dynamic GCP are used to
detect the marker points. As the dynamic GCP is not continu-
ously visible in the observing camera due to the curves along
the trajectory, some regularisation constraints are needed to es-
timate the rotation angles of the exterior orientation of the dy-
namic GCP. These constraints model the fact that the dynamic
GCP is oriented in the direction of travel during the whole ex-
periment; the direction of travel is defined by two GNSS ob-
servations adjacent in time. The constraints are introduced as
soft-constraints.

The image coordinates of the feature points were generated
by dividing the image into 12 × 8 sub-regions. For each re-
gion up to 100 of the best feature points ranked by the con-
trast value D (x) were selected limited by a threshold value
of D (x) = 0.04 according to Section 3.2. As mentioned
above, feature point matching and the computation of the ini-
tial orientation parameters of the cameras was done using the
COLMAP software (Schönberger et al., 2016; Schönberger and
Frahm, 2016).

For the final bundle adjustment the following observations and
stochastic model are used:

GNSS observations of the vehicle and the dynamic GCP
(σN,EGNSS = ±0.5m, σHGNSS = ±1.0m, ).

Image coordinates of tie points from the stereo camera of the
vehicle

(
σx,ytp = ±1.5 px

)
.

Image coordinates of marker points from the stereo camera
of the vehicle

(
σx,ymp = ±0.5 px

)
.

Soft-constrains introduced for the rotations of the dynamic
GCP (σR,Psc = ±0.5 rad, σYsc = ±1.0 rad).

For the image coordinates of the marker points, a smaller stand-
ard deviation was used compared to those of the tie points, as
the markers are specifically designed to be accurately measured
in the images. Due to the large standard deviations, the soft
constraints do not significantly influence the numerical results,
but they do prevent the normal equation matrix from becoming
singular.

As mentioned above, in the final bundle adjustment the follow-
ing unknowns are calculated:
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Figure 5. Result of the extracted potentially dynamic objects
superimposed with the detected feature points. Blue: Feature

points in the static environment. Red: Feature points situated on
potentially dynamic objects.

Anchor points of the trajectories in the global coordinate sys-
tem of the vehicle and the dynamic GCP.

3D Tie point coordinates in the global coordinate system for
all observed tie points.

5. RESULTS

5.1 Detection of Potentially Dynamic Objects

An example of the bounding boxes of potentially dynamic ob-
jects with the detected feature points is displayed in Figure 5.
The feature points located in the static environment are coloured
in blue and the points located on potentially dynamic objects are
shown in red. This example shows, that while object extraction
working on individual images only is of course not able to dis-
tinguish parked from moving cars, the bounding boxes capture
the cars rather well. Also, feature points are distributed across
the whole image as required, except for areas with extremely
low textures.

5.2 Number of Tie Points and Track Length

Obviously, the number of 3D tie points is largest in Scenario 1
(namely 37.812), while the static environment, being the focus
of Scenario 2, only contains 34.659 points, which corresponds
to a reduction of 3153 points or 8.3% compared to Scenario 1.
For Scenario 3, 647 points are added again, an increase of 2.0%
yielding a total of 35.306 points. This is a relatively small
number of additional points only. A reason for this small in-
crease is the fact that, in contrast to points in the static environ-
ment, which can also be reconstructed via temporal matching,
all points added in Scenario 3 must be visible in both images
of the stereoscopic camera in one and the same epoch, to be
reconstructed in 3D, which limits their number.

For Scenario 3 a window size τmax of 50 frames is employed
for tracking. The track length of the potentially dynamic 3D
points and their RMSE value are depicted in Figure 6. It can be
seen that points can have a track length larger than τmax (one
such point is visible in the figure). The reason is that point IDs
are preserved beyond the window size (see Sec. 3.4). Also, a
certain correlation between track length and RMSE is visible,
the Pearson correlation coefficient being 0.69. This is due to
the fact, that most dynamic points (having a high RMSE) are
located on the dynamic GCP and are thus visible in many con-
secutive frames. Objects with a weighted mean of the RMSE
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Figure 6. Relation between the track length given by the number
of observations of a 3D point, and the RMSE of the position of

potentially dynamic 3D points.

values of all associated points larger than λ = 0.75m are
considered to be dynamic, all associated points are eliminated.

Figure 7 shows the tie point distributions resulting from Scen-
arios 2 and 3 in the same image frame. It can be seen that our
method was able to correctly distinguish between static points
(those on parked cars) and dynamic points (on the dynamic
GCP).

5.3 Precision of the Exterior Orientation

The exterior orientation of the vehicle and its precision as a
functions of time are depicted in Figure 8. The figures are sim-
ilar for all three scenarios, therefore only the results of Scen-
ario 1 are presented. Figure 8a shows the six orientation para-
meters, divided into positions, consisting of an East, a North
and a Height component, and the rotations roll, pitch and yaw.
Roll is the rotation about the axis in the driving direction of
the vehicle, pitch is the rotation about the horizontal axis ortho-
gonal to the driving direction and yaw is the rotation about the
vertical axis. The figure shows that a large proportion of the
trajectory consists of turns, which is particularly evident from
the yaw.

Figure 8b shows the precision of the exterior orientation; the
precision of the position is expressed in the driving direction, in
the horizontal direction orthogonal to the driving direction and
in the vertical direction. The precision of the rotation is given
in roll, pitch and yaw. It is noticeable that the precision of the
projection centre of the vehicle in driving direction and the ho-
rizontal direction orthogonal to the driving direction, expressed
as σD and σO are clearly better than that in the vertical direction
σV . This finding can be explained by the distribution of the 3D
tie points. In the viewing direction, the 3D body in which 3D
tie points lie is bounded by the scene (at some point, there will
be an opaque surface), in the two other directions it is bounded
by the viewing angle of the cameras. Typically, the extent of
this 3D body is larger in the viewing direction, which results in
a smaller standard deviation in that direction. Due to the turns,
the horizontal size of that 3D body is enlarged over time. On
the other hand, the smallest extension of the 3D body is in the
vertical direction, as there are only rather small changes of the
pitch angle. As a result, the vertical direction is more uncertain
than the other two directions, visible in the upper part of Figure
8b, where the green curve lies clearly above the blue and the
orange ones. These findings are similar to those we found in
(Trusheim et al., 2021).

In addition, Figure 8b shows that the turns affect the precisions,
in particular the vertical precision (cf. σV , green curve in the
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(a) Tie point distribution in Scenario 2.

(b) Tie point distribution in Scenario 3.

Figure 7. Example of tie point distribution in an image. Red:
observed marker points. Blue: observed tie point.

figure). The related standard deviation increases, i.e. the pre-
cision becomes worse, during the turns, and decreases during
the straight segments. The worst precision of the vertical com-
ponent is found at the beginning of the trajectory, amounting
to 230mm; the best value can be found in the middle of the
drive, amounting to 85mm. The reason for the precision be-
coming worse in the turns is assumed to be the reduced num-
ber of tie points in those parts of the trajectory, also observ-
able in shorter track lengths for the related tie points, leading
to a weaker connectivity in the block. In contrast, the precision
in driving direction and in the horizontal direction orthogonal
to the driving direction remain relatively constant and are only
slightly affected by the turns: the precision lies between 40mm
and 70mm over the whole track.

Analysing the precisions of the angles, the main effect of the
turns is recognisable in the precisions of roll (σR, blue curve)
and pitch (σP , yellow curve), while the precision of yaw (σY ,
green curve) is relatively constant at a level of 0.1o. At each 90o

turn, the directions of the roll and the pitch axis with respect to
the global coordinate system are interchanged, which explains
also the constant sections of the two curves, which relate to the
straight elements of the trajectory. σR and σP change between
two different levels of 0.3o and 0.4o, respectively. The different
levels can again be explained by the non-symmetric distribution
of 3D tie points in the global coordinate system, which leads to
a better stability about the initial roll axis.

5.4 Precision of the 3D Coordinates of the Tie Points

The precisions of the 3D coordinates of the tie points in the
global coordinate system are given in Table 1, using the me-
dian of all tie points for the three scenarios. It is shown that

(a) Exterior orientation of the vehicle as a function of time. Top:
Position (East, North and Height). Bottom: Rotation angles (roll,

pitch, yaw).

(b) Precision of the exterior orientation parameters resulting
from Scenario 1. Top: Position (driving σD , orthogonal σO and
vertical σV ). Bottom: Rotation angles ( roll σR, pitch σP and

yaw σY ) angle.

Figure 8. Exterior orientation of the vehicle and its precision as
functions of time

the median precision of the 3D coordinates of the tie points in
Scenarios 2 and 3 differ just slightly, but it is significantly im-
proved in all three components compared to Scenario 1. For the
median precision of both planimetric components an improve-
ment of 55mm could be achieved, as well as an improvement
of 5mm in height. This result confirms our expectation that
deleting points on moving objects improves the results. Sim-
ilar findings are achieved when inspecting the distribution of
the precision of the 3D coordinates, see Figure 9 (Scenario 3 is
omitted, as results for Scenarios 2 and 3 are visually identical).
The figure reveals that by omitting dynamic points the percent-
age of tie points with smaller standard deviation (higher preci-
sion) is increased for all three components. Simultaneously, the
percentage of tie points with a lower precision decreases.

Finally, in Figure 10 a section of the resulting point cloud is
visualised for Scenarios 1 and 2. It is noticeable that in Scen-
ario 1 (Fig. 10a) a cluster of 3D tie points lies under the street
level, which is clearly a mistake. This cluster does not show
up in the results of Scenario 2 (Fig. 10b) and Scenario 3 any-
more. Consequently, the wrong cluster stems from dynamic
points present only in Scenario 1.
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σ̃E [mm] σ̃N [mm] σ̃H [mm]

Scenario 1 172 160 196
Scenario 2 117 106 191
Scenario 3 116 105 190

Table 1. Median standard deviations (σ̃E , σ̃N and σ̃H ) of the 3D
coordinates of the tie points in East, North and Height, in the

different scenarios.

(a) Results for Scenario 1.

(b) Results for Scenario 2.

Figure 9. Histograms of the standard deviations of the 3D
coordinates of the tie points for Scenarios 1 and 2.

6. CONCLUSIONS

In this work, a novel method is introduced which can distin-
guish between static and dynamic points in image sequences
acquired with a stereoscopic camera in motion. The method
consists of a combination of SIFT feature extraction with de-
tections of potentially dynamic objects using YOLO, followed
by bundle adjustment. The method, as it presented in this pa-
per, is not capable of achieving results in real-time because of
the use of bundle adjustment. We would at least need to in-
troduce a window-based version (see e.g., (Beder and Steffen,
2008)) to achieve this goal.

In the experiments, the influence of dynamic objects in the tie
point cloud in the context of cooperative image orientation is
shown. It is found that compared to an adjustment without elim-
inating dynamic points, the precision in the trajectory does not
change very much. However, errors in the 3D tie points are pre-
vented, and consequently, the precision of the 3D coordinates
of the tie points are improved. The integration of points located

(a) Results for Scenario 1.

(b) Results for Scenario 2.

Figure 10. Subset of the 3D point cloud after bundle adjustment.

on potentially dynamic, but actually static objects, e.g., parked
cars, does not have a significant effect on the precision of the
3D tie points. Most probably, this is due to the relatively low
amount of additional points in our example. In general, it can
be stated that the elimination of dynamic points offers clear ad-
vantages for reducing the errors in the resulting 3D point cloud
and simultaneously increases their precision. For the 6 DoF ori-
entations, however, the advantages are found to be less clear in
our experiments. In future work, additional experiments tak-
ing into account other traffic scenarios, multiple vehicles, more
sophisticated interpolation schemes for the trajectories and ad-
ditional sensors are to be investigated.

While in this work, precision provided by the adjustment is used
as quantitative measure of quality, we will also investigate dif-
ferences in the resulting accuracy in future work, for example,
through an improved GNSS solution for both, the vehicle and
the dynamic GCP. Finally, individual dynamic 3D points that
are currently eliminated can be introduced into the adjustment
as tie points with the help of a motion model. To do so, we
strive to cluster them and assign a common motion model to all
points of a cluster representing a dynamic object, to reduce the
number of additional unknowns. Such clusters can also contain
dynamic GCPs.
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