
 

ESTIMATING TREE CANOPY HEIGHT IN DENSELY FOREST-COVERED 
MOUNTAINOUS AREAS USING GEDI SPACEBORNE FULL-WAVEFORM DATA 

 
 

Chun Liu¹, Shufan Wang¹՚* 
 

¹College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China 
liuchun@tongji.edu.cn, W_shufan@tongji.edu.cn 

 
Commission I, WG I/2 

 
 

KEY WORDS: Tree canopy height, High vegetation coverage, Mountainous areas, GEDI, Waveform decomposition, Canopy height 
model. 

 
ABSTRACT: 
 
Tree canopy height is an important parameter for estimating forest carbon stock, and mountainous areas with dense vegetation cover 
are the main distribution areas of trees, so it is important to accurately measure the forest canopy height in mountainous areas with 
high vegetation cover. This paper focuses on the problem of poor inversion accuracy of canopy height estimation in large scale  
densely forest-covered mountainous areas, uses the complex echoes of GEDI full-waveform spaceborne laser in mountainous forests 
as the data source, improves the accuracy of forest canopy height estimation from multiple perspectives by improving the detection 
capability of weak and overlapping waves and constructing a canopy height model considering slope correction and environmental 
features. The results show that the modified RGD algorithm proposed in this paper can effectively detect the weak and overlapping 
waves in the echoes and improve the DTM/DSM inversion accuracy significantly (FVC>90%, ��=0.8663/��=0.8073). In addition, 
the forest canopy height model is constructed on the basis of the physical geometric model of mountain slope and spatial environment 
characteristics, and finally the canopy height inversion accuracy of this paper is higher (FVC>90%, ��=0.6729). The experiment 
proves that the model constructed in this paper is not only applicable to densely forest-covered mountainous areas, but also improves 
the accuracy of forest canopy height inversion in other environments. This study can provide technical and decision support for forest 
resource survey and global carbon balance. 
 

1. INTRODUCTION 

Forest ecosystems account for more than 80% of the global 
terrestrial carbon pool (Dixon et al., 1994) and play an important 
role in maintaining global carbon balance (Fang et al., 2001; 
Schimel et al., 2001). Mountain forests account for more than a 
quarter of the global forest, covering more than 9 million square 
kilometers of the earth's surface. In many countries, mountain 
forests are even the main form of tree existence. Take China as 
an example, more than 90% of the forests are distributed in 
mountainous areas. Therefore, rapid and accurate measurement 
of carbon stock in mountain forests has become an essential 
scientific demand (Seto et al., 2012). Meanwhile, canopy height 
is an important vertical structure parameter of forest ecosystem 
and a significant input feature for estimating forest biomass (Jin 
et al., 2018; Ni et al., 2015). Therefore, the accurate calculation 
of tree canopy height characteristics is a prerequisite for 
estimating mountain forest carbon stock, and how to improve the 
accuracy of canopy height estimation in densely forested 
mountain areas has become an urgent problem to be solved (Su 
et al., 2017). 
 

Traditionally, forest canopy height monitoring is carried out by 
manual field measurements of randomly sampled plots. This 
method can only obtain data at the meter scale at a time, and is 
limited in mountainous forests with complex terrain. The 
emergence of remote sensing technology has solved this problem 
to a certain extent, and the wide coverage of remote sensing data 
has improved the efficiency of surface observation. Nowadays, 
optical images and radar have been used to estimate forest canopy 
height in some areas(BALZTER et al., 2007; Prush and Lohman, 
2014; Zhang et al., 2014). However, in the dense montane forest, 
optical images and radar signals are limited by spectral saturation 
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effect (Donoghue and Watt, 2006). These measurement methods 
cannot penetrate the forest canopy, lack direct probing of the 
vertical structure of vegetation, and lead to large errors in canopy 
height measurement (Keller, 2007; Lefsky et al., 2002). The 
emergence of LiDAR provides an alternative method for 
measuring forest canopy height, which can directly measure the 
three-dimensional structure of the forest and be not limited by 
saturation effects (Su et al., 2017).It is increasingly becoming an 
important tool for forest monitoring. 
 

Spaceborne laser altimeter technology is to carry laser altimeter 
on satellites and other devices to obtain a broader range of earth 
observation data, accelerating the promotion of forest height 
mapping from the regional scale to the global scale(Jin et al., 
2018). The Global Ecosystem Dynamics Investigation (GEDI) 
uses a full-waveform sampling system to sample light spots on 
the land surface to investigate the earth’s ecosystems, providing 
the earth’s highest resolution and most intensive spaceborne laser 
observations. However, in densely forest-covered mountainous 
areas, due to the influence of staggered leaves and terrain, the 
echoes not only contains weak and overlapping waveforms, but 
also are widened, which poses challenges to the forest height 
inversion algorithm. 
 

Many scholars have realized the importance of complex 
waveform decomposition. Wagner found that a simple Gaussian 
decomposition model is hard to detect complex echoes accurately 
(Wagner et al., 2006). Chauve introduced the lognormal and 
generalized Gaussian function to explain the asymmetric 
waveform, but in most cases, the pulse waveform is still 
symmetrical (Chauve et al., 2008). Zhu proposed a method of 
progressive waveform decomposition, which extracted the 
waveforms of detected peaks one by one. However, the detection 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2022-25-2022 | © Author(s) 2022. CC BY 4.0 License.

 
25



 

 

accuracy of this method is not high for superimposed waveforms 
with only one prominent peak (Zhu et al., 2012). Lin proposed a 
method of rigorous Gaussian detection (RGD), which improved 
waveform recognition ability through the second derivative, but 
it has the problem of identifying waveform crests displacement 
(Lin et al., 2010). Current solutions to the problem of waveform 
spreading due to terrain generally fall into two categories: 1) 
Constructing a physical geometric model of slope. Quantifying 
the effect of terrain on forest canopy height estimation by 
constructing model equations (Allouis et al., 2012; Lee et al., 
2011). This method has a wide range of application and simple 
principle, but there are still some errors in the area with large 
topographic fluctuations. 2) Build a regression model of 
vegetation structure parameters. Extract waveform parameters 
from the echoes and build a regression model between these 
parameters and canopy height, thus indirectly attenuating the 
effect of spreading(Lefsky et al., 2005; Lefsky, 2010). This type 
of method can achieve relatively good accuracy, but the inversion 
results are affected by the accuracy of waveform parameter 
extraction. In summary, the current studies all focus on a single 
problem in the height inversion of mountain forests, and lack a 
multi-faceted approach to consider the overall improvement of 
canopy height inversion accuracy of montane forests. 
 

Therefore, this study addresses the problem of poor accuracy of 
maximum canopy height inversion of dense mountain forests by 
full-waveform satellite-based laser. The densely forest-covered 
mountainous area is taken as the main research object. For the 
definition of dense forest, the fractional vegetation coverage 
(FVC) is calculated from the multi-spectral images in this paper, 
and the area with vegetation cover greater than 70 % is defined 
as the dense forest-covered area (Tsutsumida et al., 2019; Li et 
al., 2021; Wei et al., 2018). FVC is defined as the ratio of green 
vegetation vertical projected area to the considered land surface 
extension, is a crucial biophysical property of vegetation and an 
important parameter that can quantify the vegetation horizontal 
structure. At present, the common way of calculating FVC is 
indirect calculation through NDVI. The calculation formula is as 
follows: 

            �� =
����������

�����������
              (1) 

 

where �� is FVC ; ����is a weighted average of vegetation and 
non-vegetation regions; �����  is the vegetation index of the 
bare soil pixels; and ����� is the vegetation index of the whole 
vegetation cover. 
 

In this paper, we propose a method for modeling the maximum 
canopy height of forest that integrates the ability to enhance 
waveform decomposition and slope correction. For the complex 
echoes of montane areas, firstly, the echoes including weak and 
overlapping waves are accurately identified through an modified 
RGD algorithm to extract the three-dimensional structural 
features of forest. Then, a canopy height regression model 
considering the slope geometry principle, vertical structure of 
trees and spatial environment features of the forest is constructed. 
The method proposed in this paper not only improves the ability 
to extract forest features in full-waveform complex echoes, but 
also integrates topographic and spatial element information to 
improve the accuracy of overall canopy height inversion. The 
main contributions of this paper are as follows： 
 

1) A modified RGD algorithm is proposed to detect weak and 
overlapping waves in waveforms by detecting peaks and 
inflection points, and to improve the decomposition accuracy of 
full waveforms in complex dense mountain forest echoes. 
2) A slope-correction-based maximum canopy height modeling 
method is constructed to provide a more accurate inversion of 

mountain forest canopy height by integrating the physical 
geometric model of mountain slope and the vertical structure of 
vegetation with spatial environmental characteristics. 
3) Evaluate the performance of the modified RGD algorithm 
proposed in this paper, compare and analyze the accuracy with 
the official GEDI algorithm. 
4) Compare and analyze the final inversion results of this paper 
with the regional airborne laser scanning (ALS) acquisition 
height. 
 

2. METHODOLOGY 

The proposed method mainly consists of two parts: 1) A modified 
RGD waveform decomposition algorithm. To improve the 
detection ability of weak and overlapping pluses in complex 
echoes of mountain forests, and extract the three-dimensional 
structure characteristics of trees. 2) Forest canopy height model 
with slope correction. A forest canopy height inversion model is 
constructed considering the geometric principle of mountain 
slope, vertical structure of vegetation and characteristics of forest 
spatial environment. 
 

2.1 A Modified RGD Waveform Decomposition Algorithm 

According to Wagner’s theory(Wagner et al., 2006), the shape of 
the transmitted waveforms is a Gaussian-like distribution. The 
received echoes signal are the sum of all target echoes passing 
through in transmitting the pulses to the ground, so it can be 
regarded as a superposition of multiple Gaussian models. The 
Gaussian target can be expressed by the following formula, 
considering the background noise: 

 
1

( ) ( )
N

r i
i

P x x b


    (2) 

  
2

2
( ) exp

2
i

i i

i

x
x A






 
   

  

 (3) 

 

Where ��(�) is the ith component of the Gaussian function, � 
is the noise offset estimation, �� is the amplitude of the ith 
Gaussian, �� is the coordinate position corresponding to the ith 
Gaussian peak, �� is the standard deviation of the ith Gaussian, 
N is the number of Gaussians. 
 

In the high-vegetation-covered region, due to overlapping 
vegetation leaves, target echoes exist in the form of weak and 
overlapping pluses in addition to apparent peaks. Ignoring such 
waveforms will affect the elevation accuracy of inversion. 
Therefore, to improve the recognition accuracy of weak and 
overlapping pluses, the modified RGD algorithm is proposed in 
this study: 
 

1) Gaussian filtering. Firstly, as described in the GEDI 
Algorithm Theoretical Basis Document (ATBD), the full 
waveform smoothing is performed with Gaussian filter of width 
6.5ns based on the transmit waveform parameters. The first and 
last positions in the waveform where the signal intensity is above 
the following thresholds are identified as searchstart and 
searchend, respectively: 
 

       threshold = mean +  σ ∙ υ                             (4) 
 

where mean  is the mean noise level, σ  is the standard 
deviation of noise of the smoothed waveform, and υ  is a 
constant currently set at 4. 
2) Peak detection of adaptive thresholds. The maximum 
amplitude value of the 20samples before and after the waveform 
is used as the noise threshold. The highest and lowest locations 
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in the range between searchstart and searchend are searched for 
as toploc and botloc, respectively, and the range between them is 
the subsequent waveform processing range. The local maximum 
peak  method is used to find the echo location that is higher than 
the noise threshold. The number of peaks found is recorded as M. 
 

3) Waveform decomposition combining the peak and the second 
derivative. The second derivative of the waveform is calculated, 
and the zero value is marked as the inflection point. When the 
number of inflection points is 2M, a pulse is determined by a peak 
point and the two closest inflection points to the peak. The half-
waveform width (FWHM), an important parameter in Gaussian 
fitting, is two times the distance between the peak and the nearest 
inflection point (Figure 2(a)(b)). When the number of inflection 
points is greater than 2M, the extra inflection points represent 
hidden waveform peaks (Figure 2(c)). Firstly, for the detected 
waveform peaks, the parameters are determined by using the 
same method as before, and the waveform of the determined 
parameters is stripped until M=0 (Figure 2(d)). In the remaining 
inflection points, the point with the larger amplitude is taken as 
the hidden waveform peak, and the nearest inflection point is 
taken as its inflection point, half-waveform width is obtained by 
calculating twice the distance between the crest and the inflection 
point (Figure 2(e)). After the parameters are determined, the 
waveform is stripped and iterated repeatedly until the 
decomposition is completed. 
 

In this paper, the relationship between different types of weak 
and superimposed waves and peaks and inflection points are 
simulated, as shown in Figure 1. It can be seen from Figure 1 that 
the modified algorithm in this paper can not only detect the 
hidden waveform but also reduce the redundancy of peak 
detection and be more accurate in extracting the location of the 
hidden waveforms compared with the original RGD algorithm. 

 

 

 

 
Figure 1. Simulate the superposition relationship between two 
received waveforms returned with different separations and 
amplitudes: (a) the left figure shows the waveform superposition 
status (6ns separation) and waveform feature points. The right 
figure shows the second derivatives curve of the whole echo and 
the corresponding position of waveform characteristic points. (b) 
the left figure shows the waveforms’ superposition status (4ns). 
(c) the left figure shows the waveforms’ superposition status 
(2ns). (d) the waveform of the peak detected in the echo with 
pulses interval 2ns (e) the waveform of an inflection point as its 
peak in the echo with pulses interval 2ns. 
 
2.2 Forest Canopy Height Model With Slope Correction 

Height parameters commonly used in vegetation height inversion 
are extracted from the results of decomposition (Figure 2), and 
the meanings of these peremeters are shown in Table 1.  
 

Parameter Description 

Toploc Sample number of highest detected return 

Botloc Sample number of lowest detected return 

CanopyPeak The location of the first detected mode peak 

GroundPeak The location of the last detected mode peak 

MaxPeak The location of the maximum amplitude 

Extent The distance between Toploc and Botloc 

PeakLeg 
The distance between the first mode peak and 

last mode peak 

CanopyLeg 
The distance between TopLoc and the last 

detected mode peak 

Table 1. Extracted waveform features. 
 

The laser zenith Angle is approximated as 0° . The impact of 
mountain slope on canopy height can be abstracted into a 
physical model shown in Figure 2(b). The tangent function can 
be used to calculate the maximum slope height caused by terrain. 
However, it can also be seen from Figure 2(b) that even trees in 
the same footprint are affected by different slope heights due to 
their different positions. As the location of the tree rises, it is 
more affected by the slope height. Therefore, position coefficient 
� is introduced in this paper. The height correction model of 
slope-shaped vegetation adopted in this paper is as follows: 
 
 �� = ������� − � × � × tan(�) + � (5) 
 
Where �� represents the corrected vegetation height, ������� 
represents the waveform length, �  represents the position 
coefficient, �  represents the footprint diameter, �  represents 
the terrain slope in degrees (º), and � represents the correction 
constant. 
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When GEDI is used as the laser data source, D=25 m. The values 
of �  position coefficient and �  correction constant in the 
vegetation slope physical model are determined by linear 
regression algorithm, and the results of maximum canopy height 
after physical correction of slope are obtained by substituting the 
waveform length and topographic slope within the 3 × 3 
neighborhood window. 
 

 
Figure 2. Physical models of vegetation slope 

 
However, in densely forest-covered mountainous areas, the 
accuracy of vegetation height estimation is affected not only by 
the topographic slope, but also by the structure of the vegetation 
and the spatial environment. Therefore we consider multiple 
features and analyze the feature importance by random forest and 
multiple linear regression methods. The feature meanings are 
shown in Table2, and Fig3 shows the top 5 feature parameters 
ranked with the importance of forest canopy height. A model for 
vegetation height estimation in densely forest-covered 
mountainous areas is developed by polynomial stepwise 
nonlinear regression algorithm as follows: 
 

 ���� = �(�������, ��, ��������, �������)  (6) 
 
Where ���� represents estimated vegetation height, MeanFVC 
represents the average FVC and Latitude represents the footprint 
Latitude. 
 

 
Figure 3. Order of characteristic importance 

 

Parameter Description 

MaxSlope/MeanSlope Max/Mean slope 

MaxFVC/MeanFVC Max/Mean FVC 

Latitude Latitude of footprint 

Longitude Longitude of footprint 

Table 2. Vegetation and spatial environmental features. 
 

3. EXPERIMENT AND RESULTS 

3.1 Experiment Area and Data 

The experimental area is located on the east bank of Chesapeake 
Bay, Maryland, USA. It is about 10km*10km in size(Figure 4). 
which is a typical mountainous forest area. The vegetation type 
of the study area is deciduous broad-leaved forest, and the 
average canopy height is about 38m. The vegetation coverage 
here is high, the percentage of vegetation coverage in most areas 
is more than 70 percent. In addition, the area is highly undulating, 
with an altitude of 0~43m and a mountain slope of 0~45°. 
Therefore, the experimental area is a representative area of 
densely forest-covered mountainous areas. 

 
Figure 4. Study area location. 

 
GEDI is used as an spaceborne full-waveform data source. GEDI 
acquires waveforms over eight tracks of data, illuminating the 
ground at a frequency of 242Hz over a diameter of 25m, which 
is known as the footprint. The footprints on the same track are 
separated by 60 m, and the track-to-track distance is 600 m. We 
use GEDI L1B and L2A level data for this study. The 
multispectral data were obtained using high-resolution Sentinel-
2 satellite data. The Band2 (B), Band3 (G), Band4 (R), and 
Band8 (NIR) bands of the L2A-level data are fused to generate 
multispectral image data with 10m spatial resolution. In this 
paper, airborne laser point cloud and derived DTM\DSM\CHM 
data are used as validation data for the study area, and the 
airborne data were collected in August 2021 using Teledyne 
Optech Galaxy Prime with an average point cloud density of 
35.41  pts/�� . The flight campaign was conducted by the 
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National Ecological Observatory Network (NEON) Airborne 
Observation Platform(National, 2021). 
 
3.2 Waveform Decomposition Results 

We compared the waveform decomposition results of our 
algorithm with the results of the decomposition algorithm 

proposed by Jin, which was adopted as GEDI official 
decomposition algorithm (Hofton et al., 2000a; Hofton et al., 
2000b). Figure 5 shows the difference in the decomposition of 
the two algorithms in the actual echoes. From (a)(b), it can be 
seen that there is an overlapping wave to the left of the main peak, 
but the official algorithm only detects one pulse of the main peak, 
while the algorithm of ours identifies the overlapping weak wave 
better and reduces the DTM error from 6.25m to 0.77m; (c)(d), 
the original waveform consists of multiple weak and overlapping 
waves at close distances, and again, while the official algorithm 
only detects one peak, our algorithm decomposes a total of four 
waveforms, reducing the DTM error from 28.15m to only -0.08m 
and the DSM error to -0.18m. 
 
However, at the same time, the DSM error in (a)(b) increases 
slightly, which we analyze due to the peak displacement 
monitored as a result of filtering. 
 

 

 
Figure 5. Comparison of waveform decomposition results 

 
We evaluated the agreement between vegetation height inversion 
accuracy and ALS observations using four statistical metrics: 
bias, coefficient of determination (��), root-mean-square error 
( ���� ) and root-mean-square-percentage error ( ����� ). 
The results in Fig. 6 show the fitting degree of ours and the 
official decomposition algorithm to DTM and DSM under 
different FVC (90~100%, 80~90%). In the inversion of DTM, 
our the algorithm improved the ��  accuracy to 0.8663 and 
0.9172 for 90~100% and 80~90%, respectively; relatively 
speaking, the inversion of DSM achieved a greater improvement, 
improving the �� accuracy from 0.5150 and 0.6409 to 0.8073 
and 0.8291 for 90~100% and 80~90%, respectively. 
 
In the algorithm of left figures, the weak detection of overlapping 
waveforms makes the lowest position waveform obtained from 
the decomposition higher than the ground and the highest 
position waveform lower than the canopy. The modified RGD 

algorithm proposed in this paper improves the detection of weak 
and overlapping waves by combining peak detection with 
second-order derivatives, therefore, the accuracy of the fit to 
DTM and DSM has been greatly improved. 
 

 
 

 
Figure 6. Comparison of decomposition accuracy between our 
modified algorithm and the official algorithm: (a) comparison of 
inversion accuracy of DTM in the region of FVC>90% (b) 
comparison of inversion accuracy of DTM in the region of 
FVC>80% (c) comparison of inversion accuracy of DSM in the 
region of FVC>90% (d) comparison of inversion accuracy of 
DSM in the region of FVC>80%  
 
3.3 Forest Canopy Height Inversion Results 

In Fig. 7 we compare the fitting degree to the maximum forest 
canopy height at different FVCs. In the region of FVC>90%, the 
feature  ������� − ������� of official algorithm does not 
fit well with the ALS collected canopy height values, with �� 
only 0.369 and ����  of 15.6774. The modified RGD 
decomposition algorithm improves �� to 0.5098 and ���� to 
7.3447. After the canopy height modelling, there is a further 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2022-25-2022 | © Author(s) 2022. CC BY 4.0 License.

 
29



 

 

improvement , ��  reaches 0.6729 and ����  decreases to 
5.7944. In the region of FVC>80%, the ��  and ����  are 
improved from the original 0.2164, 12.1577 to 0.4984 and 9.2268 
by the modified waveform decomposition algorithm, and then to 
0.6940 and 5.5961 by modeling. 
 
This is because the model in this paper can better solve the 
waveform broadening caused by terrain, model tree height based 
on position and waveform characteristics, and comprehensively 
consider the environment and waveform characteristics, so that 
the fitting accuracy of tree height can be better. 
 
However, it can also be seen in Figure 7 that although our 
decomposition algorithm can improve the detection of 
overlapping waves to a certain extent, there is still a situation that 
the PeakLeg of some waveforms is calculated as 0. This may be 
due to the fact that in a dense forest, the distance between 
reflected pulses is too close causing the two pulses to be spaced 
less than one bin apart in the received echoes, which can only be 
shown as one waveform. Under such data conditions, the 
processing effect of the method in this paper is limited. 
 

 
Figure 7. Comparison of the accuracy of our forest canopy height 
modeling results with the official algorithm: (a) Comparison of 

forest canopy height inversion accuracy in the region with 
FVC>90%, top left is the official algorithm result, top right is the 
result of our modified decomposition algorithm, bottom left is 
our final forest height model inversion result (b) Comparison of 
forest canopy height inversion accuracy in the region with 
FVC>80% 
 
Finally, we selected several typical mountain echoes with 
different FVC for canopy height extraction and verification 
(Figure 8), the FVC of (a), (b) and (c) decreased successively. It 
can be seen from Figure 8 that although RMSPE can be reduced 
to less than 12% only by our waveform decomposition algorithm, 
it was still significantly higher in high FVC areas than in low 
FVC areas. After combining the forest canopy height model, 
RMSPE in high FVC areas decreased significantly.And in the 
low FVC area, although the waveform decomposition is enough 
to RMSPE has reached 1.80%, the RMSPE of the canopy height 
model output is even lower, reaching 1.19%, indicating that the 
canopy height model constructed in this paper for the high 
vegetation cover mountain area also has good effect in the low 
vegetation cover area. 
 

4. DISCUSSION AND CONCLUSIONS 

To deal with the problem of poor inversion accuracy of space-
borne full-waveform data for tree heights in densely forest-
covered mountainous areas, this paper proposes a tree height 
inversion method that integrates waveform decomposition 
capacity enhancement with canopy height modeling based on 
slope correction. The two main contributions of this method are 
1) proposing an modified rigorous pulse detection algorithm to 
improve the detection of complex overlapping and weak waves 
and extract more accurate vertical structure features of vegetation, 
and 2) constructing a tree height estimation model that considers 
the influence of slope and environmental factors to attenuate the 
lack of accuracy caused by dense vegetation and topographic 
slope. 
 
To demonstrate our method, we compared the accuracy with the 
official algorithm. Qualitative and quantitative validation shows 
that the features proposed by our modified RGD algorithm have 
a substantial improvement in the fitting of DTM\DSM\CHM. 
And the canopy height model constructed in this paper makes the 
accuracy of tree height fitting further improved. This shows the 
necessity of considering the topographic and spatial environment 
features comprehensively. The experiments also demonstrate that 
the tree height inversion model in this paper is not only applicable 
to high vegetation cover mountain area, but also applicable in low 
vegetation cover areas. 
 
Our method improves the accuracy of tree height inversion of 
spaceborne full-waveform lidar data in densely forest-covered 
mountainous areas. The research results can provide technical 
support for large-scale and efficient forest resource investigation, 
and then provide a decision-making basis for the measurement 
and realization of the global carbon balance. Based on this 
method, expanding spatial environment factors can improve the 
model’s spatial adaptability, further broadening the scope of 
application. Furthermore, this method can provide a reference for 
large-scale and high-precision forest three-dimensional structure 
inversion. 
 
Although the method proposed in this paper improves the 
accuracy of full-waveform laser inversion of forest canopy height 
in densely mountainous areas. When the received pulses have too 
small waveform distance resulting in only one wave peak being 
displayed between overlapping waves, the processing effect of 
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our method is limited under such data conditions. Therefore, 
future work can be devoted to data fusion approaches with the 

aim to overcome such limitations, which is also a direction of our 
future work.

Figure8. Verification of canopy height inversion accuracy in typical forest-covered mountainous areas: (a)(b)(c) from left to right are 
remote sensing images, point cloud top view colored with height, waveform decomposition results and tree high precision comparison 
table. The tree high precision comparison table contains the comparison of airborne laser inversion tree height, waveform 
decomposition algorithm results and tree height modeling results in this paper. 
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